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Abstract

Once the genome sequence of an organism is obtained, attention turns from identifying genes to understanding their
function, their organization and control of metabolic pathways and networks that determine its physiology. Recent
technical advances in acquiring genome-wide data have led to substantial progress in identifying gene functions. However,
we still do not know the function of a large number of genes and, even when a gene product has been assigned to a
functional class, we cannot normally predict its contribution to the phenotypic behaviour of the cell or organism - the
phenome. In this study, we assessed bacterial growth parameters of 4030 non-redundant PA14 transposon mutants in the
pathogenic bacterium Pseudomonas aeruginosa. The genome-wide simultaneous analysis of 119 distinct growth-related
phenotypes uncovered a comprehensive phenome and provided evidence that most genotypes are not phenotypically
isolated but rather define specific complex phenotypic clusters of genotypes. Since phenotypic overlap was demonstrated
to reflect the relatedness of genotypes on a global scale, knowledge of an organism’s phenome might significantly
contribute to the advancement of functional genomics.
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Introduction

A principal goal of genomics is to acquire a global overview of

the genetic information of a cell, its bioinformatic decoding into

cellular metabolism in the context of the prevailing environment,

and the expression of this metabolism as cellular-organismal

phenotypes. Though much progress has been made in linking

genomics and metabolism, including the application of systems

approaches, involving modeling and computational analyses [1,2],

the link with phenotypes remains tenuous [3].

Once the genome sequence of an organism is obtained,

attention turns from identifying genes to understanding their

function, their organization and control of metabolic pathways

and networks that determine its physiology [4,5]. The classical

approach to define the function of individual and related groups of

genes is to analyze mutant phenotypes in a systematic manner [6–

8]. The scrutiny of comprehensive mutant libraries under a wide

range of experimental conditions has revealed many new

phenotypic traits and assigned them to cognate genes [9–11].

Most microbes exhibit only a few physically-recognizable

phenotypes, limited largely to cell shape and colony morphology

when cultured on solid media, but a wealth of metabolic

phenotypes, many of which can be scored as color reactions

involving dye-linked substrates incorporated into the culture

medium. Phenotypic description has long been used to discrim-

inate between bacteria and, with the publication of Bergey’s Manual

of Determinative Bacteriology in 1923 [12], microbiologists began to

systematically describe and define bacterial species based on lists of

phenotypes. Because growth phenotypes are directly and indirectly

involved in fundamental aspects of bacterial physiology and

evolution, they remain a cornerstone of microbial taxonomy.

Here, we present a new approach to forge a link between genotype

and phenotype using Pseudomonas aeruginosa, a bacterium exhibiting

a complex lifestyle, on one hand, as a clinically problematic,

antibiotic resistant facultative pathogen causing a variety of life-

threatening infections of e.g. the cystic fibrosis lung, burn wounds,

eye and ear, urinary tract, and on the other, as an environmental

microbe ubiquitously present in soil and water. P. aeruginosa was

one of the first human pathogens whose genome was sequenced

[13], and transposon mutant libraries of two strains, PA14 and

PAO1, have been generated and made available to the research

community [14,15].

In this study, we have systematically analyzed the non-

redundant PA14 mutant library [15] for a large set of different

phenotypes in order to develop a genome-wide, growth-related

phenotypic landscape, the phenome.

Results/Discussion

In order to define the phenome of PA14, we assessed a

collection of 136 bacterial growth parameters of the comprehen-

sive non-redundant PA14 transposon mutant library [15]. This
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library harbors 5776 transposon mutants with transposon

insertions in 4433 unique genes with one PA14 locus identifier.

In order to maximize the genome coverage, we concentrated

phenotypic profiling on these 4433 single gene transposon

mutants. Substrate-specific growth curves were measured in the

semi-automated VITEK2 system (bioMérieux), which distinguish-

es bacterial species on the basis of 48 distinct biochemical

reactions; the same system was also used to examine antibiotic

resistance profiles based on growth curves on medium containing

different concentrations of 19 antibiotics in clinical use (detailed

information on the specific tests is provided in Table S1). Further

growth-related phenotypic tests included the morphology of

colonies on sheep’s blood agar plates after 48h of growth, and

the potential of all PA14 mutants to form biofilms. Phenotypic

data collection, processing and analysis are described in the

Material and Method section. Due to poor growth of some

transposon mutants and due to incorrect measurements by the

VITEK semi-automated system, we failed to acquire exploitable

VITEK data of 403 mutants. Still, for 4030 (91%) of the mutants

of the PA14 NR transposon mutant library the phenotypic profile

was complete and thus used as the basis for the determination of

the P. aeruginosa PA14 phenome.

