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Abstract

Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other
bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs) of Burkholderia
thailandensis (B. thai) in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the
distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5
plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs
remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in
vivo growth defect, as DT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in
interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less
effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more
susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans—
leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm
assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking
T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the
competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell
interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate
association with those of another, such as in polymicrobial communities present both in the environment and in many
infections.
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Introduction

Bacteria have evolved many mechanisms of defense against

competitors and predators in their environment. Some of these,

such as type III secretion systems (T3SSs) and bacteriocins,

provide specialized protection against eukaryotic or bacterial cells,

respectively [1,2]. Gene clusters encoding apparent type VI

secretion systems (T6SSs) are widely dispersed in the proteobac-

teria; however, the general roles of these systems in eukaryotic

versus bacterial cell interactions are not known [3,4].

To date, most studies of T6S have focused on its role in

pathogenesis and host interactions [5,6,7]. In certain instances,

compelling evidence for the specialization of T6S in guiding

eukaryotic cell interactions has been generated. Most notably, the

systems of Vibrio cholerae and Aeromonas hydrophila were shown to

translocate proteins with host effector domains into eukaryotic

cells [8,9]. Evidence is also emerging that T6SSs could contribute

to interactions between bacteria. The Pseudomonas aeruginosa HSI-I-

encoded T6SS (H1-T6SS) was shown to target a toxin to other

P. aeruginosa cells, but not to eukaryotic cells [10]. Unfortunately,

analyses of the ecological niche occupied by bacteria that possess

T6S have not been widely informative for classifying their function

[3,4]. These efforts are complicated by the fact that pathogenic

proteobacteria have environmental reservoirs, where they un-

doubtedly encounter other bacteria. The observation that many

bacteria possess multiple evolutionarily distinct T6S gene clusters–

up to six in one organism–raises the intriguing possibility that each

system may function in an organismal or context-specific manner

[3].

The T6SS is encoded by approximately 15 core genes and a

variable number of non-conserved accessory elements [4]. Data

from functional assays and protein localization studies suggest that

these proteins assemble into a multi-component secretory

apparatus [11,12,13]. The AAA+ family ATPase, ClpV, is one

of only a few core proteins of the T6S apparatus that have been

characterized. Its ATPase activity is essential for T6S function

[14], and it associates with several other conserved T6S proteins

[15,16]. ClpV-interacting proteins A and B (VipA and VipB) form
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tubules that are remodeled by the ATPase, which could indicate a

role for the protein in secretion system biogenesis. Two proteins

exported by the T6SS are haemolysin co-regulated protein (Hcp)

and valine-glycine repeat protein G (VgrG). Secretion of these

proteins is co-dependent, and they may be extracellular compo-

nents of the apparatus [10,13,17,18,19,20].

Burkholderia pseudomallei is an environmental saprophyte and the

causative agent of melioidosis [21]. Infection with B. pseudomallei

typically occurs percutaneously via direct contact with contami-

nated water or soil, however it can also occur through inhalation.

The ecological niche and geographical distribution of B.

pseudomallei overlap with a relatively non-pathogenic, but closely

related species, Burkholderia thailandensis (B. thai) [22]. The genomes

of these bacteria are highly similar in both overall sequence and

gene synteny [23,24]. One study estimates that the two

microorganisms separated from a common ancestor approximate-

ly 47 million years ago [24]. It is postulated that the B. pseudomallei

branch then diverged from Burkholderia mallei, which underwent

rapid gene loss and decay during its evolution into an obligate

zoonotic pathogen [25]. As closely related organisms that

represent three extremes of bacterial adaptation, this Burkholderia

group offers unique insight into the outcomes of different selective

pressures on the expression and maintenance of certain traits.

