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Autoimmunity refers to an inappropri-

ate immune response against self-compo-

nents of the host that results in patholog-

ical conditions. Autoimmune diseases are

characterized by an activation of autore-

active T and B cells, are associated in

some cases with the production of patho-

genic autoantibodies against self-mole-

cules, culminating in inflammation and

tissue damage. The reasons for the break-

down of tolerance mechanisms leading to

autoimmunity are not clearly known.

However, a combination of genetic, im-

munological, and environmental factors

plays a critical role in the pathogenesis of

autoimmunity [1–5].

Autoimmunity Can Predispose
to Infectious Diseases

During the course of autoimmunity,

autoantibodies that can neutralize key

components of the immune system that

are essential in mounting anti-microbial

responses may be produced (Figure 1).

These autoantibodies might either exacer-

bate ongoing infectious diseases or predis-

pose the individual to an increased risk of

bacterial, viral, and opportunistic fungal

infections. For example, cytokines play a

critical role in the process of mounting

anti-microbial responses due to their

ability to regulate the innate and adaptive

immune systems, in polarizing T cell

responses, and by acting as effector

molecules. Thus, IL-12 mediates Th1 cell

differentiation and IL-4 influences Th2

differentiation. IL-6, IL-21, TGF-b, IL-1b,

and IL-23 are critical for the differentia-

tion and expansion of Th17 cells. Th1 cells

produce cytokines IFN-c and IL-2, and

confer protection against intracellular

pathogens (viruses and intracellular bacte-

ria such as Mycobacterium and Salmonella).

Th2 cells produce IL-4, IL-5, and IL-13,

and are important to clear extracellular

pathogens and parasites. Th-17 cells

secrete IL-17, IL-21, and IL-22, and

provide protection against several extra-

cellular pathogens, including fungi such as

Candida (Figure 1) [6–9]. In addition, type I

IFNs have a critical role in anti-viral

immunity and in modulating T and B cell

responses. Therefore, it can be conceived

that the development of neutralizing

antibodies against any of these cytokines

as a consequence of autoimmunity affects

the cellular functions and clearance of

pathogens and predisposes the host to

infectious diseases. This is further support-

ed by reports of a high prevalence of

infections in autoimmune patients treated

with neutralizing monoclonal antibodies to

inflammatory cytokines. Patients with

rheumatoid arthritis, Crohn’s disease, or

psoriasis treated on a chronic basis with

monoclonal antibodies to TNF-a are

predisposed to mycobacterial, listerial,

and viral infections [10–12].

Specific Examples of
Autoimmunity Favoring
Infectious Diseases

Several reports have now demonstrated

the occurrence of neutralizing autoanti-

bodies against cytokines in patients with

infections. These reports thus provide a

pointer towards a previously unknown link

between autoimmune responses and pre-

disposition to infectious diseases.

A correlation between neutralizing au-

toantibodies to IFN-c and mycobacterial

infections has been reported [13–20].

Moreover, the clinical features of patients

with anti-IFN-c immunoglobulin G (IgG)

are analogous to those with genetic defects

in the IFN-c/IL-12 pathway, which is

characterized by progressive or dissemi-

nated infection with mycobacteria of low

virulence, indicating that anti-IFN-c IgG

induces an acquired immunodeficiency

state and predisposes to mycobacterial

infections [13–20]. These anti-IFN-c IgG

neutralized IFN-c in whole blood culture,

inhibited IFN-c-dependent phosphoryla-

tion of STAT-1 and production of TNF-a
and IL-12 by normal peripheral blood

mononuclear cells (PBMCs) and macro-

phages, and inhibited HLA-DR expres-

sion in normal monocytes [14–17]. In

another study, one patient’s serum was

shown to inhibit IFN-c-mediated upregu-

lation of MHC class I on Jurkat cells [20].

Given the critical role of the type I

cytokine pathway in the immune response

to mycobacterial infections [21], these

reports provide direct evidence for how

anti-IFN-c autoantibodies can affect pro-

tective anti-mycobacterial immunity.

