
The Arabidopsis Resistance-Like Gene SNC1 Is Activated
by Mutations in SRFR1 and Contributes to Resistance to
the Bacterial Effector AvrRps4
Sang Hee Kim1., Fei Gao1., Saikat Bhattacharjee1, Joseph A. Adiasor2, Ji Chul Nam3, Walter Gassmann1*

1 Division of Plant Sciences, Christopher S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of

America, 2 Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America, 3 Division of Biological Sciences, University of Missouri,

Columbia, Missouri, United States of America

Abstract

The SUPPRESSOR OF rps4-RLD1 (SRFR1) gene was identified based on enhanced AvrRps4-triggered resistance in the naturally
susceptible Arabidopsis accession RLD. No other phenotypic effects were recorded, and the extent of SRFR1 involvement in
regulating effector-triggered immunity was unknown. Here we show that mutations in SRFR1 in the accession Columbia-0
(Col-0) lead to severe stunting and constitutive expression of the defense gene PR1. These phenotypes were temperature-
dependent. A cross between srfr1-1 (RLD background) and srfr1-4 (Col-0) showed that stunting was caused by a recessive
locus in Col-0. Mapping and targeted crosses identified the Col-0-specific resistance gene SNC1 as the locus that causes
stunting. SRFR1 was proposed to function as a transcriptional repressor, and SNC1 is indeed overexpressed in srfr1-4.
Interestingly, co-regulated genes in the SNC1 cluster are also upregulated in the srfr1-4 snc1-11 double mutant, indicating
that the overexpression of SNC1 is not a secondary effect of constitutive defense activation. In addition, a Col-0 RPS4 mutant
showed full susceptibility to bacteria expressing avrRps4 at 24uC but not at 22uC, while RLD susceptibility was not
temperature-dependent. The rps4-2 snc1-11 double mutant showed increased, but not full, susceptibility at 22uC, indicating
that additional cross-talk between resistance pathways may exist. Intriguingly, when transiently expressed in Nicotiana
benthamiana, SRFR1, RPS4 and SNC1 are in a common protein complex in a cytoplasmic microsomal compartment. Our
results highlight SRFR1 as a convergence point in at least a subset of TIR-NBS-LRR protein-mediated immunity in
Arabidopsis. Based on the cross-talk evident from our results, they also suggest that reports of constitutive resistance
phenotypes in Col-0 need to consider the possible involvement of SNC1.
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Introduction

Plants possess a highly effective immune system that responds to

conserved non-self molecular patterns, or to specific pathogen-

derived molecules deployed to alter host defenses [1–3]. The latter

response, called effector-triggered immunity (ETI), is largely

mediated by resistance (R) proteins that directly or indirectly

detect the presence of pathogen effectors [3,4], although

mechanistically overlap between ETI and the response to

molecular patterns can be observed [5,6]. ETI can lead to

programmed cell death termed the hypersensitive response (HR)

[7,8]. In the case of resistance to some viral and hemi-biotrophic

bacterial pathogens, it has been shown that the HR is not causally

related to resistance [9–13]. Nevertheless, the plant immune

response is deleterious to plant growth, normal development, and

seed set even in the absence of HR, and therefore needs to be

tightly controlled [14].

In order to explore the molecular mechanisms that negatively

regulate ETI, we performed a suppressor screen for reactivated

AvrRps4-triggered resistance in the naturally susceptible Arabi-

dopsis (Arabidopsis thaliana) accession RLD [15]. This screen

yielded two mutant alleles in SUPPRESSOR OF rps4-RLD1

(SRFR1). Mutations in srfr1 enhanced resistance of RLD

specifically to Pseudomonas syringae pv. tomato strain DC3000

(DC3000) expressing avrRps4, while susceptibility to the virulent

strain DC3000 was unchanged [15]. Apart from re-establishing a

certain level of resistance to avrRps4, no other marked phenotype

was noted.

RPS4 encodes an R protein of the Toll/Interleukin-1 receptor

(TIR) - nucleotide binding site (NBS) - leucine-rich repeat (LRR)

(TNL) class [16], and was found to require the defense regulator

EDS1 to trigger immunity [17]. This is in contrast to the coiled-coil

(CC) -NBS-LRR (CNL) R proteins RPS2, RPM1 and RPS5,

which require the defense gene NDR1 [17]. Combining mutations

in SRFR1 and the CNL pathway genes RPM1, RPS2 or NDR1 did

not measurably alter the susceptibility to the cognate effector

genes. The partial resistance to avrRps4 in srfr1 mutants required

EDS1 [15,18]. In addition, mutations in RPS6, another TNL gene

that requires EDS1 [12], led to susceptibility to DC3000(hopA1)

that was diminished in srfr1-1 rps6-1 double mutants [19].
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Taken together, these data indicated that SRFR1 function is

closely associated with the EDS1 resistance pathway. Here we

show that a mutation in SRFR1 in the accession Columbia-0 (Col-

0), srfr1-4, activates the Col-0 specific and EDS1-dependent R-like

gene SNC1, consistent with the genetic function of SRFR1 as a

negative regulator of R gene-mediated resistance. Activation of

constitutive defenses in srfr1-4 was temperature-dependent. In

addition, RPS4 and SNC1 contributed redundantly to susceptibility

to DC3000(avrRps4) in Col-0 at 22uC, whereas at 24uC RPS4

activity was the sole determinant of resistance. Interestingly,

SRFR1 interacted with both RPS4 and SNC1. Our data thus

provide evidence for cross-talk between these TNL pathways that

converge on SRFR1, suggesting that SRFR1 may have a general

function in regulating TNL protein signal output.

Results

A mutation in SRFR1 in Col-0 causes abnormal growth
We previously had isolated the mutant alleles srfr1-1 and srfr1-2

from the Arabidopsis accession RLD [15]. Apart from enhanced

resistance to DC3000(avrRps4), they did not display marked

phenotypes. To further investigate the function of SRFR1, we

aimed at isolating T-DNA tagged lines of SRFR1 in the accession

Col-0 [20,21]. Out of four lines, one did not germinate

(SALK_106212), and one was untagged (SALK_095440). We

could verify a T-DNA insertion far upstream of the open reading

frame in SALK_039199, without causing an apparent phenotype.

Interestingly, the fourth line, SAIL_412_E08 with a T-DNA

insertion in the second intron of SRFR1 (Figure 1A), showed

pronounced stunting (Figure 1B) in one-fourth of plants (22 out of

97 plants; x2 = 0.28). Genotyping showed that the T-DNA

insertion in SRFR1 segregated in the original seed stock, and that

stunted plants were invariably homozygous for the T-DNA

insertion. Reverse transcription (RT) PCR showed that no srfr1

mRNA was detected with primers on either side of the insertion

(Figure S1). A low level of srfr1 mRNA could be detected with

primers located 39 of the T-DNA insertion, but this mRNA

contained the T-DNA (Figure S1), indicating that srfr1-4 mRNA

does not encode functional protein. Consistent with this, Li and

co-workers recently showed that no SRFR1 protein can be

detected in this knock-out line [22]. We named this line srfr1-4.

Subsequently, we back-crossed srfr1-4 to Col-0. The stunted

phenotype co-segregated with homozygosity of the srfr1-4 T-DNA

tagged allele in F2 plants (Table 1). To prove that the phenotype

originated from the srfr1-4 allele, we transformed healthy

heterozygous srfr1-4 plants with pSHK102 containing a genomic

clone of SRFR1 [18], and by scoring for antibiotic resistance

selected 5 single-locus homozygous transgenic SRFR1 T3 lines that

contained at least one copy of the srfr1-4 T-DNA allele based on

genotyping. Because the transgenic copy of SRFR1 prevented us

from determining whether these T3 lines were homozygous or

heterozygous for the srfr1-4 allele, we tested whether srfr1-4

segregated in the next generation by genotyping 15 progeny for

each line. Three of the 5 lines were shown in this way to be

homozygous for the srfr1-4 allele, and the transgenic copy of

SRFR1 reversed the stunted phenotype in each case (Figure 1B).

We concluded that the stunted growth phenotype is caused by the

T-DNA insertion in SRFR1.

Figure 1. A mutation in SRFR1 causes severe stunting in Col-0.
(A) Schematic gene structure of SRFR1 (At4g37460), with exons shown
as boxes and introns as lines. The T-DNA insertion site in the second
intron in srfr1-4 (SAIL_412_E08) is indicated. (B) Growth phenotype of
srfr1-4 and complementation with a genomic copy of SRFR1 in
transgenic plants.
doi:10.1371/journal.ppat.1001172.g001

Table 1. The stunted phenotype co-segregates with the srfr1-
4 allele in a backcross to Col-0.