B. pseudomallei possesses a large and complex repertoire of

specialized protein secretion systems, including three T3SSs and

six evolutionarily distinct T6SSs [3,26,27]. The genomes of B.

thailandensis and B. mallei contain unique sets of five of the six B.

pseudomallei T6S gene clusters; thus, of the six evolutionarily distinct

‘‘Burkholderia T6SSs,’’ four are conserved among the three

species. Remarkably, T6SSs account for over 2% of the coding

capacity of the large genomes of these organisms. For the current

study, we have adopted the Burkholderia T6SS nomenclature

proposed by Shalom and colleagues [28].

To date, only Burkholderia T6SS-5, one of the four conserved

systems, has been investigated experimentally. The system was

investigated in B. mallei based on its co-regulation with virulence

determinants such as actin-based motility and capsule [27]. B.

mallei strains lacking a functional T6SS-5 are strongly attenuated

in a hamster model of glanders. Preliminary studies suggest that

T6SS-5 is also required for B. pseudomallei pathogenesis [28,29]. In

one study, a strain bearing a transposon insertion within T6SS-5

was identified in a screen for B. pseudomallei mutants with impaired

intercellular spreading in cultured epithelial cells [29]. The authors

also showed that this insertion caused significant attenuation in a

murine infection model.

Herein, we set out to systematically define the function of the

Burkholderia T6SSs. Our study began with the observation that

well-characterized examples of eukaryotic and bacterial cell-

targeting T6SSs segregate into distant subtrees of the T6S

phylogeny. We found that Burkholderia T6SS-5 clustered closely

with eukaryotic cell-targeting systems, and was the only system in

B. thai that was required for virulence in a murine model of

pneumonic melioidosis. The remaining systems clustered proxi-

mally to a bacterial cell-targeting T6SS in the phylogeny. One of

these, T6SS-1, displayed a profound effect on the fitness of B. thai

in competition with several bacterial species. The function of

T6SS-1 required cell contact and its absence caused sensitivity of

the strain to stasis induced by competing bacteria. In flow cell

biofilm assays initiated with 1:1 mixtures of B. thai and Pseudomonas

putida, wild-type B. thai predominated, whereas the DT6SS-1 strain

was rapidly displaced by P. putida. Our findings point toward an

important role for T6S in interspecies bacterial interactions.

Results

Phylogenetic analysis of T6SSs
We conducted phylogenetic analyses of all available T6SSs to

examine the evolutionary relationship between eukaryotic and

bacterial cell-targeting systems. The phylogenetic tree we

constructed was based on VipA, as this protein is a highly

conserved element of T6SSs that has been demonstrated to

physically interact with two other core T6S proteins, including the

ClpV ATPase [15]. In the resulting phylogeny, the systems of V.

cholerae and A. hydrophila, two well-characterized eukaryotic cell-

targeting systems, clustered closely within one of the subtrees,

whereas the bacteria-specific P. aeruginosa H1-T6SS was a member

of a distant subtree (Figure 1 and see Figure S1) [8,9,10]. In an

independent analysis, Bingle and colleagues observed a similar

T6S phylogeny, and termed these subtrees ‘‘D’’ and ‘‘A,’’

respectively [3].

Next we examined the locations of the six Burkholderia T6SSs.

Interestingly, T6SS-5, the only Burkholderia system previously

implicated in virulence, clustered within the substree containing

the V. cholerae and A. hydrophila systems (Figure 1). Four of the

remaining Burkholderia systems clustered within the subtree that

included the H1-T6SS, and the final system was found in a

neighboring subtree. These data led us to hypothesize that T6SSs

of differing organismal specificities are evolutionarily distinct.

Apparent contradictions between organismal specificity based on

our phylogenetic distribution and studies demonstrating T6S-

dependent phenotypes were identified, however these instances are

difficult to interpret because specificity was not measured and

cannot be ascertained from available data.

T6SS-5 is required for virulence; systems 1, 2, 4 and 6 are
dispensible

We chose B. thai as a tractable model organism in which to

experimentally investigate the role of the Burkholderia T6SSs.