Determination of the robustness and discriminating
potential of the various phenotypic tests

In order to get an impression on the robustness and the

discriminating potential of the various phenotypic tests, nine

replicates of the PA14 strain (harboring a spontaneous mutation

within the fglF gene) were tested and the results were compared

with that of all mutants. Value distributions after data importation

by Java procedures and subsequent analysis by R routines for each

phenotypic test are depicted in Figure 1. Because the PA14 strain

used for replica determination was not a PA14 wild-type, the

values as depicted in Figure 1A deviate from the horizontal centre

line. A low variation within the replicates indicate the robustness of

the testing system, whereas a high variation within all mutants

(Figure 1B) reflect the discriminative potential for each test. With

the aim to exclude those phenotype tests that firstly, did not reveal

robust and reproducible data and secondly, had only a low

discriminative power (e.g. testing of the aminoglycoside resistance

profile, since all transposon mutants harbored a gentamycin

cassette), we compared the replicate variances with the variances

of all transposon mutant data. Those phenotypic tests whose

replicate variances exceeded those of all mutants as well as those

without evident difference between the variances were excluded

from further analysis (F-test, one-sided, p.0.5). Of 136 applied

tests 119 validated phenotypic tests remained for further analysis,

of 48 biochemical tests 38 were included in the study and of 61

antibiotic tests 59, respectively. (The phenotypic tests that were

excluded are indicated in Table S1.)

Distinct phenotpyic patterns are revealed by hierarchical
clustering

Instead of viewing phenotypes as independent entities, we

applied a comprehensive statistical and visualization method to

identify clusters of complex trait phenotypes exhibiting distin-

guishable patterns and to ultimately discern new relationships

between genes, proteins and cellular pathways. In doing so,

subgroups of overlapping complex traits phenotypes might evolve

as more information becomes available, and dynamically merge or

split as further information is acquired. Based on the assumption

that each of the applied 119 single phenotypic tests is equally

capable of detecting disturbances within the cellular network, we

calculated the phenotypic distance between the genotypes as

Euclidean distance in a 119 dimensional space. Although the

condensation of 119 dimensions of the different phenotypic tests

simplifies the data available and overestimates many tests, clear

clustering patterns were extracted from the complex phenotypic

traits, as visualized in the heat map (Figure 2A). These clusters

were absent, if the phenotypic test results were permutated among

the 4030 mutants (Figure 3A). The relatedness of the mutant

phenotypes also became apparent on a plane via multidimensional

scaling (Figure 2B) and visualization as a contour map (Figure 2C)

and a three-dimensional landscape by kernel density estimation

(Figure 2D). Notably, phenome mappings revealed that the

majority of mutant phenotypes cluster around the wild-type

phenotype, which is consistent with the notion that most mutants

behave similar to the wild-type and differ in only few specific tests.

However, it also becomes obvious that most mutants are not

phenotypically isolated but rather form a part of a continuum of

related phenotypic traits.

Global network of phenotypic relatedness
Two common challenges arise with analyzing high-dimensional

data [16–18]. One is called the curse of dimensionality that for any

point the Euclidean distance between its closest neighbor and the

farthest point diminishes with increasing dimensionality. The

other challenge is based upon the phenomenon that the

complexity of many existing data mining algorithms grows

exponentially with increasing dimensionality. Consequently, the

relatedness of phenotypes determined here by a simple hierarchi-

cal cluster analysis of Euclidean distances may be strongly

underestimated.

Concentrating on the discriminative phenotypic profiles of the

mutants, we determined the Jaccard index (JI) [19] of similarly

discriminative phenotypic tests of individual gene pairs (a Jaccard

index of 0/1 indicates no/complete agreement, respectively). A

mutant was assigned to exhibit a discriminative phenotype for a

specific test, if the value for the individual mutant was found

outside two standard deviation of the median value of all mutants.