Recurrent staphylococcal cellulitis and

subcutaneous abscesses were reported in a

child with autoantibodies against IL-6

[22]. These anti-IL-6 autoantibodies in-

hibited IL-6-mediated STAT3 phosphor-

ylation and C-reactive protein (CRP)

production in Hep3B cells. Since IL-6 is

pivotal for CRP induction, these results

indicated that anti-IL-6 autoantibodies

contributed to the lack of CRP response

in this patient during staphylococcal

infections. In addition, IL-6- deficient

mice have been shown to be susceptible

to various pyogenic infections, including

Streptococcus pneumoniae, Pseudomonas aerugi-

nosa, and Klebsiella pneumoniae [23–26].

Interestingly, autoantibodies to IL-6 were

not identified in other patients with severe

staphylococcal diseases and hence suggest

that anti-IL-6 autoantibodies were not

generated due to molecular mimicry with

Staphylococcus aureus. In addition, the course

of clinical events in the patient was
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Descartes-Paris 5, and Coopération INSERM-ICMR-AO 2009/2010. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jagadeesh.bayry@crc.jussieu.fr

PLoS Pathogens | www.plospathogens.org 1 November 2010 | Volume 6 | Issue 11 | e1001077



suggestive of an occurrence of anti-IL-6

autoantibodies that preceded staphylococ-

cal infection.

Patients suffering from pulmonary al-

veolar proteinosis (PAP) present with

neutralizing antibodies against granulo-

cyte/macrophage colony–stimulating fac-

tor (GM-CSF) and show high mortality

due to infection [27]. GM-CSF has a key

role in enhancing the antimicrobial activ-

ities of neutrophils and macrophages by

augmenting the expression of CD11b, an

adhesion molecule that mediates neutro-

phil adhesion to endothelial cells, and

hence promoting the recruitment of

neutrophils to the site of infection;

promoting the differentiation of macro-

phages and dendritic cells (DCs); and by

priming the phagocytosis and bactericidal

activities of these cells. Low levels of GM-

CSF autoantibodies are present in healthy

individuals. These autoantibodies are

implicated in scavenging and neutralizing

free GM-CSF and to regulate myeloid cell

functions and GM-CSF-mediated inflam-

mation and autoimmunity [28]. However,

active PAP patients have high amounts of

GM-CSF autoantibodies that impair the

antimicrobial functions of neutrophils,

macrophages, and the expression of

CD11b [29]. In addition, these autoanti-

bodies exist abundantly in the lungs, and

by effectively blocking GM-CSF binding

to its receptor, they specifically inhibit

alveolar macrophage differentiation,

phagocytosis, and surfactant catabolism

[30,31]. Patient-derived GM-CSF auto-

antibodies reproduced PAP in experimen-

tal non-human primate and murine

models [29,32], while individuals with

mutations in GM-CSF receptor are also

affected with PAP [33]. These results thus

confirm the causal relationship between

defective GM-CSF function, autoantibod-

ies, and PAP.

Th17 cytokines are implicated in pro-

tection against fungal infections, including

Candida at mucosal surfaces, and hence

neutralizing antibodies to Th17 cytokines

can predispose to fungal infections

[8,34,35]. Interestingly, neutralizing auto-

antibodies against Th17 cell cytokines IL-

17A, IL-17F, and IL-22 have been report-

ed in chronic mucocutaneous candidiasis

(CMC) patients with autoimmune poly-

endocrinopathy syndrome-1 (APS-1) or

thymoma [36,37]. Of particular impor-

tance, the autoantibody titers were high

before the onset of CMC. Further, indi-

viduals with mutations in STAT3 and IL-

12RB1 showed impaired development of

Th17 cells and higher susceptibility to

candidiasis [38].