Generation Phenotype n x2 Genotype n

F1 normal 4 SRFR1/srfr1-4 4

F2 normal 57 0.071 (P.0.7)a SRFR1/SRFR1 20

SRFR1/srfr1-4 37

stunted 18 srfr1-4/srfr1-4 18

ax2 value for the expected ratio of 3 normal : 1 stunted progeny.
doi:10.1371/journal.ppat.1001172.t001

Author Summary

Plants, like humans, have an immune system to defend
against disease. This immune system seeks out the
presence of disease-causing microbes and other invaders
by detecting non-plant molecules and proteins. Plants rely
on this surveillance to activate an antimicrobial response
of appropriate strength at the right time; as with humans,
an overactive immune system can be harmful to plants.
We study how plants achieve an appropriate balance,
using genetics and the interaction between the reference
plant Arabidopsis thaliana and the bacterial plant patho-
gen Pseudomonas syringae. So-called plant resistance
proteins are important activators of immunity that directly
or indirectly intercept foreign proteins deployed by
pathogens. Resistance proteins are generally thought to
be highly specific detectors that only respond to a single
pathogen protein. However, while working with a negative
regulator of plant immunity called SRFR1, we discovered a
surprising level of cross-talk between different resistance
proteins that becomes evident only under certain envi-
ronmental conditions such as low temperature. We also
show that SRFR1 and these resistance proteins bind to
each other, possibly explaining the observed cross-talk.
Our work thus highlights linkages between resistance
pathways and provides insight into the molecular archi-
tecture of the plant innate immune response.

SRFR1 and TNL Resistance Protein Cross-Talk
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Genetics of srfr1-mediated stunting
The stunted srfr1-4 phenotype was in marked contrast to the

normal phenotype of srfr1-1 and srfr1-2 plants. To determine

whether the specific allele of SRFR1 or the Col-0 genetic

background causes the severe phenotype of srfr1-4, we first

reexamined more closely F3 families of important break-point

plants retained from the SRFR1 mapping populations. Plants in

these F3 families were generated by crossing srfr1-1 or srfr1-2

(RLD background) to the SAIL RPS4 T-DNA knockout line rps4-1

(Col-0 background) [15,18] and were progeny of F2 plants selected

for resistance to DC3000(avrRps4). They were therefore homozy-

gous for srfr1-1 or srfr1-2, with varying degrees of Col-0

background. Two out of 4 srfr1-1 and 2 out of 6 srfr1-2 F3

families contained no individuals with abnormal growth pheno-

types. However, the remaining F3 families gave rise to plants with

phenotypes similar to srfr1-4. The combined total number of

stunted plants in these families was 20 out of 107 plants, consistent

with the segregation of a single recessive gene in these populations

(x2 = 2.43, P.0.1). We concluded that most likely the mutant

alleles srfr1-1 and srfr1-2 also induce stunting in the Col-0

background and that Col-0 possesses a recessive genetic modifier

that alters the srfr1 phenotype.

We tested these predictions directly by out-crossing srfr1-4 to

RLD and srfr1-1. In the cross to srfr1-1, 14 out of 46 plants were

stunted, consistent with both srfr1-1 and srfr1-4 causing stunting

and the segregation of a recessive gene (x2 = 0.45, P.0.5). In the

cross to RLD, segregation of the stunted phenotype in the F2

generation was explained by two recessive genes, and genotyping

showed that while all stunted plants were homozygous srfr1-4, not

all srfr1-4/srfr1-4 plants were automatically stunted (Table 2). In

this cross, stunted F2 plants were also selected to determine a

rough map position for the presumptive Col-0 modifier gene. This

mapping placed the Col-0 modifier gene onto chromosome 4

(Table 3). Interestingly, in addition to the bottom of chromosome

4 where SRFR1 is located, individual break-point plants identified

a map position towards the top of chromosome 4 between markers

ciw6 and CH42 for the Col-0 modifier gene.

srfr1-4 has constitutively activated defenses caused by
SNC1

The map position for the modifier gene contained the Col-0-

specific TNL R gene homolog SNC1, which was originally

identified through a point mutation that autoactivates the SNC1

protein and constitutively induces PR genes even in the npr1

mutant line [23]. Additional work showed that wild-type SNC1 is

easily autoactivated when expression of SNC1 is misregulated [24].

For example, mutations in BON1, a member of the copine gene

family encoding a plasma membrane-localized putative calcium-

dependent phospholipid-binding protein [25,26], lead to higher

SNC1 expression levels, constitutive defense responses and reduced

plant growth [27]. When the Col bon1-1 mutant was outcrossed to

other Arabidopsis accessions, it was found that the wild-type SNC1

gene from Col-0 behaved as a recessive locus that causes stunting

[27]. Our segregation data also indicated that the Col-0 modifier

was recessive (Table 2). We therefore tested additional phenotypes

displayed by bon1-1 plants, such as temperature dependence of

constitutive defense activation and growth phenotypes. The

stunted phenotype in srfr1-4 was severe at 22uC, but was

intermediate at 24uC and absent at 28uC (Figure 2A), reminiscent

of the Arabidopsis bon1-1 mutant phenotype.

In srfr1-1 and srfr1-2 plants, resistance to DC3000(avrRps4) was

enhanced, but remained unchanged to virulent DC3000, and

plant growth was normal [15,18]. Interestingly, the srfr1-4 mutants

were resistant not only to avirulent DC3000(avrRps4), but also to

virulent DC3000 and non-pathogenic DC3000 hrcC2 (Figure 2B).

The srfr1-4 line showed approximately 50-fold lower DC3000 and

DC3000(avrRps4) growth than wild type Col-0, whereas the growth

of DC3000 hrcC2 in srfr1-4 was about 10-fold less than in Col-0,

suggesting that mutations in SRFR1 in Col-0 increased basal

defenses at 24uC that were additive to AvrRps4-triggered

immunity (Figure 2B). Complemented srfr1-4 lines did not show

either enhanced resistance phenotype (Figure 2B). We could not

test bacterial growth at 22uC because srfr1-4 plants were severely

stunted at this temperature. However, consistent with an

upregulation of salicylic acid (SA)-based defenses, PR1 and PR2

mRNA levels were upregulated and PDF1.2 levels down-regulated

in srfr1-4 at 22uC (Figure 2C).

Table 2. A second recessive Col-0 allele is required for
stunting in the cross RLD6srfr1-4.

Generation Phenotype n x2 Genotypeb n

F1 normal 6 SRFR1/srfr1-4 6

F2 normal 435 2.28 (P.0.1)a SRFR1/SRFR1 12

SRFR1/srfr1-4 27

srfr1-4/srfr1-4 10

stunted 38 srfr1-4/srfr1-4 38

ax2 value for the expected ratio of 15 normal : 1 stunted progeny.
bOnly 49 of the 435 normal F2 plants were genotyped.
doi:10.1371/journal.ppat.1001172.t002

Table 3. Mapping of the Col-0 modifier gene in stunted F2 plants from the cross RLD6srfr1-4.

Marker (Mb)a Recombinant Chromosomes Total Number of Chromosomes Recombination Frequency (%)

nga8 (5.6) 21 86 24

DET1.2 (6.3) 12 84 14

ciw6 (7.9) 2 58 3

CH42 (10.2) 2 86 2

20B4L-1.6 (11.1) 1 86 1

nga1139 (16.4) 0 52 0

nga1107 (18.1) 4 80 5

aThe position for SNC1 on chromosome 4 is at 9.5 Mb, and that for SRFR1 at 17.6 Mb. Markers that did not show linkage with the stunted phenotype were nga63 and
nga280 (chromosome 1), nga168 (chromosome 2), nga162 and nga6 (chromosome 3), and nga225 and nga139 (chromosome 5).

doi:10.1371/journal.ppat.1001172.t003

SRFR1 and TNL Resistance Protein Cross-Talk

PLoS Pathogens | www.plospathogens.org 3 November 2010 | Volume 6 | Issue 11 | e1001172



Characterization of the srfr1-4 phenotype and mapping

therefore strongly suggested that the Col-0 modifier is SNC1. To

test this directly, we crossed srfr1-4 to snc1-11, a T-DNA insertion

allele in the first exon of SNC1 [27]. In the F2 population, the

number of stunted plants was consistent with the segregation of

two recessive loci (srfr1-4 and wild-type SNC1) (Table 4). All of the

stunted plants were homozygous for the srfr1-4 allele and the wild-

type SNC1 allele. In contrast, all plants of normal stature that were

homozygous for the srfr1-4 T-DNA allele possessed at least one

copy of the snc1-11 T-DNA allele (Table 4). Therefore, the stunted

phenotype of srfr1-4 plants requires two copies of SNC1 in Col-0,

analogous to the phenotype of bon1-1 plants [27]. We quantified

the effect of mutations in SRFR1 on plant growth by measuring the

shoot weight of srfr1 mutants in Col-0 and RLD (Figure 3). Shoot

weights were close to normal in the original srfr1-1 and srfr1-2

plants compared to wild-type RLD. Mutations in srfr1 caused

severe reductions in shoot weight in the Col-0 background that

were completely reversed by introgressing snc1-11. Interestingly,

the shoot weight of srfr1 SNC1 plants was more strongly reduced

than in bon1-1 plants (Figure 3), indicating that perhaps SRFR1

functions downstream of additional R genes apart from regulating

SNC1. Together with the negative regulation in AvrRps4- and

HopA1-triggered immunity, these results show that SRFR1 is a

negative regulator of plant immune responses of broader

specificity than originally described.