Due to our limited knowledge regarding the function and

essentiality of each gene within a given T6SS cluster, we

reasoned it prudent to inactivate multiple conserved genes for

initial phenotypic studies. Strains lacking the function of each of

Author Summary

Many bacteria encounter both eukaryotic cells and other
bacterial species as a part of their lifestyles. In order to
compete and survive, these bacteria have evolved
specialized pathways that target these distinct cell types.
Type VI secretion systems (T6SSs) are bacterial protein
export machines postulated to puncture targeted cells
using an apparatus that shares structural similarity to
bacteriophage. We investigated the role of the five T6SSs
of Burkholderia thailandensis in the defense of the
organism against other bacteria and higher organisms. B.
thailandensis is a relatively avirulent soil saprophyte that is
closely related to the human pathogen B. pseudomallei.
Our work uncovered roles for two B. thailandensis T6SSs
with specialized functions either in the survival of the
organism in a murine host, or against another bacterial
cell. We also found that B. thailandensis lacking the
bacterial-targeting T6SS could not persist in a mixed
biofilm with a competing bacterium. Based on the
evolutionary relationship of T6SSs, and our findings that
B. thailandensis engages other bacterial species in a T6S-
dependent manner, we speculate that this pathway is of
general significance to interbacterial interactions in
polymicrobial human diseases and the environment.

B. thai T6SSs Critical for Host and Interspecies Bacterial Interactions
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the five B. thai T6SSs (Burkholderia T6SS-3 is absent in B. thai)

were prepared by removing three to five genes, including at least

two that are highly conserved (Figure 1A). When possible, polar

effects were minimized by deleting from a central location in each

cluster.

To probe the role of the Burkholderia T6SSs in virulence, we

utilized a recently developed acute pneumonia model of

melioidosis [30]. The survival of mice infected with approximately

105 aerosolized wild-type or mutant bacteria was monitored over

the course of ten days. Consistent with previous studies implicating

Figure 1. The Burkholderia T6SSs cluster with eukaryotic and prokaryotic-targeting systems in a T6S phylogeny. (A) Overview of the
B. thai T6SS gene clusters. Burkholderia T6SS-3 is absent from B.thai. Genes were identified according to the nomenclature proposed by Shalom and
colleagues [28]: tss, type six secretion conserved genes; tag, type six secretion-associated genes variably present in T6SSs. Genes are colored
according to function and conservation (dark grey, tss genes; light grey, tag genes; color, experimentally characterized tss or tag genes; white, genes
so far not linked to T6S). Brackets demarcate genes that were deleted in order to generate B. thai strains DT6SS-1, -2, -4 -5 and -6 and their assorted
combinations. Locus tag numbers are based on B. thai E264 genome annotations. (B) Neighbor-joining tree based on 334 T6S-associated VipA
orthologs. The locations of VipA proteins from T6SSs discussed in the text are indicated. Each line represents one or more orthologous T6SSs from a
single species. Lines are colored based on bacterial taxonomy of the corresponding organism. Indicated bootstrap values correspond to 100
replicates. This phylogeny is available in expanded format in Figure S1. A key for the coloring scheme is also present in Figure S1.
doi:10.1371/journal.ppat.1001068.g001

B. thai T6SSs Critical for Host and Interspecies Bacterial Interactions
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T6SS-5 in B. mallei and B. pseudomallei pathogenesis, mice infected

with DT6SS-5 survived the course and displayed no outward

symptoms of the infection (Figure 2A) [27,29]. On the other hand,

those infected with the wild-type strain or strains bearing deletions

in the other T6SSs succumbed by three days post infection (p.i.).

