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Abstract

Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with
mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-
mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the
plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV
entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies
with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which
resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time
analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin-
or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-
specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a
macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases
and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein
(GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken
together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent
manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics
for Ebolavirus infection.
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Introduction

Viruses have evolved a variety of mechanisms to enter host cells

[1,2,3], including clathrin- and caveolae-mediated endocytosis,

phagocytosis, and macropinocytosis. The main route of endocytosis,

mediated by clathrin, is characterized by the formation of clathrin-

coated pits (CCP) of 85–110 nm in diameter that bud into the

cytoplasm to form clathrin-coated vesicles. Influenza virus, vesicular

stomatitis virus (VSV) and Semliki forest virus all enter their host

cells via this pathway [4,5,6]. Although Listeria monocytogenes is larger

than a CCP in diameter, it exploits non-classical clathrin-mediated

endocytosis along with actin rearrangement to facilitate its infection

[7,8]. Caveolae are small vesicles of 50–80 nm in diameter enriched

in caveolin, cholesterol, and sphingolipid, and have been implicated

in simian virus 40 (SV40) entry [9]. Clathrin- and caveolae-

mediated endocytosis requires large guanosine tryphosphatases

(GTPase) dynamin 2 for vesicle scission [3].

Phagocytosis plays a role in the uptake of microorganisms, cell

debris, and apoptotic cells [10]. It is initiated by the interaction of

cell surface receptors, such as mannose receptors, Fc receptors and

lectin receptors, with their ligands at the surface of the internalized

particles. Particles are internalized through a dynamin 2- and

actin-dependent mechanism [11] that results in the formation of

phagosomes, large particles of .500 nm in diameter. Human

herpes simplex virus and acanthamoeba polyphaga mimivirus are

internalized through this mechanism [12,13].

Macropinocytosis is characterized by actin-dependent mem-

brane ruffling and, unlike phagocytosis, was thought to be

independent of receptors or dynamin 2 [14,15,16,17]. Macro-

pinocytosis is constitutively activated in some immune cells, such

as dendritic cells and macrophages [18,19,20]. In the other cell

types, including epithelial cells and fibloblasts, macropinocytosis is

initiated by growth factor stimulation [21,22] or expression of

ruffling kinases [23,24,25]. Macropinocytosis is also associated
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with the activation of Rho GTPases, such as Rac1 and Cdc42,

which are responsible for triggering membrane ruffles by actin

polymerization [26,27,28,29]. Macropinocytosis is dependent on a

series of kinases; a serine/threonine p21-activated kinase 1 (Pak1)

is activated by Rac1 or Cdc42 and is essential for the regulation of

cytoskeleton dynamics [24,30]. In addition Pak1 plays a role in

macropinosome closure by activating carboxy-terminal-binding

protein-1/brefeldin A-ADP ribosylated substrate (CtBP-1/BARS)

[30]. Phosphatidylinositol-3-kinase (PI3K) and its effectors are

responsible for ruffling and macropinocytosis [23,31]. Protein

kinase C (PKC) is activated by a receptor tyrosine kinase or PI3K

and also promotes plasma membrane ruffling and macropinocy-

tosis [23]. Membrane ruffling is associated with the formation of

macropinocytosis-specific endosomes, macropinosomes, of ap-

proximately 0.5–10 mm in diameter [32]. Human adenovirus type

3 (Ad3) [33], vaccinia virus [26], Kaposi’s Sarcoma Associated

Herpesvirus [34], and Nipah virus [35] enter cells via macro-

pinocytosis. Human immunodeficiency virus (HIV) [36,37] and

Ad2/5 [38] may also trigger this pathway.

Ebolavirus (EBOV) is an enveloped, single-stranded, negative-

sense RNA virus that belongs to the family Filoviridae. In humans

and nonhuman primates, it causes severe hemorrhagic fever with

mortality rates of up to 90%. Ebolavirus virions are long,

filamentous particles of varied length (typically, 1–2 mm) and a

diameter of 80–100 nm. EBOV infects a wide range of host cells

[39], suggesting that its entry into target cells is mediated by the

binding of its surface glycoprotein (GP) to a widely expressed and

highly conserved receptor, or by GP binding to different host

receptors. Several cellular proteins have been reported as EBOV

receptors or co-receptors, including folate receptor-a (FR-a) [40],

several lectins [41,42,43,44,45,46], and integrin ß1 [47]. In

addition, EBOV entry is facilitated by members of the Tyro3

protein kinase family [48,49].

The mechanism of EBOV cell entry is currently poorly

understood. EBOV is likely internalized by an endocytic pathway,

since its entry is dependent upon low pH [50,51] and the

endocytic enzymes cathepsin B and L [52,53,54,55,56]. Several

studies suggest that EBOV internalization depends on cholesterol,

a major component of caveolae and lipid-rafts [50,57,58]. Another

study suggests a role for clathrin-mediated endocytosis in wild-type

EBOV and retrovirus psendotyped with EBOV GP entry [59,60].

These discrepancies may reflect differences in the experimental

systems and/or conditions used. Most studies have been carried

out with retroviruses or vesicular stomatitis virus (VSV) pseudo-

typed with EBOV GP [52,53,54,56,58,61]. These pseudotyped

systems have limitations because the morphology of the virions

differs significantly from that of authentic Ebola virions (spherical

for retrovirus or VSV-pseudotyped virions versus filamentous for

authentic Ebola virions).

To better understand EBOV entry, we conducted internaliza-

tion studies with fluorescently labeled, biologically contained

EBOV [62], and Ebolavirus-like particles (Ebola VLPs), both of

which resemble authentic EBOV in their morphology

[62,63,64,65]. Our results suggest that EBOV uptake into cells

involves the macropinocytic pathway and is GP-dependent.

Results

Internalization of fluorescently labeled Ebola virions and
Ebolavirus-like particles (Ebola VLPs)

To assess the mechanism of EBOV entry, we established a real-

time monitoring system for fluorescently labeled, biologically

contained Ebola virions [62], and fluorescently labeled Ebola VLPs

[63,64,65]. The biologically contained EBOV (EbolaDVP30) lacks

the gene for the viral transcriptional co-activator VP30 and can only

replicate in VP30-expressing cells [62]. EbolaDVP30 resembles

authentic EBOV [62] and thus provides an ideal system to study

EBOV entry. Likewise, co-expression of the EBOV GP glycopro-

tein and the VP40 matrix protein yields virus-like particles (VLPs)

with filamentous architecture [63,64,65]. Since co-expression of the

EBOV nucleoprotein (NP) increases the efficiency of VLP

generation [66], we generated VLPs by co-expressing GP, VP40,

and NP. To establish a real-time monitoring system for EBOV cell

entry, EbolaDVP30 virions and Ebola VLPs were generated and

purified as described in the Material and Methods, and labeled with

a lipophilic tracer, 1,19-dioctadecyl-3,3,39,39-tetramethylindocarbo-

cyanine perchlorate (DiI), which is incorporated into the envelope of

the virions [67,68,69]. The infectivity of DiI-labeled EbolaDVP30

was equivalent to that of unlabeled virions as measured by plaque

assays (data not shown), demonstrating that DiI labeling did not

interfere with virion binding and infectivity.

We synchronized the adsorption of DiI-labeled EbolaDVP30

and Ebola VLPs to African green monkey kidney epithelial (Vero)

cells, which support EBOV replication, for 30 min on ice. We

assessed the effect of low temperature incubation on the

internalization of the DiI-virions by incubation on ice, room

temperature, or 37uC in parallel, followed by a temperature shift

to 37uC and found that there were no appreciably differences in

the total numbers of internalized virions across these conditions,

suggesting that incubation of cells and virions on ice had a limited

effect on the subsequent viral internalization (Figure S1).

After adsorption, we shifted the temperature to 37uC and

visualized the labeled particles by using confocal laser scanning

microscope at various times. DiI-labeled EbolaDVP30 and Ebola

VLPs were visualized as red particles of various sizes (red, Figure

S2A), indicating that viral particles of various lengths had been

produced, an observation that we confirmed by electron

microscope (Figure S3). Both DiI-labeled EbolaDVP30 and Ebola

VLPs were internalized efficiently, migrated immediately after the

temperature shift, and eventually trafficked to intracellular

compartments (Figure S2A and B, left panels, Video S1). As a

Author Summary

Ebolavirus (EBOV) is an enveloped, single-stranded, nega-
tive-sense RNA virus that causes severe hemorrhagic fever
with high mortality rates in humans and nonhuman
primates. Previous studies suggest roles for clathrin- or
caveolae-mediated endocytosis in EBOV entry; however,
questions remain regarding the mechanism of EBOV entry.
Here, we demonstrate that internalization of EBOV
particles is independent of clathrin- or caveolae-mediated
endocytosis. Specifically, we show that internalized EBOV
particles co-localize with macropinocytosis-specific endo-
somes (macropinosomes) and that their entry is negatively
affected by treatment with macropinocytosis inhibitors.
Moreover, the internalization of Ebola virions accelerated
the uptake of a macropinocytosis-specific cargo, was
associated with plasma membrane ruffling, and was
dependent on cellular GTPases and kinases involved in
macropinocytosis. We further demonstrate that a pseudo-
typed vesicular stomatitis virus possessing the EBOV
glycoprotein (GP) also co-localizes with macropinosomes
and its internalization is similarly affected by macropino-
cytosis inhibitors. Our results indicate that EBOV uptake
into cells involves the macropinocytic pathway and is GP-
dependent. These findings provide new insights into the
lifecycle of EBOV and may aid in the development of
therapeutics for EBOV infection.
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Figure 1. Internalization of DiI-labeled Ebola virions is independent of the clathrin -mediated endocytic pathway. (A) DiI-labeled Ebola
virions (red) do not co-localize with eGFP-labeled CCPs. DiI-EbolaDVP30 virions (left panel) or DiI-Ebola VLPs (right panel) were adsorbed to Vero cells
expressing CLCa-eGFP for 30 min on ice. Cells were then incubated for 15 min at 37uC and the co-localization of DiI-labeled viral particles with eGFP-
labeled CCPs was analyzed by using confocal microscope. Insets show enlargements of the boxed areas. Scale bars, 10 mm. (B) Effect of clathrin-heavy
chain down-regulation on the internalization of DiI-labeled Ebola virions. Vero cells were transfected with control siRNA (left panels) or CHC siRNA
(right panels) to down-regulate CHC expression. The efficiency of CHC down-regulation was analyzed by immunofluorescent staining 48 h post-
transfection (red; lower panels); the effect of siRNA on Alexa Fluor 633-Tf is apparent (green; lower panels). Labeled Ebola VLPs were adsorbed to the

Ebolavirus Is Internalized via Macropinocytosis
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control, we tested VLPs that lacked GP [Ebola VLPs (-GP)]. These

particles bound to the cells with low efficiency and remained

stationary even after long-term incubation at 37uC (Figure S2A

and B, right panels, Video S2), confirming the requirement of GP

for binding and internalization of EBOV.