The LRR domain is deleted in SNC1-RLD
Previous studies had suggested that the readily autoactivatable

SNC1 is limited to the Col-0 accession, but these studies had not

included RLD [27]. We therefore sequenced the likely RLD

ortholog of SNC1 in RLD to determine the molecular basis for the

very different phenotypes of Col-0 and RLD srfr1 mutants. At the

59-end, SNC1-specific primers consistently amplified a sequence

with high overall similarity to SNC1-Col (Figure 4A and 4B). SNC1-

specific primers designed to amplify the complete SNC1 gene or

the 39-half of SNC1 failed to result in a unique RLD product. This

reflected the very duplicated nature of the 39-half of SNC1 in Col-

0. Whole sections of the gene are not only duplicated within SNC1

with 100% sequence identity, but are also found in linked family

members [28]. We were not able to experimentally determine

unequivocally which genomic PCR product from the 39-end was

physically linked to the 59-end of SNC1-RLD.

We therefore determined the SNC1 mRNA sequence from RLD

using a combination of 39-Rapid Amplification of cDNA Ends (39-

RACE) and RT-PCR. As shown in Figure 4A, the open reading

frame of SNC1-RLD predicted a protein of 619 amino acids,

including a TIR and NBS domain but only a partial LRR domain.

The predicted amino acid sequence identity between SNC1-Col

and SNC1-RLD within the first three exons was 87%. However,

our SNC1-RLD cDNA sequence was missing the fourth and fifth

Figure 2. The growth phenotype of srfr1-4 is temperature-dependent and accompanied by constitutive activation of defenses. (A)
Growth phenotype of wild type Col-0 (left column) and srfr1-4 (right column) at 22uC (top row), 24uC (middle) and 28uC (bottom). (B) The srfr1-4
mutation enhances both basal defenses and AvrRps4-triggered immunity in Col-0. In planta bacterial growth at 24uC of DC3000 (top),
DC3000(avrRps4) (middle) and DC3000 hrcC2 on day 0 (blue bars) and day 3 (purple bars) after inoculation of the indicated plant lines with bacteria at
56104 colony-forming units (cfu) per ml. Two independent transgenic srfr1-4 lines complemented with a genomic copy of SRFR1 are shown. Values
represent averages of cfu/cm2 leaf tissue from triplicate samples, and error bars denote standard deviation. Values labeled with different letters show
significant differences as determined by Student’s t-test (P,0.05, n = 3) on day 3. This experiment was repeated twice with similar results. (C) Altered
defense gene mRNA levels in srfr1-4 at 22uC. Analysis of indicated transcripts in Col-0 and srfr1-4 by RT-PCR using 27 PCR cycles. ACTIN2 was used as
an internal control.
doi:10.1371/journal.ppat.1001172.g002

SRFR1 and TNL Resistance Protein Cross-Talk
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exons, leading to an in-frame stop codon at position 620

(Figure 4B). Interestingly, in the SNC1-RLD cDNA the very 39-

end of the open-reading frame and the 39-untranslated region

showed high nucleotide sequence identity with the corresponding

region in SNC1-Col. Because we only obtained cDNA sequence of

SNC1-RLD at the 39-end, we could not determine whether the 39-

end of the SNC1-RLD coding sequence is interrupted by introns.

We also obtained RT-PCR products from Col-0. These indicated

that in contrast to the annotation of SNC1 in TAIR, we did not

find evidence for the splicing of intron 5, which does not contain

in-frame stop codons (Figure 4B). This alternative SNC1 transcript

encoded a SNC1 protein of 1404 amino acids rather than the

annotated 1301 amino acids. Taken together, sequencing of the

RLD SNC1 ortholog provided evidence for polymorphisms at the

59-end and major alterations in the 39-half of the gene compared

to Col-0, consistent with the fact that RLD does not have a SNC1

ortholog that triggers stunted growth in the absence of SRFR1.

Morphologically normal srfr1-4 snc-11 double mutants
possess primed defenses

Activation of SNC1, either by intragenic autoactivating

mutations [23] or by mutations in negative regulators of SNC1

such as BON1 [27], leads to constitutively enhanced resistance.

Consistent with this and the constitutive expression of PR genes in

srfr1-4 (Figure 2C), we observed with in planta bacterial growth

assays increased resistance of srfr1-4 to DC3000(avrRps4) and to

virulent DC3000 (Figure 2B). The latter shows that srfr1-4 plants

possess elevated basal resistance that is independent of particular

avirulence genes. To test if enhanced basal resistance in srfr1-4,

like stunted growth, is fully dependent on SNC1, we performed in

planta bacterial growth assays at varying temperatures. As noted

before, we were not able to infiltrate srfr1-4 plants at 22uC because

of the severe growth phenotype.

At both 22uC and 24uC, the growth of DC3000 and

DC3000(avrRps4) was reduced in srfr1-4 snc1-11 compared to

growth in wild type Col-0, even though the growth of

DC3000(avrRps4) in srfr1-4 snc1-11 was slightly higher than that

in srfr1-4 at 24uC (Figure 5A and 5B). This remnant enhanced

basal resistance in srfr1-4 snc1-11 plants may be related to the

induced defense gene mRNA levels observed in RLD srfr1-1 and

srfr1-2 plants, although the latter plants do not show enhanced

basal resistance [18,29]. These results demonstrate that although

the stunted phenotype of srfr1-4 at 22uC and 24uC is fully

mediated by SNC1, enhanced basal resistance at these tempera-

tures in srfr1-4 is not entirely mediated by SNC1. At 28uC, both

basal and AvrRps4-triggered resistance were abolished in srfr1-4

and srfr1-4 snc1-11 plants (Figure S2A). In addition, AvrRps4-

triggered resistance was also abolished in wild-type Col-0,

confirming previous results [30], and in snc1-11 plants (Figure

S2A). Consistent with normal growth and absence of resistance at

28uC, SNC1 and PR1 expression were not elevated in srfr1-4 or

srfr1-4 snc1-11 plants (Figure S2B).

Figure 3. Stunting of srfr1-4 as measured by shoot weight is reversed by snc1-11. The indicated plant lines were grown for three weeks in a
greenhouse at 22uC with a 16 h light/8 h dark cycle. Values represent average shoot weights of 40 to 70 plants for each line, and error bars denote
standard deviation. Values labeled with different letters show significant differences as determined by Student’s t-test (P,0.05). This experiment was
repeated once with similar results.
doi:10.1371/journal.ppat.1001172.g003

Table 4. Two copies of SNC1 are required for stunting in F2
plants from the cross snc1-116srfr1-4.