Under these conditions the wild-type showed no discriminative

phenotypic tests and over 70% of the mutants behaved differently

in less than 10% of the tests and 93% of the 4030 mutants showed

a change in at least one phenotypic trait. This is comparable to

what was shown before in the analysis of a chemical portrait of

yeast. By applying 1144 chemical genomic assays Hillenmeyer

et al. [11] observed a measurable growth phenotype for 97% of

yeast gene deletions.

Author Summary

Phenotypic description has long been used to discriminate
between bacteria and, with the publication of Bergey’s
Manual of Determinative Bacteriology in 1923, microbiolo-
gists began to systematically describe and define bacterial
species based on lists of phenotypes. Because growth
phenotypes are directly and indirectly involved in funda-
mental aspects of bacterial physiology and evolution, and
remain a cornerstone of microbial taxonomy, we decided
to systematically analyze the Harvard Pseudomonas
aeruginosa non redundant PA14 transposon mutant library
for a large set of different phenotypes (119) and to
describe a genome wide growth-related phenotypic
landscape. Our aim was to explore whether we can define
subgroups of P. aeruginosa mutants exhibiting distinct
patterns of complex trait phenotypes and to forge a link
between genotype and phenotype.

Phenome to Functional Relatedness of Genotypes
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Based on the calculated JIs we constructed a global coherent

network which visualizes relatedness of the mutant phenotypes on

a global scale. In such a network, only those mutant phenotypes

are depicted which exhibit a phenotype that differs from the wild-

type and that is shared with other mutant phenotypes (Figure 4).

Functional gene relations are reflected in the global
network

In order to determine whether the 119 phenotypic tests we have

applied are sufficient for defining complex trait phenotypes that

are shared by genetically homogeneous subsets of mutants, we

next focused our analysis on specific phenotypic fingerprints that

characterize gene pairs known to be functionally related, and

compared their relatedness with those of the phenotypic patterns

of randomly selected pairs. Functionally related gene pairs were

assigned on the basis of either their organization within an operon

[20], gene ontology (GO) or a common gene name designation

[21], thus capturing the genomic context as well as broader

functional relatedness.

Most interestingly, the level of similarity (i.e. JI) between genes

that were described to be functionally related proved to be

significantly higher than that of non-related genes. The JIs of all

gene pairs except the replicates were included in this analysis

((4029-1)*4029/2 = 8114406). Among those JIs, 2856 gene pairs

exhibited a common gene name, 1493 were located within one

operon, and 10011 grouped into the same gene ontology term.

The JIs of all those three groups proved to be significantly different

to the JIs of the remaining non-related gene pairs (common gene

name: p,2.2E-16, operon: p = 2.0E-4, GO: p,2.2E-16, Mann-

Whitney-U test, one-sided) [22].

Of note, there are confounding constrains on our analysis

namely assignment of about 3% of the transposon mutants are

expected to be false, there are potential of polar effects in the

transposon mutant library, and yet unknown gene connections

Figure 1. Variation in phenotypic tests. (A) Boxplot representation for preprocessed phenotypic data of nine replicates (PA14 wild-type
harboring a spontaneous mutation within flgF) for all 136 phenotypic tests. (B) Boxplot representation of preprocessed phenotypic data of all
mutants for all 136 phenotypic tests. The low variation of the replicates indicates the robustness of the testing system, whereas the high variation in
all mutants reflects the discriminative potential for each test.
doi:10.1371/journal.ppat.1001074.g001

Phenome to Functional Relatedness of Genotypes
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Figure 2. The P. aeruginosa phenome landscape organized by phenotypic similarity determined by 119 phenotypes of 4030
mutants. We systematically estimated the phenotypic distances between the genotypes, which were the basis for hierarchical clustering and multi-
dimensional scaling. (A) Heat map, rows correspond to mutants and columns to different phenotypic tests. (B) Projection onto a two-dimensional grid
using multi-dimensional scaling (MDS). Point colors were overlaid by seven cluster groups. (C) MDS data were converted to a contour image using
two-dimensional kernel density estimation. Altitudes indicate the density of mutants in the MDS grid. (D) The contour image was depicted as a three-
dimensional landscape, in which phenotypically similar mutants are located close to each other, the height indicating the density of mutants in that
region of the phenotypic space.
doi:10.1371/journal.ppat.1001074.g002