Role of clathrin-mediated endocytosis in EBOV entry
Previous studies suggested that EBOV enters cells via clathrin-

mediated endocytosis [50,59]. The typical architecture of Ebola

virions (length 1–2 mm and diameter 80–100 nm) is larger than

the diameter of clathrin-coated pits (85–110 nm). However, Listeria

monocytogenes is internalized into cells via non-classical clathrin-

mediated endocytosis [7,8], Therefore, we visualized clathrin-

coated pits (CCPs) via the expression of clathrin light chain a

(CLCa) fused to enhanced green fluorescent protein (eGFP) to

assess the significance of this pathway for EBOV internalization.

The functional integrity of clathrin is not compromised by fusion

to eGFP and the expressed fusion protein forms CCPs with

endogenous CLCa [70,71]. We did not detect co-localization of

eGFP-labeled CLCa (CLCa-eGFP) with DiI-labeled EbolaDVP30

virions (Figure 1A, left panel and Video S3) or Ebola VLPs

(Figure 1A, right panel) at 15 min or 60 min after the temperature

shift, whereas fluorescence-labeled Transferrin (Tf), a specific

ligand of the clathrin-mediated pathway, was co-localized with

eGFP-CLCa (Figure S4, left panel). These results suggest that

clathrin-mediated endocytosis may not be critical for EBOV entry.

To further assess the role of clathrin-dependent endocytosis in

EBOV entry, we down-regulated endogenous clathrin heavy chain

(CHC) with small interfering RNAs (siRNA) and assessed the

effect of CHC down-regulation on the internalization of Ebola

virions. Down-regulation of CHC expression (red) was confirmed

by immunofluorescent staining in Vero cells (Figure 1B, lower

right panel). To remove the surface-bound uninternalized virions,

we treated the cells with trypsin 2 h post-temperature shift (Figure

S5). The uptake of Alexa Fluor-Tf was abrogated in CHC siRNA-

treated cells, indicating that the clathrin-mediated endocytosis was

blocked in these cells (Figure 1B, lower right panel). However,

internalization of Ebola VLPs was not blocked by down-regulation

of CHC (Figure 1B, upper right panel and Figure 1C), further

suggesting that clathrin-mediated endocytosis is not critical for

EBOV entry.

Role of caveolin-mediated endocytosis in EBOV entry
Previous studies also indicated a role for caveolin-mediated

endocytosis in EBOV internalization [50,59]. Using a similar

strategy to that described above, we assessed the co-localization of

eGFP-fused caveolin 1 (Cav1-eGFP), which does not impair the

internalization of caveolae [9,72], with DiI-labeled EbolaDVP30

(Figure 2A, left panel, Video S4) and Ebola VLPs (Figure 2A, right

panel). We did not observe efficient co-localization of labeled

Ebola virions with Cav1, indicating that caveolaes may not play a

critical role in EBOV entry. Alexa Fluor-Chorela toxin B subunit

(CtxB), which is internalized via caveolae- and clathrin-mediated

endocytosis [73], was co-localized with some of the Cav1-eGFP

(Figure S4, right panel).

The role of caveolin-mediated endocytosis was further tested by

inhibiting Cav1 expression with siRNA. Down-regulation of Cav1

expression was confirmed by immunofluorescent staining and

western blotting in Vero cells (Figure 2B, lower right panel). Cav1

down-regulation did not prevent DiI-Ebola VLP internalization

(Figure 2B and 2C), upper right panel and Figure 2D), further

suggesting that caveolin-mediated endocytosis does not play a

critical role in EBOV internalization. Our finding that DiI-labeled

EbolaDVP30 virions enter Cav1-deficient human hepatoblastoma

Huh7 cells [74] (Figure 2E) further supports this concept.

Clathrin-, caveolae- and phagocytosis-mediated endocytosis all

depend on dynamin 2, a large GTPase that plays an essential role

in vesicle scission during clathrin- and caveolae-dependent

endocytosis and phagocytosis [75]. Treatment with a dynamine-

specific inhibitor, dynasore [76], reduced the internalization of

Alexa Fluor-labeled Tf (green; Figure 2F, right panel); however,

dynasore did not affect the internalization of DiI-labeled virions

(Figure 2F, right panel and Figure 2G). These data indicate that

EBOV internalization does not involve clathrin-, caveolin-, or

phagocytosis-mediated endocytosis.

Ebola virions co-localize with sorting nexin (SNX) 5, a
component of macropinosomes

Our data argue against a role for clathrin-, caveolae-, or

phagocytosis-mediated endocytosis in the internalization of

EBOV. We therefore considered macropinocytosis as a potential

mode of EBOV entry. Induction of macropinocytosis leads the

formation of macropinocytosis-specific endosomes (macropino-

somes), which are large enough (0.5–10 mm of diameter) [32] to

accommodate Ebola virions.

Sorting nexin (SNX) 5 comprises a large family of peripheral

membrane proteins that associate with newly formed macropino-

somes and are involved in their maturation [77,78]. To assess the

role of macropinocytosis in EBOV internalization, we first

generated Vero cells expressing an eGFP-SNX5 fusion protein

and confirmed that a specific ligand of macropinocytosis, dextran

Mw 10,000 (Dex Mw 10K) co-localized with expressed eGFP-

SNX5 (Figure S6A) but not with CLCa-eGFP or Cav1-eGFP in

Vero cells (Figure S6B). We then asked whether DiI-labeled

EbolaDVP30 and Ebola VLPs co-localize with eGFP-SNX5-

positive vesicles. Approximately 70% of DiI-labeled EbolaDVP30

(blue bars in Figure 3B) and 45% of DiI-labeled Ebola VLPs

(yellow bars in Figure 3B) associated with eGFP-SNX5-positive

vesicles within 10 min of the temperature shift to 37uC (Figure 3A,

upper panels, Figure 3B, and Video S5). Co-localization of viral

particles with eGFP-SNX5-positive vesicles continued for 30 min

after the temperature shift and then decreased (Figure 3B). On the

other hand, DiI-labeled influenza viruses, which are mainly

internalized by clathrin-mediated endocytosis [5], did not

appreciably co-localize with eGFP-SNX5-positive vesicles

(Figure 3A, red bars in lower panels, Figure 3B, and Video S6).

We further confirmed co-localization of Ebola VLPs with

endogenous SNX5 (Figure S7A). These observations suggest an

association of internalized Ebola virions with macropinosomes.

Internalized DiI-labeled Ebola virions traffic to endosomal
compartments

Once internalized, macropinosomes mature into endocytic

vesicles [77,79]. However, the endocytic pathway is also part of

siRNA-transfected cells for 30 min on ice 48 h post-transfection. After incubation for 2 h at 37uC, surface-bound virions were removed by the addition
of trypsin for 5 min at 37uC and the internalization of Ebola VLPs was analyzed by using confocal laser scanning microscope (upper panels). Outlines
of individual cells were drawn. Scale bars, 10 mm. (C) Quantitative analysis of the internalization of DiI-labeled Ebola virions in siRNA-transfected Vero
cells. The number of DiI-virions in 10 individual siRNA-transfected cells was measured. Each experiment was performed in triplicate and the results are
presented as the mean 6 SD.
doi:10.1371/journal.ppat.1001121.g001
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Figure 2. Internalization of DiI-labeled EBOV particles is independent of the caveolae-mediated endocytic pathway. (A) DiI-labeled
EBOV particles do not co-localize with eGFP-labeled caveolae. DiI-EbolaDVP30 virions (left panel) or DiI-Ebola VLPs (right panel) were adsorbed to
Cav1-eGFP-expressing Vero cells for 30 min on ice. The cells were then incubated for 15 min at 37uC and the co-localization of DiI-labeled viral
particles with eGFP-labeled caveolae was analyzed by using confocal laser scanning microscope. Insets show enlargements of the boxed areas. Scale
bars, 10 mm. (B) Effect of Cav1 down-regulation on the internalization of DiI-labeled Ebola virions. Vero cells were transfected with control siRNA (left
panels) or siRNA to down-regulate Cav1 expression (right panels). The efficiency of Cav1 down-regulation was analyzed by use of immunofluorescent

Ebolavirus Is Internalized via Macropinocytosis
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the clathrin- and caveolin-mediated entry processes. Several

groups have shown that authentic EBOV and EBOV GP-

pseudotyped virions enter cells in a low pH- and cathepsin B/L-

dependent manner, consistent with endosomal entry

[50,51,52,53,54,55,56]. Here, we sought to confirm endosomal

localization of EbolaDVP30 and Ebola VLPs, both of which more

closely resemble authentic EBOV than do pseudotyped viruses.

The small GTPase Rab7 specifically associates with late

endosomes [80,81] and serves as a marker for this compartment.