Generation Phenotype n x2 Genotypeb n

F1 normal 5 SRFR1/srfr1-4
SNC1/snc1-11

5

F2 normal 202 0.31 (P.0.5)a n.d. 72

SRFR1/SRFR1 36

SRFR1/srfr1-4 75

srfr1-4/srfr1-4
SNC1/snc1-11

14

srfr1-4/srfr1-4
snc1-11/snc1-11

5

stunted 16 srfr1-4/srfr1-4
SNC1/SNC1

16

ax2 value for the expected ratio of 15 normal : 1 stunted progeny.
bOnly 130 of the 202 normal F2 plants were genotyped at the SRFR1 locus. Only

homozygous srfr1-4 plants were further genotyped at the SNC1 locus.
doi:10.1371/journal.ppat.1001172.t004

SRFR1 and TNL Resistance Protein Cross-Talk
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Altered expression levels of defense-related genes in
srfr1-4 and srfr1-4 snc1-11

Previously, we showed that several defense-related genes were

up-regulated in RLD srfr1 mutants, supporting our hypothesis that

SRFR1 may function as a repressor in plant innate immunity by

negatively regulating defense gene expression levels [29]. The

growth and constitutive defense phenotypes of srfr1-4 at 22uC and

24uC prompted us to quantify defense-related gene mRNA levels

in srfr1-4 at these temperatures using quantitative reverse

transcription real-time PCR (qPCR), and to determine whether

all changes in expression in srfr1-4 can be attributed to SNC1. As

expected, SNC1 transcript levels were higher in srfr1-4 than in Col-

0 at 22uC and 24uC, as were those of RPP4 and At4g16950

(Figure 6A), two TNL genes in the SNC1 cluster that are co-

regulated with SNC1 [31]. Interestingly, RPP4 and At4g16950

expression levels were higher also in the srfr1-4 snc1-11 double

mutant (Figure 6A), showing that higher mRNA levels of these

genes is not an indirect effect of SNC1 activation. Similarly, we

observed increased mRNA levels of the CNL R gene RPS2, and to

a lesser extent of RPM1, in srfr1-4 and srfr1-4 snc1-11 plants at both

22uC (Figure S3A) and 24uC (Figure S3B), indicating that

upregulation of R genes by mutations in SRFR1 is not limited to

TNL genes in Col-0. In contrast to SNC1-RLD, upregulation of

RPM1 and RPS2 was not observed in the RLD mutant srfr1-1

(Figure S3C), possibly reflecting the presence of additional

accession-specific SNC1-like genes in Col-0 [32] that may lead to

enhanced expression of CNL genes.

SA-dependent defense related gene mRNA levels were also

higher in srfr1-4 than in wild-type at 22uC and 24uC (Figure 6B).

Unlike for TNL and CNL genes, these expression levels were

reduced in srfr1-4 snc1-11 compared to srfr1-4 to varying degrees,

although they were still higher than in wild-type (Figure 6B).

Interestingly, NPR1 and EDS1 mRNA levels in the double srfr1-4

snc1-11 mutant showed additive increases compared to the wild-

type and single mutants at 22uC (Figure 6B). In contrast, mRNA

levels of PDF1.2, a defensin gene whose expression is under

negative regulation by the JA-responsive transcription factor JIN1

[33], was strongly repressed at 22uC in srfr1-4 but induced in srfr1-

4 snc1-11 plants compared to wild-type. PDF1.2 expression levels

Figure 4. SNC1-RLD encodes a truncated TNL protein. (A) Alignment of deduced amino acid sequences of SNC1-Col (top) and SNC1-RLD
(bottom) using the EBI-ClustalW tool (http://www.ebi.ac.uk/Tools/clustalw/) [54]. Identical amino acids are indicated by asterisks. Colons and semi-
colons show conserved substitutions and semi-conserved substitutions, respectively. Characters in blue, red and green show the amino acids
corresponding to exon 1, exon 2 and exon 3, respectively. (B) SNC1 gene model as experimentally verified by reverse transcription PCR and 39-RACE
from Col-0 (middle) and RLD (bottom) compared with the TAIR9 gene model (top). Exons are indicated by boxes, introns by lines, and stop codons by
red asterisks.
doi:10.1371/journal.ppat.1001172.g004
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Figure 5. Phenotypically normal srfr1-4 snc1-11 double mutants show enhanced basal defense and AvrRps4-triggered immunity. In
planta bacterial growth was measured in the indicated plant lines on day 0 (blue bars), day 2 (purple) and day 4 (yellow) after inoculation with
DC3000 (top) and DC3000(avrRps4) (bottom) at 56104 cfu/ml at 22uC (A) and 24uC (B). Values represent averages of cfu/cm2 leaf tissue from triplicate
samples, and error bars denote standard deviation. Values labeled with different letters show significant differences at the indicated days as
determined by Student’s t-test (P,0.05, n = 3). This experiment was repeated twice with similar results.
doi:10.1371/journal.ppat.1001172.g005

Figure 6. Transcript levels of defense-related genes are altered in srfr1-4 and srfr1-4 snc1-11. (A) Transcript levels of the co-regulated R
genes SNC1, RPP4 and At4g16950. (B) Transcript levels of NPR1, EDS1, PAD4 and SID2 (left) and PR1 (right). (C) Transcript levels of PDF1.2. Transcript
levels were measured by qPCR in Col-0 (blue bars), srfr1-4 (purple), snc1-11 (yellow) and srfr1-4 snc1-11 (black) at 22uC (top) and 24uC (bottom), and
were normalized using SAND gene (At2g28390) mRNA levels as an internal control. Values represent averages from four biological replicates, and
error bars denote standard deviation. Different letters denote significant differences between values calculated by Student’s t-test (P,0.05, n = 4).
This experiment was repeated once with similar results.
doi:10.1371/journal.ppat.1001172.g006
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were not significantly different among the genotypes at 24uC
(Figure 6C). These results point towards complex modular control

of defense gene expression that is influenced by a combination of

SRFR1, SNC1 and temperature to varying proportions.

Cross-talk between RPS4 and SNC1 in AvrRps4-triggered
immunity

The Arabidopsis accession RLD carries a natural mutation in

RPS4 and is fully susceptible to DC3000(avrRps4) [34,35]. In

addition, introduction of RPS4 from Col-0 or Ler into RLD is

sufficient to provide full resistance to DC3000(avrRps4) when

compared to Col-0 and Ler [16,35]. We also observed suscepti-

bility of rps4-1, an RPS4 T-DNA allele in the Col-0 background,

under our conditions that were used to map SRFR1 [15].

However, it was reported that rps4-2, a second RPS4 T-DNA

allele in the Col-0 background, was only slightly more susceptible

to DC3000(avrRps4) [36]. Based on the accession-specific presence

of SNC1 in Col-0, the temperature-dependent srfr1-4 phenotype

and the fact that SRFR1 was identified in a screen for enhanced

DC3000(avrRps4) resistance in RLD, we speculated that the rps4-2

phenotype might be temperature-dependent. Indeed, when

directly comparing plants grown in identical growth chambers at

22uC or 24uC, we observed a strong temperature dependence:

rps4-2 plants were as resistant to DC3000(avrRps4) as Col-0 at

22uC, while at 24uC they were as susceptible as Col-0 treated with

virulent DC3000 and as susceptible as RLD treated with either

strain (Figure 7).

Given the effect of temperature, we next tested whether SNC1

interferes with the susceptible phenotype at 22uC. Interestingly,

rps4-2 snc1-11 double mutants displayed approximately 30-fold

increased bacterial growth of DC3000(avrRps4) compared to Col-0

or rps4-2 at 22uC (Figure 7A), suggesting that SNC1 in the

absence of RPS4 contributes to AvrRps4-triggered immunity at

22uC in Col-0. However, susceptibility of rps4-2 snc1-11 to

DC3000(avrRps4) was not complete compared to Col-0 treated

with virulent DC3000 or to RLD treated with either strain,

indicating that additional factors interfere with rps4-caused

susceptibility (Figure 7A). No significant difference of

DC3000(avrRps4) growth in rps4-2 and rps4-2 snc1-11 was observed

at 24uC, reflecting full susceptibility of rps4-2 to DC3000(avrRps4)

at this temperature (Figure 7B). Recently, RRS1 was shown to be

involved in DC3000(avrRps4)-mediated resistance [37,38]. How-

ever, we observed no temperature-dependent resistance to

DC3000(avrRps4) in the Ws-0 mutants rps4-21 and rrs1-1 (Figure

S4). As was observed before, mutations in either RPS4 or RRS1

had equal effects on DC3000(avrRps4) susceptibility, which was

qualitatively different from the redundancy between SNC1 and

RPS4 (Figure 7). Interestingly, as reported before [38], we

reproducibly observed approximately 10-fold higher growth of

DC3000 compared to DC3000(avrRps4) in the single rps4-21 and

rrs1-1 mutants and the double mutant, indicating that additional

layers of resistance exist.

SNC1 and RPS4 interact with SRFR1
The redundancy between RPS4 and SNC1 suggests that they

function in parallel to provide resistance to DC3000(avrRps4) at

22uC. We speculated that this cross-talk between two R proteins

might occur if both interact with proteins in a common complex.