Figure 1. Host immune response to pathogens and predisposition to infections due to autoimmunity. Antigens from invading
pathogens are recognized and presented by innate immune cells (A) such as macrophages and dendritic cells to CD4+ and CD8+ T cells (CTL) (B).
CD8+ T cells recognize endogenous antigens presented by MHC class I molecules and exert cytotoxic functions upon activation. CD4+ T cells
recognize antigens presented in the context of MHC class II molecules, and under the influence of innate cells and cytokine milieu, CD4+ T cells can
be polarized into different subsets such as Th1, Th2, Th17, and regulatory T cells (Tregs) that secrete distinct cytokines. CD4+ T cells provide help to B
cells to produce antigen-specific antibodies (C). However, due to autoimmunity, neutralizing autoantibodies can be produced against any of these
key components of the immune system critical for mounting anti-microbial responses and might either predispose to an increased risk of bacterial,
viral, and opportunistic fungal infections or exacerbate the ongoing infectious diseases. Indeed, in patients with infections, the occurrence of
neutralizing autoantibodies against several key cytokines such as IFN-c, IL-6, GM-CSF, IL-17, and IL-22 (highlighted in red boxes) that interfere with the
host immune response to pathogens have been demonstrated. In addition, autoantibodies are also reported against type I IFNs and IL-12 that might
play role in predisposition to infections (highlighted in blue boxes). CTLA-4, cytotoxic T lymphocyte antigen-4; CTL, cytotoxic T lymphocyte; FasL, Fas
ligand; GM-CSF, granulocyte/macrophage–colony stimulating factor.
doi:10.1371/journal.ppat.1001077.g001
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In addition to the above examples,

autoantibodies to type I IFNs (such as

IFN-a2, IFN-v), IL-12, and TNF-a were

also identified in patients with autoim-

mune and rheumatic diseases and in those

with chronic infections [39]. Intractable

(even fatal) infections in myasthenia gravis

patients with thymoma might be related to

high titers of anti-IL-12 and anti-IFNa
autoantibodies that can reduce an IFN-c
response with a bias towards an IL-4

response [40].

Taken together, anti-cytokine autoanti-

bodies induce an acquired immune-com-

promised state that predisposes the host to

infections. Although autoantibodies to

several cytokines are relatively widespread,

they rarely neutralize to a significant

extent [39]. Further, anti-cytokine auto-

antibodies do not seem to have co-

distribution, and cytokines do have redun-

dant functions; hence, severe infections are

not common unless as described above,

and neutralizing autoantibodies are devel-

oped against specific cytokines that are key

in an anti-microbial response.

In view of these findings, we suggest that

patients with uncontrolled or repeated

infections despite antimicrobial therapy

should be considered for screening and

evaluating autoimmunity. Although re-

ported examples are of autoantibodies to

cytokines, the occurrence of autoantibod-

ies that target either molecules implicated

in the recognition of pathogens (such as

Toll-like receptors and lectin receptors) or

antigen presenting and co-stimulatory

molecules cannot be ruled out. Indeed,

genetic defects or polymorphisms in pat-

tern recognition receptors and their sig-

naling pathways and susceptibility to

infections have been reported [41–44].

Enigma of Induction of Anti-
Cytokine Autoantibodies

Despite the reports of anti-cytokine

antibodies in several malignant or infec-

tious diseases and their low titers in

healthy individuals, the high titers are

predominant in autoimmune diseases [39].

Consensually, anti-cytokine antibodies

against type I IFNs, IL-12, IL-17, and

IL-22 are found in APS-1 or myasthenia

gravis patients associated with or without

thymoma [36,37,45]. Here, AIRE (auto-

immune regulator), a novel gene that

regulates peripheral self-antigen expres-

sion in medullary thymic epithelia and

DCs, is mutated, leading to disturbed self-

tolerance mechanisms. Thus, APS-1 pa-

tients may display autoantibodies against

type I IFNs and IL-17 cytokines as a result

of impaired AIRE-dependent tolerance

induction. Further, extensive work by the

Meager and Willcox group provided clues

toward autoimmunizing mechanisms and

innate cells (plasmacytoid and myeloid

DCs) in the induction of anti-cytokine

antibodies to type I IFNs and IL-12

[39,40,45].

Therefore, it is probable that autoanti-

bodies are produced as a consequence of

infections and these autoantibodies subse-

quently exacerbate the infectious diseases

or, alternatively, a cryptic autoimmunity

develops due to unknown reasons that

predispose the individual to infections.

Infectious agents and vaccines are often

thought to be one of the environmental

factors that induce autoimmunity either by

molecular mimicry, epitope spreading,

bystander activation of immune system,

or polyclonal activation of immune cells

[2,3]. It is thus likely that in case of chronic

persistent diseases such as tuberculosis, a

pathogen might trigger the autoimmune

process by one of these mechanisms.