We, therefore, analyzed the co-localization of internalized DiI-

labeled virions with eGFP-Rab7-positive vesicles after the

temperature shift. About 20% of DiI-labeled EbolaDVP30 virions

(blue bars in Figure 4B) and Ebola VLPs (yellow bars in Figure 4B)

co-localized with eGFP-Rab7 within 10–20 min of the tempera-

ture shift; within 2 h of the temperature shift, 70%–80% of

EbolaDVP30 particles and Ebola VLPs co-localized with eGFP-

Rab7 (Figure 4A and 4B). Internalized Dex Mw 10K, a specific

ligand of macropinocytosis, was also observed in Rab7-positive

vesicles (Figure S8). We further confirmed co-localization of Ebola

VLPs with endogenous Rab7 (Figure S7B). At 3–4 h after the

temperature shift, the DiI-signals were enlarged and overlapped

with eGFP-Rab7 (Figure S9, left panel), suggesting fusion of the

DiI-labeled viral envelopes with endosomal membranes. Following

treatment with NH4Cl, which inhibits the acidification of

endosomes, the DiI-signals localized with eGFP-Rab7 but

remained small (Figure S9, right panel), indicating that NH4Cl

inhibited membrane fusion. Similarly, VLPs possessing a fusion-

deficient GP mutant (F535R) [82] trafficked to eGFP-Rab7-

positive vesicles but the signals remained small (Figure S10).

Collectively, these findings indicate that internalized EBOV

particles are transported to late endosomes, where low pH-

dependent membrane fusion occurs.

Inhibitors of macropinocytosis interfere with EBOV
internalization

To further test whether Ebola virions are internalized via

macropinocytosis, we assessed several inhibitors for their effects on

EBOV uptake. DiI-labeled influenza virus particles which are

internalized via clathrin-mediated endocytosis, served as a control.

An actin depolymerizing agent, cytochalasin D (CytoD) was used

because macropinocytosis depends on actin bundle formation;

however, an intact actin skeleton is also critical for other endocytic

pathways [83]. Since macropinocytosis relies on PI3K activation

[23,31], we also tested two inhibitors of this kinase, wortmannin

(Wort) and LY-294002 [84]. Finally, we used EIPA [5-(N-ethyl-N-

isopropyl) amiloride], an inhibitor of the Na+/H+ exchanger that

specifically inhibits macropinocytosis [26,34,35,85,86]. These

inhibitors all inhibited the uptake of Dex Mw 10K (Figure S11A

and B). Treatment of cells with the inhibitors appreciably blocked

co-localization of EbolaDVP30 (blue bars in Figure 5B) and VLPs

(yellow bars in Figure 5B) with late endosomes, as visualized by

eGFP-Rab7 expression (Figure 5A and 5B). CytoD treatment also

affected co-localization of DiI-labeled influenza virus with late

endosomes (red bars in Figure 5B and S12); this observation was

expected because actin is also critical for the internalization of

influenza viruses [69,72,87]. Entry of influenza virus was also

moderately affected by the PI3K inhibitors (Figure 5B and S12), a

result consistent with a previous report of PI3K-dependent

influenza virus cell entry [88]. However, the internalization of

influenza virus was not inhibited by EIPA (Figures 5B and S11),

whereas the uptake of DiI-EbolaDVP30 and Ebola VLPs was

appreciably reduced in the presence of this compound (Figure 5A

and 5B). These findings suggest that EBOV is internalized via

macropinocytosis.

Macropinocytosis-associated events occur during Ebola
virion internalization

Constitutive macropinocytosis occurs in specific cell types such

as dendritic cells and macrophages [18,19,20]; however, in

epithelial cells, it is initiated in response to growth factor

stimulation [21,22] or expression of ruffling kinases [23,24,25].

To assess whether Ebola virions activate macropinocytosis to allow

EBOV be internalized into the cells, we asked whether the virions

accelerated the uptake of a macropinocytosis marker, Dex Mw

10K. In the presence of Ebola virions, the uptake of Dex Mw 10K

was accelerated (Figure 6A and S13), and this event was inhibited

by EIPA. Co-localization of DiI-EbolaDVP30 and Alexa Fluor-

Dex Mw 10K was also observed (Figure 6B).

The Rho GTPases (Rac1 and Cdc42), protein kinase C (PKC),

and Pak1 are involved in the regulation of macropinocyto-

sis[23,24,27,29,30]. Therefore, we examined the role of Rac1 by

use of dominant-negative Rac1 (dnRac1) [89]. Expression of

eGFP-fused dnRac1 inhibited the internalization of Ebola virions

(red) into cells by 80% (Figure 6C, lower right panel; Figure 6D)

compared with that of eGFP-fused wild-type Rac1 (wtRac1)

(Figure 6C upper right panel; Figure 6D). dnRac1 expression also

interfered with the uptake of Dex Mw 10K (blue) (Figure 6C,

lower middle panel), indicating that expression of dnRac1

inhibited macropinocytosis. The role of PKC in the internalization

of Ebola virions was tested by use of the specific PKC inhibitor

staurosporine [90]. Staurosporine reduced the internalization of

DiI-virions (red bars in Figure 6E and left panels in Figure S14A)

and Dex Mw 10K (blue bars in Figure 6E and right panels in

Figure S14A) by 80% and 70%, respectively. The effect of down-

regulation of Cdc42, and Pak1 by siRNAs on Ebola VLP uptake

was also tested. Down-regulation at the mRNA level was assessed

by RT-PCR (Figure 6F). Knockdown of Cdc42 and Pak1

appreciably interfered with DiI-Ebola VLP internalization (red

staining 48 h post-transfection (lower panels) and western blot analysis (C). Labeled Ebola VLPs were adsorbed to the siRNA-transfected cells for
30 min on ice 48 h post-transfection. After incubation for 2 h at 37uC, surface-bound virions were removed by the addition of trypsin for 5 min at
37uC and the internalization of Ebola VLPs was analyzed by using confocal laser scanning microscope (upper panels). Outlines of individual cells were
drawn. Scale bars, 10 mm. (D) Quantitative analysis of the internalization of DiI-labeled Ebola virions in siRNA-transfected Vero cells. The internalized
DiI-virions were analyzed in 10 individual siRNA-transfected cells. Each experiment was performed in triplicate and the results are presented as the
mean 6 SD. (E) Internalization of DiI-labeled Ebola virions in cells lacking Cav1. DiI-labeled EbolaDVP30 virions were adsorbed to Cav1-deficient Huh7
cells for 30 min on ice. The internalization of DiI-EbolaDVP30 virions was analyzed 2 h after the temperature shift to 37uC. Outlines of individual cells
were drawn. Scale bar, 10 mm. (F) Effect of dynasore on the internalization of DiI-labeled Ebola virions. Vero cells were treated with DMSO (left panel)
or dynasore (right panel) for 30 min at 37uC. Labeled Ebola VLPs were adsorbed to the cells for 30 min on ice and incubated for 2 h at 37uC in the
presence of DMSO or dynasore. Surface-bound virions were removed by trypsin and the internalization of DiI-virions was analyzed by using confocal
laser scanning microscope. Dynasore treatment interfered with the internalization of Alexa Fluor 633-Tf (green in right panel), attesting to its
functionality. Scale bars, 10 mm. (G) Quantitative analysis of the internalization of DiI-labeled Ebola virions in dynasore-treated Vero cells. The
internalized DiI-virions were analyzed in 10 individual DMSO- or dynasore-treated cells. Each experiment was performed in triplicate and the results
are presented as the mean 6 SD.
doi:10.1371/journal.ppat.1001121.g002
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Figure 3. Internalized DiI-EBOV particles co-localize with the macropinosome marker sorting nexin (SNX) 5. (A) Time-lapse analysis of
the co-localization of DiI-labeled viral particles with eGFP-SNX5. DiI-EbolaDVP30 virions (upper panels) or DiI-influenza virus (lower panels) were
adsorbed to eGFP-SXN5-expressing Vero cells for 30 min on ice. The cells were then incubated at 37uC and time-lapse images were acquired at 20-
second intervals over a period of 20 min by using confocal laser scanning microscope. Still frames at the indicated times (min) after the temperature
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bars in Figure 6G and left panels in Figure S14B) and also reduced

the uptake of Dex Mw 10K (blue bars in Figure 6G and right

panels in Figure S14B). Since plasma membrane ruffling precedes

macropinocytosis [14,15,16], we monitored ruffling formation in

the internalization of DiI-virions by use of Vero cells expressing

eGFP-actin [91]. Time-lapse analysis revealed that prominent

plasma membrane ruffling was associated with DiI-labeled virions

after the temperature-shift (Figure 6H and Video S7). Appreciable

actin rearrangement was not observed in the absence of EBOV

virions (Figure S15 and Video S8). Together, these results

demonstrate that Ebola virions stimulate macropinocytosis along

with the activation of the cellular factors involved in actin

polymerization that allow the virions to be internalized.

Internalization of EBOV particles is GP-dependent
Our data indicate that the EBOV particle internalization occurs

via macropinocytosis, whereas previous studies suggest that

clathrin- or caveolin-dependent endocytosis mediate the internal-

ization of wild-type EBOV and EBOV GP-pseudotyped VSV or

retroviruses [50,57,58,59]. To determine if these conflicting

findings result from differences in assay systems (i.e., use of

pseudotype viruses) and/or experimental conditions used, we

tested whether a VSV pseudotyped with EBOV GP (VSVD*G-

GP) was internalized by macropinocytosis. Although VSV is

known to be internalized via the clathrin-dependent pathway [6],

DiI-labeled VSVD*G-GP virions did not co-localize with CLCa-

eGFP or Cav1-eGFP (Figure S16), whereas DiI-labeled VSVD*G-

G virions co-localized with CLCa-eGFP (Figure S17). By contrast,

DiI-labeled VSVD*G-GP virions co-localized with eGFP-SNX5

(Figure 7A, left panel), indicative of macropinocytosis. No

significant co-localization with eGFP-SNX5 was observed for a

DiI-labeled control virion possessing the VSV G glycoprotein (DiI-

VSVD*G-G; Figure 7A, right panel). EbolaDVP30 particles

possessing authentic morphologies (blue bars in Figure 7B) and

VSV pseudotyped with EBOV GP (green bars in Figure 7B) co-

localized with eGFP-Rab7-positive vesicles with similar kinetics,

indicating that the smaller size of the VSV virions relative to that

of the Ebola virions did not affect the kinetics of internalization.