Perturbation of this complex by an effector could trigger one or

the other R protein, and both need to be absent to observe

susceptibility. Based on the results presented here, we reasoned

that SRFR1 might be a common interaction partner of RPS4 and

SNC1. In the past, transient expression of SRFR1 in Nicotiana

benthamiana led to variable protein expression levels and required a

silencing inhibitor for detectable expression [18]. We therefore

generated stable transgenic N. benthamiana plants expressing HA-

SRFR1 encoded by a genomic clone driven by the native

Arabidopsis SRFR1 promoter. We first determined the function-

ality of this genomic HA-SRFR1 construct in Arabidopsis by testing

for complementation of the stunted srfr1-4 phenotype. Transgenic

Figure 7. RPS4 and SNC1 contribute redundantly to AvrRps4-triggered resistance. In planta bacterial growth was measured in Col-0, snc1-
11, rps4-2, two independent snc1-11 rps4-2 lines and RLD on day 0 (blue bars), day 2 (purple) and day 4 (yellow) after inoculation with DC3000 (top)
and DC3000(avrRps4) (bottom) at 56104 cfu/ml at 22uC (A) and 24uC (B). Values represent averages of cfu/cm2 leaf tissue from triplicate samples, and
error bars denote standard deviation. Values labeled with different letters show significant differences at the indicated days as determined by
Student’s t-test (P,0.05, n = 3). This experiment was repeated three times with similar results.
doi:10.1371/journal.ppat.1001172.g007
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plants expressing HA-SRFR1 in the srfr1-4 background showed

normal growth and development (Figure S5A). Immunoblot

analysis detected the expression of the transgene product in these

transgenic plants (Figure S5A). HA-SRFR1 in these plants

localized to microsomal and nuclear fractions (Figure S5B). This

localization was consistent with the nuclear and punctate

cytoplasmic localization of GFP-SRFR1 transiently expressed in

N. benthamiana [18].

We observed improved and reproducible HA-SRFR1 expres-

sion in the stable transgenic N. benthamiana lines. As in Arabidopsis,

HA-SRFR1 localized to the microsomal and nuclear fractions in

N. benthamiana (Figure 8A). A previous study showed that RPS4 was

predominantly localized to microsomes [36]. Immunoblot assays

of Myc-SNC1 transiently expressed in N. benthamiana suggested

that SNC1 was mainly a soluble cytoplasmic protein, although a

sizeable portion accumulated in the microsomal fractions

(Figure 8B). We also detected some SNC1 in the nuclear fraction

(Figure 8B). We tested for SRFR1 interaction with SNC1 and

RPS4 by transiently expressing Myc-SNC1, Myc-RPS4 or Myc-

eGFP as a negative control in transgenic HA-SRFR1 N.

benthamiana plants. Co-immunoprecipitation analysis on protein

isolated 48 h after infiltration of Agrobacterium tumefaciens strains

showed that SRFR1 interacted with both SNC1 and RPS4 in the

microsomal fraction (Figure 9). No significant interaction between

SRFR1 and SNC1 was detected in the soluble fraction, even

though SNC1 was detected in this fraction. No interaction with

eGFP was detected in either fraction (Figure 9). As an additional

control, we probed SRFR1 co-immunoprecipitated samples for

the presence of GAPDH and V-ATPase. Neither protein was co-

immunoprecipitated with SRFR1 (Figure S6A and S6B), indicat-

ing that the interactions of SRFR1 with SNC1 and RPS4 are

specific.

Discussion

SRFR1 encodes a novel tetratricopeptide repeat (TPR)-contain-

ing protein that is conserved between plants and other eukaryotes

[18]. Based on limited sequence similarity with the Saccharomyces

cerevisiae Ssn6 and the animal OGT proteins, SRFR1 was

originally proposed to function as a transcriptional repressor,

perhaps with defense genes as its target. Consistent with this

hypothesis, resting mRNA levels of several defense genes were

slightly higher in srfr1-1 and srfr1-2 than in wild-type RLD [29].

This general priming of the defense system made it unlikely that

SRFR1 function is limited to defenses triggered by AvrRps4.

However, no alteration of resistance to DC3000 strains that trigger

resistance via the R genes RPM1 or RPS2 were detected. The

original analysis did not include a second TNL gene, which may

be significant since TNL genes like RPS4 signal through EDS1,

while coiled-coil (CC)-NBS-LRR genes like RPS2 and RPM1

require NDR1 [17]. With the cloning of RPS6, a second

Arabidopsis TNL bacterial R gene that mediates resistance via

EDS1 to the P. syringae pv. syringae effector HopA1 [12,39], we

found that rps6-1 srfr1-1 double mutants were more resistant to

DC3000(hopA1) than the rps6-1 single mutant [39].

Mutations in SRFR1 activate SNC1
Here we extend our analysis to the Col-0 specific TNL R-like

gene SNC1 and show that mutations in SRFR1 activate SNC1.

SNC1 was originally identified based on an autoactivated allele

that led to constitutive expression of PR1 [23]. Subsequently, it

was shown that perturbation of wild-type SNC1 expression readily

leads to autoactivation [24,27,40]. Our finding that SNC1 is

activated in srfr1 mutants is reminiscent of the bon1/cpn1

phenotype [25–27]. How the absence of BON1 leads to SNC1

activation is not known. In particular, it is not known if sub-pools

of BON1 and SNC1 reside in the same protein complex.

Together, our data show that mutations in SRFR1 impact three

resistance specificities, namely AvrRps4-, HopA1- and SNC1-

triggered immunity. The impact of srfr1 mutations on SNC1 is

novel, given that previously we observed effects of SRFR1

mutations only in the absence of the R genes RPS4 or RPS6.

Figure 8. Localization of SRFR1 and SNC1 expressed in N.
benthamiana. (A) HA-SRFR1 stably expressed in transgenic N.
benthamiana localizes to the cytoplasmic microsomal and nuclear
fractions. (B) Transiently expressed Myc-SNC1 localizes predominantly
to the soluble cytoplasmic fraction, with detectable amounts in the
microsomes and nuclei. In (A) and (B), the microsomal and nuclear
fractions are 6 and 14 times concentrated, respectively, compared to
the soluble fraction. The degree of fraction enrichment was determined
using antibodies against marker proteins (anti-histone H3 and anti-RNA
polymerase I subunit, nucleus; anti-GAPDH, cytoplasmic soluble; and
anti-V-ATPase, microsomes). Each assay was repeated at least three
times with similar results.
doi:10.1371/journal.ppat.1001172.g008
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SNC1 is therefore the first TNL gene for which a genetically direct

negative regulation by SRFR1 could be shown. Whether this is also

mechanistically direct remains to be determined. Consistent with

the proposed function of SRFR1 as a transcriptional repressor, we

found increased mRNA levels for SNC1, RPP4 and At4g16950 in

srfr1-4 plants. This altered expression level was not an indirect

effect of SNC1 activation, since RPP4 and At4g18950 were also

upregulated in the srfr1-4 snc1-11 double mutant. Because these

members of the SNC1 locus were previously shown to be co-

regulated with SNC1 [31] and because changes in SNC1 expression

levels have been shown to cause autoactivation of SNC1 [24], we

propose that mutations in SRFR1 lead to misregulated expression

of SNC1, which in turn activates constitutive expression of an

enhanced defense phenotype.

Cross-talk between RPS4- and SNC1-mediated resistance
and interactions with SRFR1

The genetic connection of SNC1 and RPS4 via SRFR1 was

measurable as cross-talk between these resistance pathways in

disease assays under specific environmental conditions. Because it

had been convincingly shown that the Col-0 rps4-2 mutant was not

fully susceptible to DC3000(avrRps4) [36], while we observed

complete susceptibility, we tested whether environmental condi-

tions had an influence on the Col-0 phenotypic response to

DC3000(avrRps4). Surprisingly, we found that a mere 2uC
difference in temperature changed the phenotype of rps4-2 from

almost completely resistant to DC3000(avrRps4) to fully suscepti-

ble. Other environmental factors that are likely to impact this

response are humidity [26], with drier conditions favoring

resistance, and light intensity. Because cis or second-site mutants

with activated SNC1 have a well-described conditional phenotype

influenced by temperature and humidity, we tested whether the

partial phenotype of rps4-2 is influenced by SNC1.

Indeed, we were able to measure a synergistic effect of

mutations in RPS4 and SNC1 on susceptibility to DC3000(avrRps4)

at 22uC. In addition, in the accessions RLD and Ws-0 that do not

have SNC1, mutations in RPS4 result in susceptibility to

DC3000(avrRps4) that is not influenced by changes in temperature

in the range investigated here. SNC1 was originally identified in a

screen for mutants with constitutively activated defenses, and to

date no cognate avirulence gene has been identified. Nevertheless,

some suppressor mutants of the constitutive snc1-1 phenotype such

as mos7 also impact effector-triggered immunity [41]. Our finding

that SNC1 contributes to AvrRps4-triggered immunity further

indicates that SNC1 can be considered a bona fide R gene.