The B. thai T6SS-5 locus is adjacent to bsa genes, which encode

an animal pathogen-like T3SS. Inactivation of the bsa T3SS

secretion system also leads to dramatic attenuation of B. thai in the

model we utilized [26]. The regulation of these secretion systems

appears to be intertwined; a recent study in B. pseudomallei showed

that a protein encoded within the bsa cluster strongly activates

T6SS-5 of that organism [31]. To rule out the possibility that

attenuation of DT6SS-5 was attributable to polar effects or changes

in regulation of the bsa T3SS, we generated a strain bearing an in-

frame deletion of a single gene in the cluster, tssK-5 (Figure 1A). A

tssK-5 ortholog is readily identified in nearly all T6S gene clusters

and it shares no homology with known regulators. Like the T6SS-5

deletion, DtssK-5 completely attenuated the organism (Figure 2B).

Genetic complementation of this phenotype further confirmed that

T6SS-5 is an essential virulence factor of the organism.

To investigate whether the retention of virulence in the DT6SS-

1,2,4 and 6 strains could be attributed to either compensatory

activity or redundancy, we next constructed a strain bearing

inactivating mutations in all four clusters and measured its

virulence in mice. Mice infected with this strain succumbed to

the infection with similar kinetics to those infected with the wild-

type, indicating that T6SS-5 is the only system of B. thai that is

required for virulence in this model (Figure 2C). In summary,

these data indicate that T6SS-5 is a major virulence factor for B.

thai in a murine acute melioidosis model, whereas the remaining

putative T6SSs of the organism are dispensible for virulence.

Burkholderia T6SS-5 plays a specific role in host
interactions

To more closely examine the requirement for T6SS-5 during

infection, we monitored B. thai wild-type and DtssK-5 c.f.u. in the

lung, liver, and spleen at 4, 24, and 48 hours following inoculation

with approximately 105 bacteria by aerosol. At 4 hours p.i., no

differences were observed in c.f.u. recovered from the lung

(Figure 3A). After this initial phase, lung c.f.u. of DtssK-5 gradually

declined, whereas wild-type populations expanded approximately

100-fold. Both organisms spread systemically, however significant-

ly fewer DtssK-5 cells were recovered from the liver and spleen at

24 and 48 hours p.i. (Figure 3B).

Thus far, our findings did not distinguish between a specific role

for T6SS-5 in host interactions, such as escaping or manipulating

the innate immune system, versus the alternative explanation that

T6SS-5 is generally required for growth in host tissue. To

discriminate between these possibilities, we compared the virulence

of DtssK-5 in wild-type mice to a strain with compromised innate

immunity, MyD882/2 [32,33]. Mice lacking MyD88 were unable

to control the DtssK-5 infection and succumbed within 3 days

(Figure 3C). The differences in virulence of the Dtssk-5 strain in wild-

type and MyD882/2 infections suggest that T6SS-5 is required for

effective defense of the bacterium against one or more innate

immune responses of the host. Altogether, these data strongly

support the conclusion that T6SS-5 has evolved to play a specific

role in the fitness of B. thai in a eukaryotic host environment.

T6S impacts the fitness of B. thai in co-culture with
diverse bacterial species

Earlier work by our laboratory has shown that T6S can

influence intraspecies bacterial interactions. We showed that the

Figure 2. Of the five B. thai T6SSs, only T6SS-5 is required for
virulence in a murine acute melioidosis model. C57BL/6 wild-type
mice were infected by the aerosol-route with 105 c.f.u./lung of B. thai
strains and monitored for survival for 10–14 days post infection (p.i.).
Survival of mice after exposure to B. thai (A) wild-type and strains
harboring gene deletions in individual T6SS gene clusters (n = 5 per
group), (B) wild-type and a strain bearing an in-frame tssK-5 deletion
(DtssK-5) or its complemented derivative (DtssK-5-comp; n = 7, 7 and 8,
respectively), (C) or a strain with inactivating mutations in T6SS-5 or in
four T6SSs (DT6SS-1,2,4,6; n = 6 and 8, respectively).
doi:10.1371/journal.ppat.1001068.g002

B. thai T6SSs Critical for Host and Interspecies Bacterial Interactions
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H1-T6SS of P. aeruginosa targets a toxin to other P. aeruginosa cells

[10], and that in growth competition assays, toxin-secreting strains

are provided a fitness advantage relative to strains lacking a

specific toxin immunity protein. Based on this information and the

locations of the B. thai T6SSs within our phylogeny, we postulated

that one or more of these systems could also play a role in

interbacterial interactions. Preliminary studies indicated that T6S

did not influence interactions between B. thai strains, thus we

decided to test the hypothesis that the B. thai T6SSs play a role in

interspecies bacterial interactions.