The kinetics of DiI-VSVD*G-G trafficking to late endosomes/

lysosomes (red bars in Figure 7B) was consistent with a previous

study of authentic VSV [92]. EIPA, which specifically interferes

with macropinocytosis, blocked the co-localization of eGFP-Rab7

with DiI-labeled VSVD*G-GP (green bars in Figure 7C), but not

with DiI-VSVD*G-G (red bars in Figure 7C). The PI3K inhibitors

significantly reduced the co-localization of eGFP-Rab7 with DiI-

labeled VSVD*G-GP (green bars in Figure 7C) but not with

VSVD*G-G (red bars in Figure 7C), which is consistent with

previous findings [93].

The effect of these inhibitors was further assessed in a viral

infection system by use of a VSV pseudovirion encoding eGFP.

Vero cells were pre-treated with one of the inhibitors and then

infected with VSVDG*-GP (green bars in Figure 7D) or VSVDG*-

G (red bars in Figure 7D) in the presence of the inhibitors. The

infection efficiency of each pseudovirus was determined by

measuring the number of GFP-positive cells. EIPA blocked the

infection of VSVD*G-GP (green bars in Figure 7D), but not

VSVD*G-G (red bars in Figure 7D). The PI3K inhibitors reduced

the infection of VSVD*G-GP (green bars in Figure 7D) but not

VSVD*G-G (red bars in Figure 7D), which is consistent with the

results of the co-localization of DiI-VSV pseudovirions and SNX5

(Figure 7C). These findings demonstrated that in this viral

infection system, VSV pseudotyped with EBOV GP is internalized

by macropinocytosis, as are EbolaDVP30 and Ebola VLPs.

Therefore, regardless of the size of the virions, our data indicate

that EBOV GP induces receptor-dependent macropinocytosis,

unlike those in a previous report which showed that macro-

pinocytosis is receptor-independent [32]. Our finding is consistent

with a recent report describing receptor-dependent macropinocy-

tosis in adenovirus type 3 [33].

Discussion

Viruses accomplish cell entry by hijacking the cellular endocytic

machinery. In this study, with EBOV particles that resemble

authentic EBOV, the data lead us to conclude that EBOV is

internalized into host cells via macropinocytosis in a viral GP-

dependent manner.

Our conclusion that EBOV is internalized via macropinocytosis

is based on the following observations: (i) the internalized viral

particles co-localize with a marker of macropinosomes, SNX5

(Figure 3); (ii) the internalization of viral particles was blocked by

inhibitors of actin polymerization and PI3K, which are known

players in macropinocytosis and also by a specific inhibitor of

macropinocytosis, EIPA (Figure 5); (iii) the internalization of Ebola

virions accelerated the uptake of a specific cargo for macropino-

somes Dex Mw 10K (Figure 6A) and the internalized virions co-

localized with Dex Mw 10K (Figure 6B); (iv) the internalization of

viral particles was blocked by a dominant-negative Rac1

(Figure 6C and 6D), a PKC inhibitor (Figure 6E) and the down-

regulation of Cdc42 and Pak1 (Figure 6F and 6G); and (v) the

internalization of viral particles was associated with membrane

ruffling (Figure 6H). These findings suggest a model in which the

binding of EBOV glycoprotein to cellular receptor(s) activates

multiple macropinocytosis inducers (PI3K, Rac1, PKC, Cdc42,

and Pak1), triggering plasma membrane ruffling and macropino-

cytosis (Figure 8). Internalized Ebola virions then traffic to Rab7-

positive late endosomes/lysosomes (Figure 4), where membrane

fusion occurs (Figure 8).

Two findings, the inability to enter cells of Ebola VLPs lacking

GP (Figure S2) and the macropinocytic uptake of VSV particles

pseudotyped with EBOV GP (Figure 7), support a role for GP in

the macropinocytic internalization of EBOV particles. Macro-

pinocytosis was thought to be receptor-independent [32] until a

recent study showed that Ad3 entry via macropinocytosis requires

receptors (CD46 and integrins) [33]. This finding, together with

our observations, supports the concept of receptor-mediated

macropinocytic pathways. The exact mechanism of GP-mediated

macropinocytosis remains to be elucidated; however, mannose-

binding lectin, a potential EBOV co-receptor [43], is known to

accelerate macropinocytosis and phagocytosis for the uptake of

apoptotic cells and bacteria into macrophages [94,95]. In addition,

integrins, which are also potential EBOV co-receptors [47], play

an important role in Ad3 entry via macropinocytosis [33]. Thus,

macropinocytosis is likely initiated through GP interaction with

EBOV co-receptors on the cell surface (Figure 8).

shift to 37uC are shown. Virions co-localizing with SNX5 are indicated by arrows. Scale bars, 5 mm. (B) Co-localization efficiency of EBOV particles with
SNX5. Shown are the co-localization efficiencies of DiI-EbolaDVP30 (blue bars), DiI-Ebola VLPs (yellow bars), and DiI-influenza virus (red bars) with
eGFP-SXN5 at the indicated time points after the temperature shift to 37uC. The number of DiI-labeled virions co-localized with eGFP-SNX5-positive
vesicles was measured in 10 individual cells and the percentage of co-localization in the total DiI-virions is shown for each time point. Each
experiment was performed in triplicate and the results are presented as the mean 6 SD.
doi:10.1371/journal.ppat.1001121.g003
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Figure 4. Internalized DiI-labeled EBOV particles are transported to endosomes. (A) Internalized DiI-labeled Ebola virions are transported
to Rab7-positive vesicles. DiI-Ebola virions were adsorbed to eGFP-Rab7-expressing Vero cells for 30 min on ice. The cells were then incubated at 37uC
and images were acquired at the indicated time points. Shown are representative images at 0 (left panel) and 120 min (right panel) after the
temperature shift. DiI-labeled virions that co-localize with Rab7-positive vesicles are indicated by arrows. Insets show enlargements of the boxed
areas. Scale bars, 10 mm. (B) Co-localization efficiency of EBOV particles with Rab7-positive vesicles. The co-localization efficiencies of DiI-EbolaDVP30
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Recently, one study demonstrated that the entry of Ebola VLPs

and pseudovirions depends on the PI3K-Akt signaling pathway

and Rac1 [93]. PI3K and its effectors are responsible for ruffling

and macropinocytosis [23,31]. Rac1 is also critical for the

induction of actin filament accumulation at the plasma membrane,

which leads to membrane ruffling and macropinocytosis [27].

Moreover, membrane-bound Rac1 localizes to macropinosomes

[26,27,28]. Other study demonstrated that overexpression of

RhoC GTPase facilitated wild-type EBOV entry and VSV

pseudotyped with EBOV GP [96]. Although a role of RhoC in

viral entry has not been specifically characterized, the overex-

pression of RhoC resulted in increased dextran uptake and in

formation of increased actin organization [96], suggesting that

RhoC plays a role in EBOV entry mediated via macropinocytosis.

Taken together with our findings, these observations support the

model of EBOV entry through macropinocytosis.

Clathrin-mediated endocytosis was thought to contribute to

EBOV entry based on findings that specific inhibitors of clathrin-

mediated endocytosis blocked the expression of viral antigens in

EBOV-infected cells [59]. However, some of these inhibitors

caused severe cytotoxicity, which may have induced the down-

regulation of viral antigen expression [59]. Recently, by using

specific inhibitors of clathrin-mediated endocytosis, a dominant-

negative Eps15, which abrogates CCP formation, and siRNA for

CHC, a possible role for the clathrin-dependent pathway in the

internalization of retrovirus pseudovirions with EBOV GP was

suggested [60]. The discrepancy between this study and ours may

originate from the difference in pseudotype systems (retrovirus

versus VSV or Ebola virions) and specific cell types [60]. Our data

demonstrate that down-regulation of cellular CHC, which

specifically blocks clathrin-mediated endocytosis, does not inter-

fere with the internalization of Ebola virions which resemble

authentic EBOV in their morphology into Vero cells (Figure 1B).

Caveolae- and lipid-raft-mediated endocytosis were also thought

to play a role in EBOV entry because FR-a, a potential co-

receptor of filovirus entry, localizes to lipid rafts and is internalized

through lipid raft-associated caveolae [40]. However, the role of

FR-a in EBOV entry remains controversial [51,97]. The

internalization of EBOV GP-pseudotyped virions was sensitive

to the depletion of cholesterol, a major component of caveolae and

lipid rafts [50,57,58]; however, cholesterol is also required for

membrane ruffling and macropinocytosis [98]. Moreover, the

internalization of Ebola virions into cells transfected with siRNA

for Cav1 (Figure 2B and 2C) or that lacked Cav1 (Figure 2D),

argues against a role for caveolae-mediated endocytosis in EBOV

entry.

One study [59] ruled out macropinocytic uptake of wild-type

EBOV based on the use of an amiloride; however, the

concentration of the drug used was one tenth of that typically

used and may not have allowed the authors to detect an effect of

this anti-macropinocytic drug on EBOV internalization.

After internalization, EBOV particles traffic to late endosomes,

as suggested by their co-localization with Rab7-positive vesicles

(Figure 4). This finding is consistent with previous studies that

identified low pH- and cathepsin B/L-requirements for the

internalization of EBOV and pseudovirions with EBOV GP into

host cells [50,51,52,53,54,55,56].