Phenome to Functional Relatedness of Genotypes
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Figure 3. The phenome landscape for permutated values. Phenotypic distances between randomly shuffled values served as the basis for
hierarchical clustering and multi-dimensional scaling. (A) Heat map, rows correspond to mutants and columns to different phenotype test. (B)
Projection onto a two-dimensional grid using multi-dimensional scaling (MDS). Point colors were overlaid by seven cluster groups. (C) MDS was
converted to a contour image using two-dimensional kernel density estimation. Altitudes indicate the density of mutants in the MDS grid. (D) The
contour image was depicted as a three-dimensional landscape. In comparison to Figure 2 the different cluster group symbols spread homogeneously
and in smaller space.
doi:10.1371/journal.ppat.1001074.g003

Phenome to Functional Relatedness of Genotypes
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contribute to the randomly chosen non-related gene pairs, which

would even underestimate the true difference between functional

related and non-related genotypes.

Taken together, our finding indicates that the described

phenotypic landscape is indeed able to detect functional

relationships on a global scale. The phenotype network might

reveal new relationships between genes, proteins and cellular

pathways that are not displayed by sequence based functional

categorization and might even be used for the functional

classification of hypothetical genes, which still make up more

than 40% of the P. aeruginosa genome [23]. Furthermore, vice versa

the knowledge of a distinct phenotypic pattern of a P. aeruginosa

strain might be used to predict its genomic make-up and a specific

phenotypic pattern which is exhibited following perturbation

might be used to uncover cellular pathways affected by the

respective stress.

Conclusion
In order to fully exploit the power of correlating genotypes to

phenotypes, we did not only analyze discrete phenotypic entities

on a genome-wide scale but instead searched for common

overlapping phenotypic traits that link complex mutant pheno-

types on the basis of key shared features. Our data provide a proof

of principle that phenotypic overlap can result from genes that

specify similar functions and attest that an organism’s phenome

might predict relatedness of genotypes on a functional scale. The

phenome landscape might not only be a novel tool for gene

assignment, but the knowledge of a distinct phenotypic pattern of a

Figure 4. The global phenotypic network. The network is based on calculated Jaccard indices (JIs), a measure for gene relatedness. In the largest
coherent graph 1196 genes are represented by the nodes and the connections between the genes are drawn for gene pairs with JI.0.51. A
zoomable graph with gene names is provided in the supporting information (Figure S1).
doi:10.1371/journal.ppat.1001074.g004

Phenome to Functional Relatedness of Genotypes
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P. aeruginosa isolate might furthermore be used to predict its

genomic make-up and the expression of a distinct phenotypic

pattern might also uncover the affection of cellular pathways as a

result of a specific perturbation, a tool which would significantly

advance e.g. the search for the mode of action of novel drugs.

Materials and Methods

Phenotype data generation and processing
The automated VITEK2 system records antibiotic susceptibility

based on bacterial growth curves and metabolic substrate

conversions/consumptions over time. The ID-GN card was used

for the evaluation of biochemical reactions and the AST-N063

card for antimicrobial susceptibility testing [24] (Table S2). Each

of the 4433 mutants from the Harvard PA14 non-redundant

mutant library [15] was measured once except for the PA14 strain

(harboring a spontaneous mutation within the flgF gene) which was

measured nine times. The curves received for the strains were

processed in several steps: (a) Since the time intervals for the

recording of the transmission values by the VITEK system varied

substantially (5-28min.), we adjusted them to a constant time

interval of 15 min. The values for the specific time points (5, 20,

35 min., etc.) were calculated by linear interpolation. (b) The

VITEK measurements were discarded when i) the initial

transmission values differed considerably (as determined by visual

inspection) from that of the majority of all tested mutants and ii)

when the initial transmission values did not show the typical

increase due to foil warming and a gradual dissolution processes

within the first 100 minutes of the measurement. (c) If the

measurements of one individual card for one transposon mutant

failed for at least 10 tests, the results of the card were declared non-

reliable and this mutant was excluded from further analysis

(overall 403 mutants were discarded). (d) For the antibiotic tests,

curves with antibiotic treatment were subtracted from the control

curves without treatment. (e) Median polish for each specific time

point was applied on the data assuming an additive-fit model [25].

(f) The VITEK curves were condensed to one median value of the

polished transmission values over time for one mutant and one

single test. (g) Continuous data were subjected to median-

interquartile range normalization.