Conceptually, cross-talk between resistance pathways can occur

if an effector protein has more than one target, or if R proteins

guard a common target. The former seems to be the case for

RPM1 and TAO1, which additively contribute to full resistance to

DC3000(avrB) [42]. In contrast, AvrRpm1 induced measurable

defenses in rpm1 plants that were dependent on RPS2, presumably

because both RPM1 and RPS2 guard RIN4, a protein that is the

target for both AvrRpm1 and AvrRpt2 [19]. As a first step to

distinguish between these models, we tested whether SNC1 and

RPS4 co-localize with a common protein. Given the regulatory

function of SRFR1 on SNC1 and on AvrRps4-triggered

resistance, we speculated that SRFR1 might be such a common

protein. Interestingly, the microsomal pool of SRFR1 was found to

be in a complex with SNC1.

Figure 9. SRFR1 interacts with RPS4 and SNC1 in the microsomal fraction. Myc-RPS4, Myc-eGFP or Myc-SNC1 were transiently expressed via
Agrobacterium-mediated transient expression in N. benthamiana transgenic lines 6-4 and/or 7-1 expressing HA-SRFR1. Immunoprecipitation (IP)
analysis was performed on soluble and microsomal fractions with the indicated antibodies. The immunoprecipitates were immunoblotted (IB) with
the indicated antibodies (left panel). The right panel shows the corresponding protein expression levels in the input fractions for
immunoprecipitation analyses. In the right panel, the microsomal fraction is 6-fold enriched compared to the soluble fraction. Molecular weight
of protein standards (in kD) are shown on the left of the panels. Asterisks denote the expected sizes of the Myc-tagged proteins. The degree of
soluble and microsomal fraction enrichment are shown by IB analyses with anti-GAPDH and anti-V-ATPase antibodies. The assay was repeated three
times with similar results.
doi:10.1371/journal.ppat.1001172.g009
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Transiently expressed GFP-SRFR1 in N. benthamiana localized

to the nucleus and cytoplasm [18]. The cytoplasmic localization

was punctate. Here, further analysis of the cytoplasmic pool

showed that most SRFR1 localized to the microsomal cytoplasmic

fraction, and very little was soluble. Because the majority of SNC1

was in the soluble cytoplasmic pool, it was not possible to

determine whether the microsomal pool of SNC1 diminishes in

the absence of SRFR1. In addition, the native N. benthamiana pool

of SRFR1 may be sufficient to localize some proportion of SNC1

to microsomes. Most likely, SNC1 is in a higher-order complex

with SRFR1 in a microsomal compartment of unknown identity.

Interestingly, we found that RPS4 also interacted with SRFR1 in

the same cell fraction. This suggests that perhaps additional R

proteins localize to a common complex. The localization of

SRFR1 and interactions with RPS4 and SNC1 are reminiscent of

CRT1 [43]. However, the functions of CRT1 and SRFR1 likely

differ, because mutations in CRT1 compromise, not enhance,

effector-triggered immunity.

Because mutations in SRFR1 lead to increased, not decreased

resistance, we do not propose that SRFR1 is analogous to RIN4 as

the guardee of RPS4 or SNC1, since deletion of a guardee should

prevent recognition of the specific effector that targets the guardee.

The function of guardee for SNC1 may be fulfilled by BON1 [44],

although BON1 is localized to the plasma membrane [25] and to

our knowledge it has not been determined whether BON1

interacts with SNC1. Also, because no cognate effector is known

for SNC1 and because deletion of BON1 leads to autoactivation of

SNC1, it is difficult to quantify the effects of BON1 mutations on

disease resistance and susceptibility. Interestingly, we consistently

observed a more severe growth phenotype of srfr1-4 plants

compared to bon1-1 plants, yet the srfr1-4 growth phenotype is

completely reversed by snc1-11. Apart from negatively regulating

the activation of SNC1, SRFR1 most likely regulates additional R

proteins. Because of positive feed-back, all these pathways may be

turned on once SNC1 is activated. While in bon1-1 plants SRFR1

is still present to downregulate these other R proteins, this is not

the case in srfr1-4 plants. Therefore, this observation is suggestive

of a broad and central function of SRFR1 in downregulating R

protein output.

It is currently unknown where in the cell the recognition of

AvrRps4 by RPS4 occurs. Several plant R proteins, including

RPS4, have been shown to function in the nucleus to trigger

immunity [36,45]. Because the cytoplasmic pool of these R

proteins predominates over the nuclear pool, it is difficult to

establish whether R proteins translocate to the nucleus upon

effector perception, or continuously cycle between the cytoplasmic

and nuclear compartment. We also detected a low amount of

SNC1 in the nucleus, whereas the autoactivated mutant snc1-1

protein appears to accumulate to higher levels in the nucleus [41].

It was also found that snc1-1 needed to be in the nucleus to cause a

stunted phenotype [41], and that temperature modulated the

localization of snc1-1 [46]. Interestingly, a balanced partitioning of

EDS1 between the cytoplasm and nucleus was recently shown to

be required for full EDS1-mediated resistance [47], indicating that

immune regulatory proteins may have coordinated cytoplasmic

and nuclear functions during the immune response.

Here we found that SRFR1 interacts with RPS4 and SNC1 in

the cytoplasm, and also that mutations in SRFR1 alter the

expression of defense genes independent of a snc1 phenotype.

Because of the low amount of RPS4 [36], SRFR1 and SNC1

protein in the nucleus, so far we have not been able to ascertain

whether they also interact in the nucleus. However, our results

seem to suggest that at resting state, the majority of SRFR1, RPS4

and SNC1 protein is extra-nuclear localized and forms a complex

in the microsomal fraction. SRFR1 may therefore negatively

regulate RPS4 and SNC1 translocation to the nucleus. We

propose that a second point of regulation is in the nucleus, where

SRFR1 may negatively regulate the transcriptional reprogram-

ming upon pathogen perception. More detailed analyses before

and during a defense response are required to substantiate these

hypotheses.

Genetics of srfr1-mediated resistance revisited
The genetics of enhanced resistance in RLD srfr1 mutants were

originally interpreted to signify that an additional specific R gene is

required for resistance [15]. In the mapping crosses rps4-16srfr1-1

and rps4-16srfr1-2, resistant F2 plants were identified in the ratio

13 susceptible to 3 resistant, consistent with segregation of a

recessive locus (srfr1) and a dominant locus that was proposed to be

a second specific R gene with weak recognition of AvrRps4 [15].

In light of the results presented here, we needed to reinterpret

these results. Retesting our mapping population provided evidence

for severely stunted plants at the expected ratio of one in 16

stunted plants. These would be double recessives (srfr1 and wild-

type SNC1) and would have been lost from our usual phenotypic

analysis because of preferential retention of vigorously growing

seedlings after planting for disease assays. Upon reinspection, the

segregation of resistant plants in the two mapping populations was

indeed statistically consistent with the segregation of a single

recessive locus (srfr1) in a population where 1/16th of the

population (genotype srfr1/srfr1 SNC1/SNC1) that would have

been expected to be resistant was eliminated from consideration.

In addition, in both mapping populations we had noticed an

apparent suppression of recombination along chromosome 4 in

retained plants [15], which is consistent with the fact that both

SRFR1 and SNC1 are located on chromosome 4. At the same time,

we show here that the original model for resistance in srfr1 mutants

mediated by other R genes with weaker recognition of AvrRps4 is

still valid because cross-talk between R genes exists in response to

AvrRps4. However, we now consider it unlikely that one single

additional R gene is responsible for resistance in srfr1 mutants.

In conclusion, our data contribute to evidence for extensive

cross-talk between at least three TNL pathways that converge on

SRFR1, indicating that SRFR1 perhaps has a central function in

regulating the output of additional TNL proteins. The present

data also allow us to propose more directly that SRFR1 negatively

regulates R proteins or R gene expression. While models for

SRFR1 so far have focused on a nuclear-localized transcriptional

repressor function [18], the data here suggest that SRFR1 also has

a function in the cytoplasm. Consistent with this, Li and co-

workers recently showed that SRFR1 interacts with SGT1 in the

cytoplasm [22]. Whether SRFR1 is merely an accessory protein in

a cytoplasmic ‘‘resistasome’’ or has regulatory functions and

migrates to the nucleus remains to be established. Nevertheless,

our data highlight molecular architecture aspects of a subset of

TNL-mediated resistance pathways that will allow further

mechanistic insight into the function of TNL R proteins. The

cross-talk evident from our results also means that any reports of

constitutive resistance phenotypes in Col-0 need to consider the

possible involvement of SNC1.