Without information to guide predictions of specificity, we

developed a simple and relatively high-throughput semi-quantita-

tive assay to allow screening of a wide range of organisms for

sensitivity to the B. thai T6SSs. The design of the assay was based

on two key assumptions for T6S-dependent effects – that they are

cell contact-dependent and that they impact fitness (as measured

by proliferation). To facilitate measurement of T6S-dependent

changes in B. thai proliferation in the presence of competing

organisms, we engineered constitutive green fluorescent protein

expression cassettes into wild-type B. thai and a strain bearing

mutations in all five T6SSs (DT6S) [34]. Control experiments

showed that the lack of T6S function did not impact growth or

swimming motility (Figure 4A and 4B). To test the assay, we

conducted competition experiments between the GFP-labeled

wild-type and DT6S strains against the unlabeled wild-type strain.

The GFP-expressing cells were clearly visualized in the mixtures,

and, importantly, wild-type and DT6S competed equally with the

parental strain (Figure 4C; BT).

We next screened the B. thai strains against 31 species of

bacteria. Most of these were Gram-negative proteobacteria (5a;

3b; 18c), however two Gram-positive phyla were also represented

(4 Firmicutes; 1 Actinobacteria). Although we endeavored to

screen a large diversity of bacteria, many taxa could not be

included due to specific nutrient requirements or an unacceptably

slow growth rate under the conditions of the assay (30uC, Luria-

Bertani (LB) medium). The outcomes of most competition

experiments were independent of the T6SSs of B. thai. T6S-

independent outcomes varied; in most instances, B. thai flourished

in the presence of the competing organism (Figure 4C). However,

a small subset of species markedly inhibited B. thai growth

(Figure 4C; PAt, PAe, SM, VP). Interestingly, B. thai proliferation

was reproducibly affected in a T6S-dependent manner in

competition experiments against 7 of the 31 species tested. All of

these were Gram-negative organisms, and in each case, B. thai

DT6S was less fit than the wild-type. T6S-dependent competition

outcomes fell into two readily discernable groups; the first included

three c- and one b-proteobacteria (Figure 4C; BA, EC, KP, ST).

In competition with these organisms, B. thai DT6S displayed only a

modest decrease in proliferation relative to the wild-type.

Differences in the size and morphology of assay ‘‘spots’’ containing

wild-type or DT6S were noted in several instances for this group of

organisms. Quantification of c.f.u. verified that these differences

were reflective of a minor, but highly reproducible fitness defect of

DT6S (data not shown).

The second group consisted of three c-proteobacteria: P. putida,

P. fluorescens, and S. proteamaculans. The proliferation of B. thai

grown in competition with these organisms appeared to be highly

dependent on T6S (Figure 4C; PP, PF, SP). For further analyses,

we focused on this latter group; henceforth referred to as the

‘‘T6S-dependent competitors’’ (TDCs).

T6SS-1 is involved in cell contact-dependent
interbacterial interactions

The next question we addressed was whether one or more of the

individual T6SSs were responsible for the TDC-specific prolifer-

ation phenotype of B. thai DT6S. To determine this, we inserted a

GFP over-expression cassette into our panel of individual B. thai

Figure 3. B. thai DtssK-5 shows a replication defect in the lung of
wild-type mice but is highly virulent in MyD882/2 mice. Mice
were exposed to 105 c.f.u./lung aerosolized B. thai wild-type or DtssK-5
bacteria and c.f.u. were monitored in the (A) lung after 4, 24, and 48 h
(n = 6 per time point), and in the (B) liver and spleen after 24 and 48 h
(n = 6 per time point). (C) C57BL/6 wild-type (n = 6) and MyD882/2 mice
(n = 7) were infected with the DtssK-5 strain and survival was monitored
for 14 days. Error bars in (A) and (B) are 6 SD.
doi:10.1371/journal.ppat.1001068.g003