P. aeruginosa biofilms of all mutants were grown on the bottom of

96-well plates for 48h, stained with the LIVE/DEAD BacLight

Bacterial Viability Kit (Molecular Probes/Invitrogen) and moni-

tored by the use of an automated confocal laser scanning

microscope (Opera system) as described previously [26]. Confocal

microscopy biofilm grey scale 8/16 bit bmp-images were prepared

via Auto PHLIP-ML [27] to black/white 8 bit images and further

processed via the open source MatLab toolbox PHLIP [28]

resulting in 16 different PHLIP parameters for each measured

mutant. These included 8 parameters each for red and green

fluorescence. Continuous data were subjected to median-inter-

quartile range normalization for each parameter.

11 distinct colony morphology characteristics were identified as

different/similar (1/0) to the wild-type colony morphology by

visual inspection and recorded in the phenotypic profiles matrix.

Data analyses and visualization were conducted in the R

environment (www.r-project.org).

Landscape visualization
In order to visualize the phenome landscape of P. aeruginosa the

multidimensional phenotypic profile of each mutant needed to be

reduced to a two-dimensional distance matrix. From the

phenotypic fingerprint matrix of n by k, the n by n distance

matrix (lower triangle) was computed using the Euclidean

distance, n being the number of genes and k the number of

phenotype tests. Secondly, in order to visualize the gene

connections as topographical landscapes, multidimensional scal-

ing was used for placing genes on the plane. The reliefs of the

landscapes were estimated by two dimensional kernel density. In

the third step, genes were allocated to seven specific cluster

groups identified by the hierarchical clustering (Ward’s method)

and labeled in distinct colors and symbols (Figure 2, Figure 3).

The R package gplots provided useful functions for clustering and

coloring.

Assigning functionally related genes
For assigning functionally related genes, we checked for their

organization within an operon, or a common gene name

designation. Hereby, the genomic context as well as broader

functional relatedness were captured. Short common gene names

were assigned as provided for the non-redundant Pseudomonas

aeruginosa PA14 Transposon Insertion Mutant Library (http://

ausubellab.mgh.harvard.edu/cgi-bin/pa14/downloads.cgi), Pseu-

domonas Genome Database v2 [21]. In case of multiple gene name

designation the gene name provided by the Pseudomonas Genome

Database was given priority. Operons were retrieved from the

DOOR database [20] and GO terms from the Pseudomonas

Genome Database [21]. Operons or common gene names with at

least 2 members were used for further analysis (Table S2).

Validation of gene correlation via the Jaccard Index
We determined the distribution of the data for all mutants for

each phenotypic test. An individual mutant was defined as

exhibiting a discriminative phenotype for a specific test, if its

value was found outside two standard deviation of the median

value of all mutants (two-sided). For normally distributed data

approximately 95% values are located within two standard

deviations of the mean. The standard deviation was estimated

via the interquartile range of the original values. The Jaccard

indices (JI, [19]) for the sets of discriminating tests of two given

genes were calculated as a measure for phenotypic similarity

between the genes:

J A, Bð Þ~DA\BD=DA|BD

with A as the set of discriminating phenotypic test for gene A and

B as the set for gene b.

For determining significant differences of JI of related gene pairs

the Mann-Whitney-U test was applied [22].

Global network visualization
We constructed a global coherent network which visualizes

relatedness of the mutant phenotypes on a global scale based on

Jaccard indices. We visualized our findings as a graph with genes

being the nodes and their pair-wise relations as edges. Connections

were selected for JI.0.51, for which the ratio TPR/FPR was

maximal, and the largest coherent graph was depicted only.

Graphs were spread according to the Kamada Kawai algorithm

[29]. The R packages igraph and Rgraphviz proved to be useful in

this context.

Supporting Information

Figure S1 Global network. A detailed zoomable graphic of the

networks shown in Figure 4. Gene names are provided.

Found at: doi:10.1371/journal.ppat.1001074.s001 (0.80 MB

PDF)
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Table S1 List of applied phenotypic tests. Phenotypic traits that

were selected for the definition of the PA14 phenome are

indicated.

Found at: doi:10.1371/journal.ppat.1001074.s002 (0.16 MB

DOC)

Table S2 List of selected common gene names and operons. For

the common gene name designation 317 gene groups were found

with at least two genes. The first three letters of the gene short

names are listed. 485 operon groups were provided by the DOOR

DB with at least two genes for which one was specified here.

Found at: doi:10.1371/journal.ppat.1001074.s003 (0.03 MB

DOC)
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