Materials and Methods

Plant lines
The srfr1-4 line (SAIL_412_E08) from the Syngenta Arabidop-

sis Insertion Library [21] was obtained from the Arabidopsis

Biological Resource Center. The T-DNA insertion site in srfr1-4 in

the second intron was determined by sequencing and was found to
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be upstream of the insertion site suggested by raw flanking

sequence from the T-DNA Express website (http://signal.salk.

edu/cgi-bin/tdnaexpress). rps4-2 (SALK_057697) was isolated

from the Salk T-DNA knockout lines [20]. snc1-11

(SALK_047058) and bon1-1 were a kind gift from Jian Hua

(Cornell University). Using snc1-11 as a recipient, srfr1-4 snc1-11

and rps4-2 snc1-11 double homozygous mutants were generated.

The mutant lines rps4-21, rrs1-1 and rps4-2 rrs1-1 in the Ws-0

background were kindly provided by Yoshihiro Narusaka

(Research Institute for Biological Sciences, Japan). The mapping

populations generated by crossing srfr1-1 or srfr1-2 to rps4-1

(SAIL_519_B09) were described previously [15].

Complemented srfr1-4 transgenic lines were generated by

transforming srfr1-4 with pSHK102, a genomic SRFR1 clone in

vector pCAMBIA2300 [18], using the floral dip method [48].

Single locus transgenic lines homozygous for the transgenic copy

of wild-type SRFR1 were selected by scoring for kanamycin

resistance, the selectable marker of pCAMBIA2300 (the selectable

marker for SAIL lines is BASTA). Among these homozygous lines,

those with at least one copy of the srfr1-4 allele were selected by

genotyping and propagated to the next generation. Lines

homozygous for both the SRFR1 transgene and the srfr1-4 allele

were identified as those where srfr1-4 did not segregate in the next

generation. SNC1 was mapped by genotyping stunted plants in the

F2 generation from the cross RLD6srfr1-4 using SSLP and CAPS

markers [49,50].

Plant growth and in planta bacterial growth curve assays
Unless otherwise noted, Arabidopsis plants used in this study

were grown in E-7/2 reach-in growth chambers (Controlled

Environments Ltd., Winnipeg, Manitoba, Canada) under an 8 h

light/16 h dark cycle at 24uC and 22uC, with 70% relative

humidity and a light intensity of 90–140 mmol photons m22 s21.

Virulent Pseudomonas syringae pv. tomato strain DC3000 containing

the empty vector (ev) pVSP61 or DC3000 expressing avrRps4 from

plasmid pVSP61 was grown as described previously [16]. To

generate DC3000 hrcC2(ev), pVSP61 was mobilized into the

recipient DC3000 hrcC2 mutant by triparental mating using the

helper plasmid pRK2013. In planta bacterial growth assays were

performed by syringe infiltration. Leaves of 4-week old plants were

infiltrated with bacterial suspensions of 56104 cfu/mL. Leaf discs

with a total area of 0.5 cm2 per sample were ground in 10 mM

MgCl2, and solutions were plated in serial dilutions on selective

medium in triplicate at the indicated time points. Statistical

comparison of bacterial growth was tested using a two-tailed

Student’s t-test.

Transcript profiling, reverse transcription PCR and RACE
Quantitative reverse transcription PCR was performed as

described previously [18]. Briefly, total RNA was extracted from

the indicated plant lines using TRIZOL (Invitrogen, Carlsbad,

CA, USA). For RT-PCR experiments, cDNA was synthesized

from 2 mg of total RNA using an oligo(dT)15 primer and Moloney

murine leukemia virus (MMLV) reverse transcriptase (Promega,

Madison, WI, USA) following the manufacturer’s protocol.

Quantitative real-time reverse transcription PCR (qPCR) was

performed with SYBR GREEN PCR Master Mix and an ABI

7500 system (Applied Biosystems, Warrington, UK) according to

the manufacturer’s instructions. The levels of transcripts were

normalized using SAND gene (At2g28390) mRNA levels as an

internal standard. These experiments were performed at least

twice with similar results. Semi-quantitative RT-PCR was

performed from total RNA extracted from Col-0 and srfr1-4.

Equivalent amounts of cDNA from both samples were used to

detect PR1, PR2 and PDF1.2. ACTIN2 (At3g18780) was used as an

internal control. Table S1 lists the oligonucleotide primer

sequences used in qPCR and semi-quantitative RT-PCR.

To determine the SNC1 cDNA sequence from RLD and Col-0,

the 39-RACE procedure (Invitrogen, Carlsbad, CA, USA) and

RT-PCR (see above) were performed as described previously [19].

PCR products were ligated into the pGEM-T Easy vector

(Promega) for sequencing. See Table S1 for oligonucleotide

primer sequences used in these experiments.

Molecular cloning and generation of transgenic N.
benthamiana plants

All clones were verified by sequencing. To generate epitope-

tagged SNC1 constructs, genomic SNC1 DNA including introns

was amplified by PCR from Col-0 using SNC1 GATE primers

listed in Table S1. In vitro BP Clonase recombination reactions

were carried out to insert the PCR product into the pDONR201

entry vector according to the manufacturer’s instructions (Invitro-

gen). LR reactions were performed to recombine the entry clones

into GATEWAY-compatible destination vectors. Using BP and

LR reactions, we constructed Myc-gSNC1 with six Myc tags under

the control of the cauliflower mosaic virus 35S promoter.

Similarly, Myc-gRPS4 was generated by amplifying the genomic

fragment of RPS4 from the FLAG-gRPS4 construct [51] using the

primers RPS4 FOR and RPS4 REV (Table S1).

To construct the binary vector expressing genomic HA-tagged

SRFR1 from its native promoter (HA-gSRFR1), independent PCR

reactions were performed with the primer combinations HA-

SRFR1 FOR/gSRFR1 XbaI REV and pCAMBIA PmeI FOR/

HA-SRFR1 REV using the template pSHK102 [18]. The PCR

products were mixed and used for overlap PCR with the

pCAMBIA Pme I FOR/gSRFR1 XbaI REV primers. The

2.2 kb PCR product was digested with PmeI and XbaI and used

for replacing the PmeI-XbaI fragment of pSHK102. The resulting

binary vector was electroporated into Agrobacterium tumefaciens strain

C58C1. Transgenic N. benthamiana plants expressing HA-gSRFR1

from the Arabidopsis native promoter were generated by stable

Agrobacterium-mediated transformation as previously described

[52]. Transgenic plants were selected on media containing

100 mg/ml kanamycin.

Protein fractionation and immunoblot analysis
Microsomal and soluble fractions were prepared according to

published procedures [53]. Briefly, plant materials were ground in

buffer H (50 mM HEPES, pH 7.5, 250 mM sucrose, 15 mM

EDTA, 5% glycerol, 0.5% polyvinylpyrrolidone) containing

3 mM DTT and 16protease cocktail inhibitors (Sigma, St. Louis,

MO). The extracts were filtered through two layers of miracloth

pre-wetted with buffer H and centrifuged at 20006g for 15 min at

4uC. The supernatant consisting of the cytoplasmic fraction was

further subjected to ultracentrifugation at 100,0006g to separate

the soluble and microsomal (pellet) fractions. The pellet was

resuspended in buffer H. Nuclear extracts were prepared using the

CelLyticTM PN Isolation/Extraction Kit (Sigma) following the

manufacturer’s instructions. Total protein concentrations of

fractions were determined by Bradford assays with BSA as

standard. Extracts were normalized to 1 mg/ml with buffer H.

For co-immunoprecipitation assays, the nonionic detergent Igepal

CA-630 (Sigma) was added to 0.2% and 1% final concentration to

the soluble and microsomal fractions, respectively. The extracts

were incubated overnight with 20 ml of anti-HA or anti-Myc

agarose beads (Sigma). The beads were washed three times with

buffer H containing 0.2% Igepal CA-630. The immunoprecipi-

tates were analyzed by immunoblot assays with anti-Myc-HRP
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(Santa Cruz Biotechnology) or anti-HA-HRP (Roche) antibodies.

The degree of enrichment in cellular fractionation was determined

by immunoblot analyses with anti-GAPDH (Genscript, Piscat-

away, NJ), anti-V-ATPase (Agrisera, Vännäs, Sweden), anti-

histone H3 (Abcam, Cambridge, MA) and anti-RNA pol I

(Agrisera) antibodies.

TAIR accession numbers
SNC1: At4g16890; SRFR1: At4g37460; RPS4: At5g45250;

RPP4: At4g16860; NPR1: At1g64280; EDS1: At3g48090; PAD4:

At3g52430; SID2: At1g74710; PR1: At2g14610; PR2: At3g57260;

PDF1.2: At5g44420; SAND: At2g28390; ACTIN2: At3g18780.