Currently, no antivirals or vaccines are available for EBOV

infections. Since viral entry is an attractive target for therapeutic

intervention, it is imperative that we understand the mechanism of

EBOV cell entry. Our finding that EBOV is likely internalized

through macropinocytosis may stimulate the development of

compounds that interfere with the EBOV internalization process.

Materials and Methods

Plasmids and reagents
Human CLCa, Cav1, and Rab7 genes were amplified by RT-

PCR from total RNA derived from HeLa cells, and subcloned into

pEGFP-N1 or pEGFP-C1 plasmids (Clontech, Mountain View,

USA). The eGFP-SNX5 and eGFP-actin expression plasmid was a

kind gift from Drs Rohan D. Teasdale (University of Queensland,

Brisbane, Australia) and David Knecht (University of Connecti-

cut), respectively. The eGFP-fused genes were cloned into a

moloney murine leukemia virus-based retrovirus plasmid [99], a

kind gift from Dr. Bill Sugden (University of Wisconsin-Madison,

Madison, USA). Expression plasmids for eGFP-fused wild-type

and dominant-negative Rac1 were purchased from Addgene

(Cambridge, USA). DiI, Alexa Fluor 633-labeled Tf and Alexa

Fluor 647-labeled Dex Mw 10K were purchased from Invitrogen

(Carlsbad, USA). Dynasore, Cytochalasin D, Wortmannin, LY-

294002 hydrochloride, EIPA, and Staurosporine were purchased

from Sigma-Aldrich (St. Louis, USA). Antibodies for human

clathrin heavy chain and Caveolin 1 were purchased from Abcam

(Cambridge, UK).

Cell culture and transfection
African green monkey kidney epithelial Vero cells were grown

in minimum essential medium (MEM) supplemented with 10%

fetal bovine serum (FBS), L-glutamine, vitamins, nonessential

amino acids, and antibiotics. A Vero cell line stably expressing the

EBOV VP30 protein [62] was maintained in complete MEM

containing 5 mg/ml puromycin (Sigma-Aldrich). Human embry-

onic kidney 293T cells and human hepatoblastoma cell line Huh7

cells were grown in high-glucose Dulbecco’s modified Eagle’s

medium (DMEM) containing 10% FBS and antibiotics. Cells were

maintained at 37uC in 5% CO2. Plasmid transfections in Vero

cells were carried out with FuGENE HG (Roche, Basel,

Switzerland).

Retroviral infection
Recombinant retroviruses for the expression of CLCa-eGFP,

Cav1-eGFP, eGFP-SNX5, -actin and -Rab7, were produced and

purified as previously described [99]. For retroviral infections,

Vero cells were grown to 20%–30% confluence, at which point the

culture medium was replaced with ice-cold MEM supplemented

with 10% FBS and 20 mM Hepes (pH 7.4), and the cells were

incubated with viral stocks (107–108 infectious units/ml) for 1 h at

4uC at a multiplicity of infection (m.o.i) of 5. After being washed

twice with complete medium, the cells were cultured in complete

medium for 48 h.

Purification and fluorescent-labeling of viral particles
For the purification of EbolaDVP30, Vero cells stably

expressing VP30 were infected with EbolaDVP30 stock [62] at a

m.o.i of 0.1 in MEM containing 4% BSA and 2% FBS.

EbolaDVP30-containing culture medium was harvested 5 days

post-infection and centrifuged at 3,500 rpm for 15 min to remove

virions (blue bars) and -Ebola VLPs (yellow bars) with Rab7-positive vesicles were analyzed at the indicated time points. The number of DiI-labeled
virions co-localized with eGFP-Rab7-positive vesicles was measured in 10 individual cells and the percentage of co-localization in the total DiI-virions
is shown for each time point. Each experiment was performed in triplicate and the results are presented as the mean 6 SD.
doi:10.1371/journal.ppat.1001121.g004
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Figure 5. Effect of macropinocytosis inhibitors on the co-localization of DiI-labeled viral particles with Rab7-positive vesicles. Vero
cells expressing eGFP-Rab7 were pretreated with cytochalasin D (CytoD), wortmannin (Wort), LY294002, or EIPA for 30 min at 37uC as described in the
Materials and Methods. DiI-EbolaDVP30 virions, DiI-Ebola VLPs and DiI-influenza virus were adsorbed to the cells for 30 min on ice. The cells were
then incubated at 37uC in the presence of inhibitors for 2 h. As a control, DMSO-treated cells were incubated with labeled EBOV particles.
Representative images of the co-localization of DiI-EbolaDVP30 virions with eGFP-Rab7 acquired 2 h after the temperature shift are shown (A). DiI-
labeled EbolaDVP30 virions that co-localize with eGFP-Rab7-positive vesicles are indicated by arrows. Scale bars, 10 mm. (B) shows a graphic
representation of the data. The number of DiI-labeled EbolaDVP30 virions (blue bars), Ebola VLPs (yellow bars) and influenza virions (red bars) co-
localized with eGFP-Rab7-positive vesicles was measured in 10 individual cells and the percentage of co-localization in the total DiI-virions is shown
for each time point. Each experiment was carried out in triplicate and the results are presented as the mean 6 SD.
doi:10.1371/journal.ppat.1001121.g005
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Figure 6. Macropinocytosis-associated events occur during Ebola virion internalization. (A) The effect of the internalization of DiI-labeled Ebola
VLPs on dextran uptake. Vero cells were incubated with 0.5 mg/ml Alexa Fluor 647-Dex Mw 10K in the absence or presence of Ebola VLPs for 60 min at
37uC. The uptake of Alexa Fluor 647-Dex Mw 10K was analyzed by using flow cytometry. The effect of EIPA pretreatment was assessed in parallel. Each
experiment was performed in triplicate and the results are presented as the mean 6 SD. (B) Co-localization of internalized DiI-labeled Ebola VLPs and Dex
Mw 10K. DiI-Ebola VLPs were adsorbed to Vero cells for 30 min on ice. The cells were cultured in the presence of 0.5 mg/ml Alexa Fluor 647-Dex Mw 10K for
10 min at 37uC. Co-localization of DiI-virions (red) and Alexa Fluor-Dex Mw 10K (green) was analyzed by using confocal laser scanning microscope. Co-
localized virions are shown by arrows. Outlines of individual cells were drawn. Scale bar, 10 mm. (C) Effect of a dominant-negative form of Rac1 on the
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cell debris. The virions were precipitated through a 30% sucrose

cushion by centrifugation at 11,000 rpm for 1 h at 4uC with an

SW28 rotor (Beckman, Fullerton, USA). Precipitated virions were

resuspended in TNE buffer [10 mM Tris-HCl (pH 7.6), 100 mM

NaCl, 1 mM EDTA], and fractionated by use of a 2.5%–30%

Nicodenz (Nycomed Pharma AS, Oslo, Norway) gradient in TNE

buffer at 27,000 rpm for 2.5 h at 4uC with an SW40 rotor

(Beckman). The purification efficiency was confirmed by Coo-

massie Brilliant Blue staining and western blot analysis with

antibodies to VP40 and NP. The infectious titer was determined

by plaque assay, as described previously [62].

For purification of Ebola VLPs, equal amounts of the expression

plasmids for EBOV VP40 [100,101], NP [100], and GP [100,101]

were transfected into 293T cells by using TransIT LT-1 (Mirus,

Madison, USA). Forty-eight hours post-transfection, the culture

supernatants were harvested and released VLPs were purified, as

described above. Incorporation of viral proteins in the purified

VLPs was confirmed by western blot analysis with antibodies to

VP40, GP and NP, and the morphology of the VLPs was

confirmed by negative staining (Figure S3).

Influenza virus A/PR/8/34 was prepared and purified as

described previously [102]. VSV pseudotyped with EBOV GP

(VSVDG*-GP) was generated as described previously [61] and

purified as described above. Protein concentrations of the

individual virion fractions were measured by use of a Bradford

protein assay kit (BioRad, Hercules, USA).

Viral particles were fluorescently labeled as described by Sakai

et al. [67]. Briefly, 1 ml of fractionated virions (100 mg/ml) was

incubated with 6 ml of 100 mM stock solution of DiI in the dark for

1 h at room temperature with gentle agitation.

Imaging of the internalization of DiI-labeled viral particles
in live cells

For real-time imaging of the internalization of DiI-labeled viral

particles, Vero cells expressing CLCa-eGFP, Cav1-eGFP, eGFP-

SNX5, eGFP-actin or eGFP-Rab7 were cultured in 35 mm glass-

bottom culture dishes (MatTek corporation, Ashland, USA),

washed in 1 ml of phenol red-free MEM (Invitrogen) containing

2% FBS and 4% BSA, and incubated with DiI-labeled virions in

50 ml of the same medium on ice for 30 min. The cells were

washed with the ice-cold medium and incubated for various times

in a temperature-controlled chamber on the stage of a confocal

laser scanning microscope (LSM510 META, Carl Zeiss, Oberko-

chen, Germany); the chamber was maintained at 37uC with a

humidified atmosphere of 5% CO2. Images were collected with a

40x oil objective lens (C-Apochromat, NA = 1.2, Carl Zeiss) and

acquired by using LSM510 software (Carl Zeiss). For presentation

in this manuscript, all images were digitally processed with Adobe

Photoshop. For co-localization analysis, the images were acquired

randomly, the number of DiI-labeled virions that co-localized with

eGFP-SNX5 or eGFP-Rab7-positive vesicles were measured in 10

individual cells (approximately 10–20 dots/cell), and the percent-

age of co-localization in the total DiI-virions was determined for

each time point. Each experiment was performed in triplicate and

the results are presented as the mean 6 standard deviation.

siRNA treatment
Target sequences corresponding to the human CHC [103],

Cav1 [104],and Cdc42 [105] -coding sequences were selected,

respectively (Table S1), and synthesized (Dharmacon, Lafayette,

USA or Qiagen, Hilden, Germany). siRNA for Pak1 down-

regulation was purchased from Cell Signaling (Trask Lane, USA).