B. thai T6SSs Critical for Host and Interspecies Bacterial Interactions
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Figure 4. T6S plays a role in the fitness of B. thai in growth competition assays with other bacteria. (A) In vitro growth of B. thai wild-type
and a strain bearing gene deletions in all five T6SSs (DT6S). The data presented are an average of three replicates. (error bars smaller than symbols).
(B) B. thai wild-type and DT6S swimming motility in semi-solid LB agar (scale bar = 1.0 cm). (C) Fluorescence images of growth competition assays
between GFP-labeled B. thai wild-type and DT6S strains against the indicated unlabeled competitor species. Competition assay outcomes could be

B. thai T6SSs Critical for Host and Interspecies Bacterial Interactions
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T6SS deletion strains, and performed plate competition assays

against the TDCs. In competition with each TDC, DT6SS-1

appeared as deficient in proliferation as DT6S, whereas the other

strains grew similarly to the wild-type (Figure 5A). The dramatic

differences in the competition outcomes between the strains were

also discernable by the naked eye. Competition experiments that

included B. thai lacking T6SS-1 had a morphology similar to a

mono-culture of the TDC, whereas co-cultures possessing an

intact T6SS-1 were more similar in appearance to B. thai mono-

culture.

It remained possible that the effects of T6SS-1 on the fitness of B.

thai in competition with other bacteria were either non-specific or

unrelated to its putative role as a T6SS. As mentioned earlier, one

common observation from detailed studies of T6SSs conducted to

date is that its effects require cell contact [8,9,10]. This has been

postulated to reflect a conserved mechanism of the apparatus akin to

bacteriophage cell puncturing [18]. To address whether the

apparent fitness defect of DT6SS-1 involves a mechanism consistent

with T6S, we probed whether its effects were dependent upon cell

contact. A filter (0.2 mm pore diameter) placed between B. thai and

TDC cells abrogated the T6SS-1-dependent growth defect

(Figure 5B). In control experiments, the three TDCs were directly

applied to an underlying layer of the B. thai strains. In each case, a

zone of clearing was observed in the DT6SS-1 layer, while no effect

on wild-type proliferation was noted. From these data we conclude

that cell contact is essential for the activity of T6SS-1.

We next sought to quantify the magnitude of T6SS-1 effects on B.

thai fitness in competition with TDCs. To ensure the specificity of

T6SS-1 inactivation in the strains used in these assays, we generated

a B. thai strain bearing an in-frame clpV-1 deletion, and a strain in

which this deletion was complemented by clpV-1 expression from a

neutral site on the chromosome. In plate competition assays, the

DclpV-1 strain displayed a fitness defect similar to DT6SS-1, and

clpV-1 expression complemented the phenotype (Figure 5C).

Measurements comparing B. thai and TDC c.f.u. in the competition

assay inoculum to material recovered from the assays following

several days of incubation confirmed that inactivation of T6SS-1

leads to a dramatic fitness defect of B. thai (Figure 5D). Depending

on the TDC, the competitive index (c.i.; final c.f.u. ratio/initial c.f.u

ratio) of wild-type B. thai was approximately 120-5,000-fold greater

than that of the DclpV-1 strain. All TDCs out-competed DclpV-1

(0.0021,c.i. ,0.015); on the contrary, wild-type B. thai was highly

competitive against P. putida (c.i.: 5.8) and P. fluorescens (c.i.: 61), and

its relative numbers decreased only modestly in assays with S.

proteamaculans (c.i.: 0.24). In summary, our findings indicate that

T6SS-1 plays an important role in the interactions of B. thai cells in

direct contact with other bacteria. T6SS-1-dependent effects are

species-specific, and in some cases, can be a major determinant of B.

thai proliferation.