Indeed, the majority of patients with

autoantibodies and mycobacterial infec-

tions originated from disease-endemic

areas [13–20]. Therefore, dissection of

underlying causes of autoimmunity such as

genetic polymorphisms, gene deficiency,

or environmental factors might shed light

on these unanswered questions.

Therapeutic Options for
Autoimmunity-Associated
Infectious Diseases

Therapeutic strategies for autoimmuni-

ty-associated infectious diseases should be

aimed at controlling the infection as well

as inhibiting the autoimmune response:

blocking autoantibody-producing B cells

and neutralizing autoantibodies. In this

context, a combination of anti-microbial

agents and immunosuppressive treatments

represents a classical line of therapy for

autoimmunity-associated infectious diseas-

es. Plasmapheresis that removes autoanti-

bodies or supplementing exogenous cyto-

kines (against which autoantibodies have

developed) are other potential therapeutic

strategies. However, such therapeutic

strategies do not eliminate the source of

autoantibodies, i.e., autoantibody-produc-

ing B cells and plasma cells.

Autoantibody-producing B cells can be

eliminated by B cell–targeted therapies

(such as monoclonal antibodies to CD20,

CD19, and CD22 or to B cell-activating

factor (BAFF) [46–48]). However, repeat-

ed cycles of B cell–targeted therapies can

lead to a reduction in total immunoglob-

ulin level and predisposition to serious

infections [49,50]. Also, these therapeutic

agents do not target antibody-producing

plasma cells.

In view of proven safety and efficacy in

diverse autoimmune diseases, polyclonal

intravenous immunoglobulin (IVIg) in

combination with anti-microbial agents

represents an attractive therapy for auto-

immunity-associated infections [51]. IVIg

targets both cellular and soluble media-

tors of autoimmunity and inhibits the

disease by multi-pronged mutually non-

exclusive mechanisms such as neutraliza-

tion of anti-cytokine autoantibodies by

broad-spectrum anti-idiotypic antibodies,

induction of B cell tolerance, inhibition of

cellular proliferation, regulation of immu-

noglobulin repertoire, suppression of in-

nate antigen presenting cells and inhibi-

tion of T cell help to B cells, and

expansion of CD4+CD25+ regulatory T

cells, the cells that are critical for

maintaining immune tolerance and to

suppress autoimmunity [51,52]. Since

IVIg is obtained from pooled plasma of

several thousand healthy blood donors,

based on the exposure of donors to

infectious diseases and vaccinations, IVIg

contains antibodies to a wide range of

infectious agents, and hence these anti-

microbial antibodies within IVIg prepa-

rations can directly neutralize pathogens

[53]. However, determining an effective

dose regimen and duration of IVIg

therapy needs further investigation.

In our opinion, considering all thera-

peutic options, a ‘‘triple’’ combination of

anti-microbial agents, B cell–targeted

therapies, and IVIg represents the most

appropriate and ideal method for treating

autoimmunity-associated infectious diseas-

es. Indeed, the combination of B cell–

targeted therapies and IVIg has been

successfully used in several autoimmune

and inflammatory diseases [54,55].

Accession Numbers/ID Numbers
for Genes and Proteins:
UniProtKB

The UniProt (http://www.uniprot.org/)

accession numbers for genes and proteins

discussed in this paper are IL-17A,

Q16552; IL-17F, Q96PD4; IL-21,

Q9HBE4; IL-22, Q9GZX6; IL-23,

Q9NPF7; IL-12RB2, Q99665; IFN-c,

P01579; GM-CSF, P01587; IL-6, P05231;

IL-4, P05112; IL-5, P05113; IL-13,

P35225; BAFF (BLyS), Q9Y275; IFN-a2,

P01563; IFN-v, P05000; TNF-a, P01375;

IL-1b, P01584; IL-12 p40 (IL-12B),

P29460; IL-12 p35 (IL-12A), P29459;

AIRE, O43918; STAT3, P40763; HLA-

DR, O19685; CD20, P11836; CD11b,

P11215; CD19, P15391; CD22, P20273.
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