Synthesized siRNA was transfected into Vero cells by using

TransIT-TKO (Mirus, Madison, USA). For analysis of the

efficiencies of internalization of Ebola virions, DiI-virions were

adsorbed to the siRNA-transfected cells 48 h post-transfection, as

described above, and then incubated for 2 h at 37uC. Unin-

ternalized surface-bound virions were removed by the addition of

0.25% trypsin for 5 min at 37uC and the number of DiI-virions in

10 individual cells was counted. Each experiment was performed

in triplicate and the results are presented as the mean 6 SD.

The efficiency of CHC and Cav1 down-regulation was assessed

by immunofluorescent staining with antibodies specific to CHC

and Cav1 (Abcam, Cambridge, UK). The down-regulation of

endogenous Cav1 was also examined by western blot analysis by

using an antibody specific to Cav1 (Abcam). The efficiencies of

Cdc42 and Pak1 [106] were assessed by RT-PCR with

oligonucleotides to amplify each gene (Table S1).

internalization of DiI-labeled Ebola virions. The eGFP-fused, wild-type Rac1 (wtRac1, upper panels) or the dominant-negative form of Rac1 (dnRac1, lower
panels) was expressed in Vero cells. DiI-labeled Ebola VLPs were adsorbed to the cells for 30 min on ice. After incubation for 2 h at 37uC, surface-bound
virions were removed by trypsin and the internalization of DiI-virions was analyzed by using confocal laser scanning microscope. Expression of dnRac1
interfered with the internalization of Alexa Fluor 647-Dex Mw 10K (blue; lower middle panel), attesting to its functionality. Scale bars, 10 mm. (D)
Quantitative analysis of the internalization of DiI-labeled Ebola virions in wtRac1 or dnRac1-expressed Vero cells. The internalized DiI-virions were measured
in 10 individual wtRac1 or dnRac1-expressed cells. Each experiment was performed in triplicate and the results are presented as the mean 6 SD. (E) Effect of
PKC inhibitors on the internalization of DiI-labeled Ebola virions. Vero cells were treated with DMSO or staurosporine (Stauro) for 30 min at 37uC. Labeled
Ebola VLPs were adsorbed to the cells for 30 min on ice and incubated for 2 h at 37uC in the absence or presence of inhibitor. Surface-bound virions were
removed by trypsin and the internalization of DiI-virions was analyzed by using confocal laser scanning microscope. The internalized DiI-virions were
analyzed in 10 individual DMSO- or staurosporine-treated cells (red bars). The efficiency of Alexa Fluor-Dex Mw 10K uptake in inhibitor-treated cells was
measured by using flow cytometry (blue bars). Each experiment was performed in triplicate and relative uptake efficiencies are presented as the mean 6 SD
(red bars). Staurosporine treatment interfered with the internalization of Alexa Fluor 633-Tf (blue bars), attesting to its functionality. (F) The down-regulation
of Cdc42 and Pak1 by siRNA. The efficiencies of Cdc42 and Pak1 knock-down were assessed by use of RT-PCR. Total cellular RNA was isolated from siRNA-
transfected Vero cells 48 h post-transfection by using the TRI reagent (Sigma-Aldrich) according to the manufacturer’s instructions. cDNA synthesis was
performed with Molony murine leukemia virus RTase using a random hexamer (Invitrogen) according to the manufacturer’s protocol. PCR was carried out
for 25–30 cycles consisting of a DNA denaturing step for 30 s at 94uC, annealing for 30 s at 55uC, and extension for 1 min at 72uC by use of Taq DNA
polymerase (Promega). Glyceraldehyde-3-phosphate dehydrogenase (G3PDH) was used as an endogenous control. The oligonucleotides used for
amplification of individual genes are shown in Table S1. (G) Effect of down-regulation of Cdc42 and Pak1 on the internalization of DiI-labeled Ebola virions.
Vero cells were transfected with control (Cont) non-targeting siRNA or siRNA to down-regulate Cdc42 and Pak1 expression. Labeled Ebola VLPs were
adsorbed to the siRNA-transfected cells for 30 min on ice, 48 h post-transfection. After incubation for 2 h at 37uC, surface-bound virions were removed by
trypsin for 5 min at 37uC and the internalization of Ebola VLPs was analyzed by using confocal laser scanning microscope, and the number of DiI-virions in
10 individual siRNA-transfected cells was measured. The efficiency of Alexa Fluor-Dex Mw 10K uptake in siRNA-transfected cells was measured by use of
flow cytometry (blue bars). Each experiment was performed in triplicate and the relative uptake efficiencies are presented as the mean 6 SD. (H) The
internalization of Ebola virions is associated with plasma membrane ruffling. DiI-EbolaDVP30 virions were adsorbed to eGFP-actin-expressing Vero cells for
30 min on ice. The cells were then incubated at 37uC and time-lapse images were acquired at 15-second intervals over a period of 10 min by using confocal
laser scanning microscope. Still frames at the indicated times (sec) after the temperature shift to 37uC are shown. Scale bar, 10 mm.
doi:10.1371/journal.ppat.1001121.g006
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Figure 7. Macropinocytotic internalization of Ebola virions is GP-dependent. (A) Co-localization of SNX5 with VSV pseudotyped with EBOV
GP. Labeled VSV particles pseudotyped with EBOV GP (DiI-VSVD*G-GP) or VSV G (DiI-VSVD*G-G) were adsorbed to eGFP-SNX5-expressing Vero cells
for 30 min on ice. The cells were then incubated at 37uC and time-lapse images were acquired at 20-second intervals over a period of 30 min by
using confocal laser scanning microscope. Still frames of DiI-VSVD*G-GP (left panel) and DiI-VSVD*G-G (right panel) at 10 min after the temperature
shift are shown. DiI-pseudovirions that co-localize with eGFP-SNX5 are indicated by arrows. Scale bars, 10 mm. (B) Graphic representation of the co-
localization of EBOV GP-pseudotyped VSV virions with Rab7-positive vesicles. Co-localization of DiI-VSVD*G-GP (green bars) with Rab7-positive
vesicles was analyzed at the indicated time points as indicated in the Materials and Methods. Experiments were performed in triplicate and the results
are presented as the mean 6 standard deviation. Results obtained for DiI-EbolaDVP30 (blue bars) and DiI-VSVD*G-G (red bars) are shown for
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Inhibitor treatment
Vero cells or Vero cells expressing eGFP-Rab7 cultured in

35 mm glass-bottom culture dishes were pretreated with 100 mM

dynasore (Sigma-Aldrich), 2 mM cytochalasin D (Sigma-Aldrich),

50 mM LY294002 hydrochloride (Sigma-Aldrich), 50 nM wort-

mannin (Sigma-Aldrich), 100 mM EIPA (Sigma-Aldrich) or

100 nM staurosporine (Sigma-Aldrich) for 30 min at 37uC. DiI-

labeled virions were adsorbed to the cells for 30 min on ice in the

presence of these inhibitors in phenol red-free MEM (Invitrogen)

containing 2% FBS and 4% BSA. Cells were then washed with the

same medium and incubated for 2 h at 37uC in the presence of the

inhibitors. As a control, cells were treated with dimethyl sulfoxide

comparison. (C) Effect of macropinocytosis inhibitors on the co-localization of DiI-labeled VSV pseudovirions with eGFP-Rab7-positive vesicles. Vero
cells expressing eGFP-Rab7 were pretreated with CytoD, Wort, LY294002 or EIPA for 30 min at 37uC; control cells were treated with DMSO. DiI-labeled
VSVD*G-GP (green bars) or VSVD*G-G (red bars) were adsorbed to cells for 30 min on ice. The cells were then incubated at 37uC in the presence of
inhibitors for 2 h. Co-localization of DiI-pseudovirions with eGFP-Rab7-positive vesicles was analyzed as described in the Materials and Methods.
Experiments were carried out in triplicate and the results are presented as the mean 6 standard deviation. (D) Effect of macropinocytosis inhibitors
on the infectivity of VSV pseudovirions. Vero cells were treated with individual inhibitors for 30 min at 37uC and infected with VSVDG*-GP (green
bars) or VSVDG*-G (red bars) in the presence of the inhibitor. 1 h post-infection, surface-bound virions were removed by trypsin and the cells were
cultured for 24 h in the absence of inhibitors. The infection efficiency of each pseudovirus was determined by measuring the number of GFP-positive
cells using with conventional fluorescent microscope. Each experiment was performed in triplicate and the relative infection efficiencies are
presented as the mean 6 SD.
doi:10.1371/journal.ppat.1001121.g007

Figure 8. Model of GP-dependent EBOV cell entry. For EBOV cell entry, the binding of GP to cellular receptor(s) may activate cellular actin
modulators (PI3K, small GTPases, PKC and Pak1), which trigger the actin-dependent membrane ruffling that leads to macropinocytosis. The virions are
then internalized via macropinocytosis. Macropinosomes containing the virions are eventually fused to Rab7-positive late endosomes/lysosome (late
maturation), resulting in the fusion of the viral envelope with the endosomal membrane in a low pH- and cathepsin-dependent manner.
doi:10.1371/journal.ppat.1001121.g008
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(DMSO, Sigma-Aldrich). Efficiencies of internalization of DiI-

labeled viral particles into Vero cells or co-localization of DiI-

labeled viral particles with eGFP-Rab7 were analyzed by using

confocal laser scanning microscope as described above.