T6SS-1 provides resistance to P. putida induced stasis of
B. thai

Three models could explain the T6SS-1-dependent effects we

observed on B. thai fitness in competition with the TDCs: (i) T6SS-

1 inhibits TDC proliferation, thereby freeing nutrients for B. thai;

(ii) T6SS-1 prevents TDC inhibition of B. thai growth; or (iii)

T6SS-1 performs both of these functions. To distinguish between

these possibilities, we compared B. thai and TDC growth rates

following inoculation into either mono-culture or competitive

cultures on 3% agar plates. Our prior experiments indicated that

T6SS-1-dependent effects on B. thai were similar in competition

assays with each TDC (Figure 4F and Figure 5), therefore we

utilized P. putida to represent the TDCs in this and subsequent

experiments. Surprisingly, we found that the proliferation of P.

putida and wild-type B. thai was largely unaffected in competition

assays (Figure 6A–C). However, DclpV-1 proliferation was severely

hampered in the presence of P. putida. Indeed, B. thai DclpV-1 c.f.u.

expanded by only 2.1-fold during the first 23 hours of the

experiment, whereas wild-type c.f.u. increased 220-fold. Consis-

tent with earlier results in P. aeruginosa [10], the effects of T6SS-1

on the fitness of B. thai in co-culture with P. putida were not

observed in liquid medium (Figure 6D and 6E).

The proliferation defect of B. thai DclpV-1 could be attributable

to P. putida-induced growth inhibition, cell killing, or a combina-

tion of these factors. We reasoned that if killing was involved in the

DclpV-1 phenotype, the difference in cell death between wild-type

and DclpV-1 would be most pronounced at approximately

7.5 hours following inoculation of the competition assays, when

wild-type B. thai are rapidly proliferating and DclpV-1 cell numbers

are not expanding. At this time point, we identified similar

numbers of dead cells in wild-type and DclpV-1 competitions,

suggesting that T6SS-1 inhibits stasis of B. thai induced by P. putida

(Figure 6F).

T6SS-1 is required for the persistence of B. thai in mixed
biofilms with P. putida

In our plate competition assays, low moisture availability

impairs bacterial motility, and artificially enforces close association

of B. thai with the TDCs. To determine whether T6SS-1 could

provide a fitness advantage for B. thai under conditions more

relevant to its natural habitat, i.e., where nutrients are exchanged

and dehydration does not drive interbacterial adhesion, we

conducted mixed species flow chamber biofilm assays.

Previous studies in E. coli and V. parahaemolyticus have implicated

T6S in the inherent capacity of these organisms to form biofilms

[35,36]. Furthermore, additional T6SSs are activated during

biofilm growth or co-regulated with characterized biofilm factors

such as exopolysaccharides [14,37,38,39,40]. Thus, prior to

performing mixed species assays, we first tested whether

inactivation of T6SS-1 influenced the formation of monotypic B.

thai biofilms. Wild-type and DT6SS-1 strains adhered equally to

the substratum and formed indistinguishable monotypic biofilms

that reached confluency after four days (Figure 7A), indicating

T6SS-1 does not play a role in the inherent ability of B. thai to

form biofilms.