Supporting Information

Table S1 PCR primers used in this study.

Found at: doi:10.1371/journal.ppat.1001172.s001 (0.07 MB PDF)

Figure S1 RT-PCR analysis of SRFR1 transcripts in Col-0 and

srfr1-4. (Top) Diagram of the SRFR1 gene structure. The T-DNA

insertion site in the second intron, verified by sequencing, is

indicated with a triangle. Locations of primers used for PCR after

reverse transcription are indicated by arrows. (Bottom) Ethidium

bromide-stained gel showing PCR products obtained with the

indicated primer pairs and RNA isolated from Col-0 and srfr1-4.

ACTIN2 was used as an internal standard to indicate equal amount

of RNA used in RT-PCR.

Found at: doi:10.1371/journal.ppat.1001172.s002 (0.04 MB PDF)

Figure S2 Enhanced basal defenses and expression of defense

genes in srfr1-4 plants is abolished at 28uC. (A) In planta bacterial

growth was measured in Col-0, srfr1-4, snc1-11 and srfr1-4 snc1-11

grown at 28uC on day 0 (blue bars) and day 3 (purple bars) after

inoculation of DC3000 (top) and DC3000(avrRps4) (bottom) at

56104 cfu/ml. Values represent averages of cfu/cm2 leaf tissue

from triplicate samples, and error bars denote standard deviation.

This experiment was repeated once with similar results. (B) SNC1

(top) and PR1 (bottom) transcript levels were measured by qPCR

in Col-0, srfr1-4, snc1-11 and srfr1-4 snc1-11 grown at 28uC, and

were normalized using SAND gene (At2g28390) mRNA levels as

an internal control. Note difference in scale compared to Figure 6.

Values represent averages from six biological replicates, and error

bars denote standard deviation.

Found at: doi:10.1371/journal.ppat.1001172.s003 (0.21 MB PDF)

Figure S3 Upregulation of R gene transcripts is not limited to

TNL genes in Col-0. RPM1 and RPS2 transcript levels were

quantified in Col-0 (blue bars), srfr1-4 (purple), snc1-11 (yellow) and

srfr1-4 snc1-11 (light blue) plants grown at 22uC (A) or 24uC (B), or

in RLD (blue bars) and srfr1-1 (purple) plants grown at 24uC (C).

Transcript levels were normalized using SAND gene (At2g28390)

mRNA levels as an internal control. Values represent averages

from four (A and B) and five (C) biological replicates, and error

bars denote standard deviation.

Found at: doi:10.1371/journal.ppat.1001172.s004 (0.20 MB PDF)

Figure S4 Mutants in the Ws-0 background do not show

changes in susceptibility to DC3000(avrRps4) between 22uC and

24uC. In planta bacterial growth was measured in Ws-0, rps4-21,

rrs1-1 and rps4-21 rrs1-1 on day 0 (blue bars) and day 3 (purple

bars) after inoculation of DC3000 (top) and DC3000(avrRps4)

(bottom) at 56104 cfu/ml at 22uC (A) and 24uC (B). Values

represent averages of cfu/cm2 leaf tissue from triplicate samples,

and error bars denote standard deviation. Values labeled with

different letters show significant differences on day 3 as determined

by the Student’s t-test (P,0.05, n = 3). This experiment was

repeated once with similar results.

Found at: doi:10.1371/journal.ppat.1001172.s005 (0.23 MB PDF)

Figure S5 HA-SRFR1 localizes to microsomes and nuclei of

transgenic srfr1-4 plants. (A) Trangenic srfr1-4 plants expressing

genomic HA-SRFR1 from its native promoter show complete

reversal of the stunted phenotype (left panel). Total proteins were

extracted from mature leaves of Columbia (Col-0) and two srfr1-4

transgenic lines (1 and 2) expressing genomic HA-SRFR1 driven by

the native promoter (right panel). The extracts were immuno-

blotted with anti-HA antibodies. The coomassie-stained blot is

shown below to indicate equal loading. (B) Total proteins from

Col-0 and transgenic srfr1-4 HA-SRFR1 line 1 (s1-4 HS1) were

fractionated into soluble, microsomal and nuclear fractions.

Immunoblot analyses were performed with anti-HA to detect

HA-SRFR1, and with antibodies specific to organelle markers to

determine fraction enrichment (anti-RNA Pol I subunit, nucleus;

anti-V-ATPase, microsomes; and anti-GAPDH, cytoplasmic

soluble). The microsomal and nuclear extracts are 6 and 14 times

concentrated, respectively, compared to the soluble fraction.

Found at: doi:10.1371/journal.ppat.1001172.s006 (0.70 MB PDF)

Figure S6 SRFR1 does not interact with GAPDH or V-ATPase.

(A) Immunoprecipitates with anti-HA antibodies of the soluble

fraction shown in Figure 9 were immunoblotted with anti-

GAPDH antibodies. The last lane of the panel contains soluble

extracts from transient expression of Myc-eGFP in transgenic N.

benthamiana plants expressing HA-SRFR1. (B) Immunoprecipitates

with anti-HA antibodies of the microsomal fraction shown in

Figure 9 were immunoblotted with anti-V-ATPase antibodies.

The last lane of the panel contains microsomal extracts from

transient expression of Myc-eGFP in transgenic N. benthamiana

plants expressing HA-SRFR1.

Found at: doi:10.1371/journal.ppat.1001172.s007 (0.28 MB PDF)
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11. Cole AB, Király L, Ross K, Schoelz JE (2001) Uncoupling resistance from cell
death in the hypersensitive response of Nicotiana species to Cauliflower mosaic virus

infection. Mol Plant-Microbe Interact 14: 31–41.

12. Gassmann W (2005) Natural variation in the Arabidopsis response to the

avirulence gene hopPsyA uncouples the hypersensitive response from disease

resistance. Mol Plant-Microbe Interact 18: 1054–1060.

13. Yu I-C, Parker J, Bent AF (1998) Gene-for-gene disease resistance without the

hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci USA 95:
7819–7824.

14. McDowell JM, Simon SA (2006) Recent insights into R gene evolution. Mol

Plant Pathol 7: 437–448.

15. Kwon SI, Koczan JM, Gassmann W (2004) Two Arabidopsis srfr (suppressor of

rps4-RLD) mutants exhibit avrRps4-specific disease resistance independent of

RPS4. Plant J 40: 366–375.

16. Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-

resistance gene is a member of the TIR-NBS-LRR family of disease-resistance
genes. Plant J 20: 265–277.

17. Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, et al. (1998) Different

requirements for EDS1 and NDR1 by disease resistance genes define at least two
R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 95:

10306–10311.

18. Kwon SI, Kim SH, Bhattacharjee S, Noh JJ, Gassmann W (2009) SRFR1, a
suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide

repeat protein with similarity to transcriptional repressors. Plant J 57: 109–119.

19. Kim MG, Geng X, Lee SY, Mackey D (2009) The Pseudomonas syringae type III

effector AvrRpm1 induces significant defenses by activating the Arabidopsis

nucleotide-binding leucine-rich repeat protein RPS2. Plant J 57: 645–653.

20. Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen HM, et al. (2003) Genome-

wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657.

21. Sessions A, Burke E, Presting G, Aux G, McElver J, et al. (2002) A high-
throughput Arabidopsis reverse genetics system. Plant Cell 14: 2985–2994.

22. Li Y, Li S, Bi D, Cheng Y-T, Li X, et al. (2010) SRFR1 negatively regulates
plant NB-LRR Resistance protein accumulation to prevent autoimmunity. PLoS

Pathog 6: e1001111.

23. Zhang YL, Goritschnig S, Dong XN, Li X (2003) A gain-of-function mutation in
a plant disease resistance gene leads to constitutive activation of downstream

signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:

2636–2646.

24. Li YQ, Yang SH, Yang HJ, Hua J (2007) The TIR-NB-LRR gene SNC1 is

regulated at the transcript level by multiple factors. Mol Plant-Microbe Interact
20: 1449–1456.

25. Hua J, Grisafi P, Cheng SH, Fink GR (2001) Plant growth homeostasis is

controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev 15: 2263–2272.

26. Jambunathan N, Siani JM, McNellis TW (2001) A humidity-sensitive

Arabidopsis copine mutant exhibits precocious cell death and increased disease

resistance. Plant Cell 13: 2225–2240.

27. Yang SH, Hua J (2004) A haplotype-specific Resistance gene regulated by

BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant
Cell 16: 1060–1071.
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