Transferrin and dextran uptake assays
Vero cells treated with dynasore, transiently expressing

dominant-negative Rac1, were incubated with DiI-labeled virions

on ice for 30 min in MEM containing 2% FBS and 4% BSA. The

cells were washed with the same medium and then incubated for

2 h at 37uC. Cells were then incubated with 2 mg/ml Alexa Fluor

633-Tf for 10 min or 0.5 mg/ml Alexa Fluor 647-Dex Mw 10K

for 60 min at 37uC. To remove surface-bound labeled virions, Tf,

or Dex Mw 10K, the cells were treated with trypsin as described

above for 5 min at 37uC. Cells were then washed twice with the

same medium and internalized DiI-labeled virions, Tf or Dex Mw

10K were analyzed by use of confocal laser scanning microscope.

To assess the effect of staurosporine or the siRNA treatment on

fluid phase uptake, after staurosporine pretreatment or 48 h post-

transfection of individual siRNAs, Vero cells were incubated with

0.5 mg/ml AlexaFluor 647-Dex Mw 10K, harvested by treating

with trypsin, washed twice with ice-cold PBS, and fixed with 4%

PBS-buffered paraformaldehyde for 10 min at room temperature.

The mean fluorescence intensities in the cells were analyzed by use

of flow cytometry (FACSCalibur; Becton Dickinson, Franklin

Lakes, USA).

VSV pseudovirion infectivity analysis
VSV pseudotyped with EBOV GP (VSVDG*-GP) or VSV G

(VSVDG*-G) expressing GFP was generated as described

previously [61]. Vero cells were treated with a series of inhibitors

for 30 min at 37uC and infected with each virus at a multiplicity of

infection (as titrated with Vero cells) of 0.002 to 0.005 in the

presence of the inhibitors. 1 h post-infection, surface-bound

virions were removed by trypsin as described above and cultured

for another 24 h. Infection efficiencies for VSVDG*-GP or

VSVDG*-G were determined by measuring the number of

GFP-positive cells by conventional fluorescent microscope. Each

experiment was performed in triplicate and the results are

presented as the mean 6 SD.

Methods for supporting information files
Methods for supporting information files are described in Text

S1.

Supporting Information

Figure S1 The effect of adsorption temperature on Ebola virion

internalization. DiI-labeled Ebola VLPs were adsorbed to Vero

cells grown in 35 mm glass-bottom culture dishes for 30 min on

ice (4uC), room temperature (r.t.), or 37uC in parallel. The cells

were then incubated for 2 h at 37uC. Surface-bound virions were

removed by trypsin and the internalization of the DiI-virions was

measured in 10 individual cells by use of confocal laser scanning

microscope. Each experiment was performed in triplicate and the

results are presented as the mean 6 SD.

Found at: doi:10.1371/journal.ppat.1001121.s001 (3.40 MB TIF)

Figure S2 Visualization of the internalization of DiI-labeled

EBOV particles in live cells. (A) DiI-labeled Ebola-VLPs (red; left

panel) or control VLPs lacking GP [(Ebola VLPs (-GP)] (red; right

panel) were absorbed to Vero cells for 30 min on ice. The cells

were incubated at 37uC and time-lapse images were acquired at

20-second intervals over a period of 20 min by using a confocal

laser scanning microscope. Still frames at the indicated times (min)

after the temperature shift to 37uC are shown. Individual cells are

highlighted. Initial positions of individual viral particles are shown

as white dots. Scale bars, 10 mm. (B) DiI-labeled Ebola VLPs (red;

left panel) or Ebola VLPs (-GP) (red; right panel) were absorbed to

Vero cells for 30 min on ice. The cells were then incubated for

30 min at 37uC. Images were collected by taking 10,15 optical

slices of z-stack in 0.16 mm steps and the cross-sectional views were

processed with LSM510 software. Outlines of individual cells were

drawn. Scale bars, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s002 (1.04 MB TIF)

Figure S3 Filamentous morphologies of Ebola VLPs. Ebola

VLPs released into the supernatants of 293T cells expressing

EBOV VP40, NP and GP were purified as described in the

Materials and Methods and then negatively stained with 1%

uranyl acetate. Filamentous particles of various lengths with

surface spikes can be seen. Scale bar, 1 mm.

Found at: doi:10.1371/journal.ppat.1001121.s003 (3.91 MB TIF)

Figure S4 Transferrin and cholera toxin subunit B are co-

localized with CLCa-eGFP and Cav1-eGFP, respectively. (Left

panel) Vero cells expressing CLCa-eGFP were incubated with

2 mg/ml Alexa Fluor 594-Transferrin (Tf) (red) for 30 min on ice.

The cells were then incubated for 3 min at 37uC and subsequently

fixed in PBS-buffered 4% paraformaldehyde. The co-localization

of Alexa Fluor-Tf with CLCa-eGFP was analyzed by using

confocal laser scanning microscope. The inset shows an enlarge-

ment of the boxed area. Scale bar, 1 mm. (Right panel) Vero cells

expressing Cav1-eGFP were incubated with 2 mg/ml Alexa Fluor

647-cholera toxin subunit B (CtxB) (purple) for 30 min on ice. The

cells were then incubated for 60 min at 37uC and subsequently

fixed in PBS-buffered 4% paraformaldehyde. The co-localization

of Alexa Fluor-CtxB with Cav1-eGFP was analyzed by use of a

confocal laser scanning microscope. The inset shows an enlarge-

ment of the boxed area. Scale bar, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s004 (6.50 MB TIF)

Figure S5 The effect of trypsin on the internalization of DiI-

labeled virions. Labeled Ebola VLPs were adsorbed to Vero cells

grown in 35 mm glass-bottom culture dishes for 30 min on ice. (A)

The cells were treated with (middle and right panels) or without

(left panel) 0.25% trypsin for 5 min at 37uC before (middle panel)

and after (right panel) incubation for 2 h at 37uC followed by an

additional incubation at 37uC for 1 h. The internalization of DiI-

virions was analyzed by using confocal laser scanning microscope.

Outlines of individual cells were drawn. Scale bars, 10 mm. (B)

The internalized DiI-virions were measured in 10 individual cells.

Each experiment was performed in triplicate and the results are

presented as the mean 6 SD (lower panels).

Found at: doi:10.1371/journal.ppat.1001121.s005 (0.70 MB TIF)

Figure S6 Dex Mw 10K associates with macropinosomes but

not with CCPs and caveolae. Vero cells expressing eGFP-SNX5

(A), CLCa-eGFP (B, left panel), or Cav1-eGFP (B, right panel)

were incubated with 0.5 mg/ml Alexa Fluor 647-Dex Mw 10K for

10 min at 37uC. The co-localization of Alexa Fluor-Dex Mw 10K

(purple) with eGFP-SNX5, CLCa-eGFP, or Cav1-eGFP was

analyzed by using confocal laser scanning microscope. The inset

shows an enlargement of the boxed area. Scale bars, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s006 (3.31 MB TIF)

Figure S7 Endogenous SNX5 and Rab7 co-localize with Ebola

VLPs. (A) Vero cells were incubated with Ebola VLPs for 30 min

on ice. The cells were then incubated for 10 min at 37uC and

subsequently fixed in 4% PBS-buffered paraformaldehyde.

Endogenous SNX5 (green) and Ebola VLPs (red) were immuno-
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stained by using an anti-SNX5 goat polyclonal antibody (Abcam)

and an anti-VP40 rabbit polyclonal antibody, as well as Alexa

Fluor 488- and 594-labeled secondary antibodies, respectively.

Scale bar, 10 mm. (B) Vero cells were incubated with Ebola VLPs

for 30 min on ice. The cells were then incubated for 10 min at

37uC and subsequently fixed in 4% PBS-buffered paraformalde-

hyde. Endogenous Rab7 (green) and Ebola VLPs (red) were

immunostained by using an anti-Rab7 mouse monoclonal

antibody (Abcam) and an anti-VP40 rabbit polyclonal antibody,

as well as Alexa Fluor 488- and 594-labeled secondary antibodies,

respectively. Scale bar, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s007 (1.21 MB TIF)

Figure S8 Internalized Dex Mw 10K co-localizes with Rab7-

positive vesicles. Vero cells expressing eGFP-Rab7 were incubated

with 0.5 mg/ml Alexa Fluor 647-Dex Mw 10K for 30 min at

37uC. The co-localization of internalized Dex Mw 10K (purple)

with GFP-Rab7 was analyzed by using laser scanning confocal

microscope. The inset shows an enlargement of the boxed area.

Scale bar, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s008 (2.21 MB EPS)

Figure S9 Effect of NH4Cl on internalized DiI-labeled EBOV

virions. Vero cells expressing eGFP-Rab7 were pretreated with

20 mM NH4Cl for 30 min at 37uC (right panel), or left untreated

(Control; left panel). DiI-EbolaDVP30 virions (red) were adsorbed

to Vero cells expressing eGFP-Rab7 for 30 min on ice in the

presence or absence of NH4Cl. Cells were then incubated for 4 h

at 37uC in the presence or absence of NH4Cl and the internalized

DiI-EbolaDVP30 virions were analyzed by using confocal laser

scanning microscope. The insets show enlargements of the boxed

areas. Scale bars, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s009 (1.14 MB TIF)

Figure S10 DiI-Ebola VLPs possessing a fusion-deficient GP

mutant (F535R) co-localized with eGFP-Rab7-positive vesicles but

failed to fuse with the membrane of Rab7-positive vesicles. DiI-

Ebola VLPs possessing GP mutant (F535R) [Ebola VLP (GP-

F535R)] (red) were adsorbed to eGFP-Rab7-expressing Vero cells

for 30 min on ice. The cells were then incubated for 4 h at 37uC
and the co-localization of DiI-virions with eGFP-Rab7 was

analyzed by using confocal laser scanning microscope. Insets

show enlargements of the boxed areas. Scale bar, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s010 (3.17 MB EPS)

Figure S11 Effect of macropinocytosis inhibitors on the uptake

of Dex Mw 10K. (A) Vero cells were pretreated with 2 mM

cytochalasin D (CytoD), 50 nM wortmannin (Wort), 50 mM

LY294002 hydrochloride, or 100 mM EIPA for 30 min at 37uC.

Vero cells were incubated with 0.5 mg/ml AlexaFluor 647-Dex

Mw 10K for 60 min at 37uC in the presence of inhibitors,

harvested by trypsin, washed twice with ice-cold PBS and fixed

with 4% PBS-buffered paraformaldehyde for 10 min at room

temperature. As a control, Vero cells were treated with DMSO.

The mean fluorescence intensities in the cells were analyzed by

using flow cytometry. Each experiment was performed in triplicate

and the mean fluorescence intensity is presented as the mean 6

SD. (B) Representative images are shown. Outlines of individual

cells are drawn. Scale bar, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s011 (17.87 MB

TIF)

Figure S12 Effect of macropinocytosis inhibitors on the co-

localization of DiI-labeled influenza viruses with Rab7-positive

vesicles. Vero cells expressing eGFP-Rab7 were pretreated with

cytochalasin D (CytoD), wortmannin (Wort), LY294002, or EIPA

for 30 min at 37uC. DiI-influenza viruses (red) were adsorbed to

the cells for 30 min on ice, then incubated at 37uC for 2 h in the

presence of inhibitors. As a control, DMSO-treated cells were

incubated with DiI-influenza viruses (Control). Representative

images acquired 2 h after the temperature shift are shown. DiI-

influenza virions that co-localized with eGFP-Rab7-positive

vesicles are indicated by arrows. Scale bars, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s012 (1.73 MB TIF)

Figure S13 The effect of the internalization of DiI-labeled Ebola

VLPs on dextran uptake. Vero cells, grown on cover slips, were

incubated with 0.5 mg/ml Alexa Fluor 647-Dex Mw 10K in the

absence or presence of Ebola VLPs for 60 min at 37uC. The

uptake of Alexa Fluor 647-Dex Mw 10K was analyzed by using

confocal laser scanning microscope. The effect of EIPA pretreat-

ment was assessed in parallel. Scale bars, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s013 (0.82 MB

TIF)

Figure S14 The effect of PKC, Cdc 42, and Pak1 on the

internalization of Ebola VLPs and Dex Mw 10K. (A) Effect of

PKC inhibitors on the internalization of DiI-labeled Ebola virions

and Dex 10K. Vero cells were treated with DMSO or

staurosporine (Stauro) for 30 min at 37uC. Labeled Ebola VLPs

were adsorbed to the cells for 30 min on ice and incubated for 2 h

at 37uC in the absence or presence of inhibitor. Alexa Fluor-Dex

Mw 10K was incubated for 2 h at 37uC in the absence or presence

of inhibitor. Surface-bound virions or Dex Mw 10K were removed

by trypsin and the internalization of DiI-virions (left panels) or Dex

Mw 10K (right panels) was analyzed by using confocal laser

scanning microscope. Outlines of individual cells are drawn. Scale

bars, 10 mm. (B) Effect of down-regulation of Cdc42 and Pak1 on

the internalization of DiI-labeled Ebola virions and Dex Mw 10K.

Vero cells were transfected with control (Cont) non-targeting

siRNA or siRNA to down-regulate Cdc42 and Pak1 expression.

Labeled Ebola VLPs were adsorbed to the siRNA-transfected cells

for 30 min on ice, 48 h post-transfection, and incubated for 2 h at

37uC. Alexa Fluor-Dex Mw 10K was incubated for 2 h at 37uC,

48 h post-transfection. After incubation for 2 h at 37uC, surface-

bound virions or Dex Mw 10K were removed by trypsin for 5 min

at 37uC. The internalization of DiI-virions (left panels) or Dex Mw

10K (right panels) was analyzed by using confocal laser scanning

microscope. Outlines of individual cells are drawn. Scale bars,

10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s014 (1.12 MB TIF)

Figure S15 Significant membrane ruffling was not observed in

the absence of EBOV virions. eGFP-actin-expressing Vero cells

were placed on ice for 30 min. The cells were then incubated at

37uC and time-lapse images were acquired at 15-second intervals

over a 10 min time period by using a confocal laser scanning

microscope. Still frames at the indicated times (sec) after the

temperature shift to 37uC are shown. Scale bar, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s015 (0.93 MB TIF)

Figure S16 DiI-labeled VSV pseudotyped with EBOV GP did

not co-localize with CLCa-eGFP and Cav1-eGFP. DiI-VSV

pseudotyped with EBOV GP (VSV*G-GP) (red) were adsorbed to

CLCa-eGFP- or Cav1-eGFP-expressing Vero cells for 30 min on

ice. The cells were then incubated for 10 min at 37uC and the co-

localization of internalized DiI-virions with CLCa-eGFP or Cav1-

eGFP was analyzed by use of confocal laser scanning microscope.

Scale bars, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s016 (5.80 MB TIF)

Figure S17 DiI-labeled VSV pseudotyped with VSV-G co-

localized with CCPs. DiI-VSV pseudotyped with VSV-G

(VSV*G-G) virions (red) were adsorbed to CLCa-eGFP-expressing
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Vero cells for 30 min on ice. The cells were then incubated for

10 min at 37uC and the co-localization of internalized DiI-

pseudovirions with CLCa-eGFP was analyzed by use of confocal

laser scanning microscope. DiI-pseudovirions that co-localized

with CLCa-eGFP are indicated by arrows. Scale bar, 10 mm.

Found at: doi:10.1371/journal.ppat.1001121.s017 (4.30 MB TIF)

Table S1 Summary of siRNA target sequence and oligonucle-

otide sequence for RT-PCR

Found at: doi:10.1371/journal.ppat.1001121.s018 (0.03 MB

DOC)

Text S1 Supporting materials and methods

Found at: doi:10.1371/journal.ppat.1001121.s019 (0.03 MB

DOC)

Video S1 DiI-labeled Ebola-VLPs were efficiently internalized

into cells after a temperature shift. DiI-labeled Ebola VLPs were

adsorbed to Vero cells for 30 min on ice. Cells were then

incubated for 15 min at 37uC and images were collected every 20

seconds by confocal laser scanning microscope. Ebola VLPs (red)

were internalized immediately after the temperature shift.

Found at: doi:10.1371/journal.ppat.1001121.s020 (0.11 MB AVI)

Video S2 DiI-labeled Ebola-VLPs lacking GP were not

internalized into cells after a temperature shift. DiI-labeled Ebola

VLPs that lacked EBOV GP were adsorbed to Vero cells for

30 min on ice. Cells were then incubated for 15 min at 37uC and

images were collected every 20 seconds by confocal laser scanning

microscope. Ebola VLPs (red) remained stationary after the

temperature shift.

Found at: doi:10.1371/journal.ppat.1001121.s021 (0.02 MB

MOV)

Video S3 DiI-labeled Ebola-VLPs were not associated with

CLCa-eGFP. DiI-labeled EbolaDVP30 virions were adsorbed to

Vero cells expressing CLCa-eGFP for 30 min on ice. Cells were

then incubated for 15 min at 37uC and images were collected

every 20 seconds by confocal laser scanning microscope. Co-

localization of CLCa-eGFP (green) with DiI-virions (red) was not

observed.

Found at: doi:10.1371/journal.ppat.1001121.s022 (5.38 MB AVI)

Video S4 DiI-labeled Ebola-VLPs were not associated with

Cav1-eGFP. DiI-labeled EbolaDVP30 virions were adsorbed to

Vero cells expressing Cav1-eGFP for 30 min on ice. Cells were

then incubated for 15 min at 37uC and images were collected

every 20 seconds by confocal laser scanning microscope. Co-

localization of Cav1-eGFP (green) with DiI-virions (red) was not

observed.

Found at: doi:10.1371/journal.ppat.1001121.s023 (0.35 MB AVI)

Video S5 Internalized DiI-labeled EbolaDVP30 virions were co-

localized with eGFP-SNX5. DiI-labeled EbolaDVP30 virions were

adsorbed to Vero cells expressing eGFP-SNX5 for 30 min on ice.

Cells were then incubated for 15 min at 37uC and images were

collected every 20 seconds by confocal laser scanning microscope.

DiI-EbolaDVP30 virions (red) co-localized with eGFP-SNX5

(green).

Found at: doi:10.1371/journal.ppat.1001121.s024 (0.43 MB AVI)

Video S6 Internalized DiI-labeled influenza virus virions were

not co-localized with eGFP-SNX5. DiI-labeled influenza virions

were adsorbed to Vero cells expressing eGFP-SNX5 for 30 min on

ice. Cells were then incubated for 15 min at 37uC and images

were collected every 20 seconds by confocal laser scanning

microscope. Co-localization of eGFP-SNX5 (green) with DiI-

influenza virions (red) was not observed.

Found at: doi:10.1371/journal.ppat.1001121.s025 (0.32 MB AVI)

Video S7 Internalization of DiI-labeled EbolaDVP30 virions

was associated with plasma membrane ruffling. DiI-labeled

EbolaDVP30 virions were adsorbed to Vero cells expressing

eGFP-actin for 30 min on ice. Cells were then incubated for

10 min at 37uC and images were collected every 10 seconds by

confocal laser scanning microscope. Internalization of DiI-

EbolaDVP30 virions (red) was associated with plasma membrane

ruffling (green).

Found at: doi:10.1371/journal.ppat.1001121.s026 (0.24 MB AVI)

Video S8 Plasma membrane ruffling was not observed in the

absence of Ebola virions. Vero cells expressing eGFP-actin was

placed on ice for 30 min. Cells were then incubated for 10 min at

37uC and images were collected every 10 seconds by confocal laser

scanning microscope. Plasma membrane ruffling was not observed

in this condition.

Found at: doi:10.1371/journal.ppat.1001121.s027 (0.44 MB AVI)
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