Next we seeded biofilm chambers with 1:1 mixtures of B. thai

and P. putida. In mixed biofilms, the B. thai strains again adhered

with similar efficiency, however a dramatic difference between the

divided into T6S-independent (AR, Agrobacterium rhizogenes; ATu, A. tumefaciens; AV, A. vitis; PD, Paracoccus denitrificans; RS, Rhodobacter
sphaeroides; ATe, Acidovorax temperans; BT, B. thailandensis; BV, B. vietnamiensis; AC, Acinetobacter calcoaceticus; AH, Aeromonas hydrophila; PAt,
Pectobacterium atrosepticum; FN, Francisella novicida; PAe, Pseudomonas aeruginosa; SM, Serratia marcescens; VC, Vibrio cholerae; VP, Vibrio
parahaemolyticus; VV, V. vulnificus; XC, Xanthomonas campestris; XN, Xenorhabdus nematophilus; YP, Yersinia pestis LCR–; BC, Bacillus cereus; BS, B.
subtilis; ML, Micrococcus luteus; SA, Staphylococcus aureus; SP, Streptococcus pyogenes), those with modest T6S-effects (BA, B. ambifaria; EC, E. coli; KP,
Klebsiella pneumoniae; ST, Salmonella typhimurium) and those in which B. thai proliferation was strongly T6S-dependent (dashed boxes – PP, P. putida
E0044; PF, P. fluorescens ATCC27663; SP, S. proteamaculans 568). This latter group of organisms is referred to as the T6S-dependent competitors
(TDCs).
doi:10.1371/journal.ppat.1001068.g004
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Figure 5. T6SS-1 is involved in cell contact-dependent interbacterial interactions. (A) Growth competition assays between the indicated
GFP-labeled B. thai strains and the TDCs. Standard light photographs and fluorescent images of the competition assays are shown. (B) Fluorescence
images of GFP-labeled B. thai wild-type and DT6SS-1 grown in the presence of the TDCs with (no contact, NC) or without (contact, C) an intervening
filter. (C) Fluorescence images of growth competition assays between GFP-labeled B. thai DclpV-1 or complemented DclpV-1 with the TDCs. (D)
Quantification of c.f.u before (initial) and after (final) growth competition assays between the indicated organisms. The c.f.u. ratio of the B. thai strain
versus competitor bacteria is plotted. Error bars represent 6 SD.
doi:10.1371/journal.ppat.1001068.g005
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capacity of the strains to persist and proliferate in the presence of

P. putida became apparent within 24 hours (Figure 7B). At this

time point, wild-type B. thai microcolonies had expanded and

dispersed throughout the P. putida-dominated biofilm, whereas B.

thai DclpV-1 microcolonies had diminished in number. Consistent

with the results of our plate assays, P. putida growth was not

noticeably impacted by the activity of T6SS-1 at early time points

in the experiment. As the biofilm matured, wild-type B. thai

gradually displaced P. putida, and by four days after seeding, B. thai

microcolonies accounted for most of the biofilm volume. These

data suggest that T6SS-1 can provide a major fitness advantage for

B. thai in interspecies biofilms.

Discussion

Our findings suggest that the highly conserved T6S

architecture can serve diverse functions. We found T6SSs

within B. thai critically involved in two very distinct processes –

virulence in a murine infection model and growth in the

presence of specific bacteria. The systems involved in these

diverse phenotypes, T6SS-5 and T6SS-1, respectively, are

distantly related, and cluster phylogenetically with other

T6SSs of matching cellular specificity. We were unable to

define the function for three of the B. thai T6SSs, however their

clustering in the H1-T6SS subtree suggests that they could have

a role in interbacterial interactions. These systems may not have

been active under the assay conditions we utilized, they might

be specific for organisms we did not include in our screen, or

their activity may not affect proliferation. Phylogenies have

proven to be powerful tools for guiding researchers studying

complex protein secretion systems [41,42]. However, determin-

ing whether T6S phylogeny holds promise as a general predictor

of organismal specificity will require more studies that evaluate

the significance of individual systems in both eukaryotic and

bacterial cell interactions.

Although B. thai is not generally regarded as a pathogen, our

data suggest that Burkholderia T6SS-5 plays a role in host

interactions that is conserved between this species and its

pathogenic relatives, B. pseudomallei and B. mallei [27,28,29,43].

We postulate that T6SS-5, like many other virulence factors,

evolved to target simple eukaryotes in the environment. The

benefit T6SS-5 provides the Burkholderia in a mammalian host

could have been one factor that allowed B. mallei to transition into

an obligate pathogen. Based on our results implicating T6SS-1

exclusively in interbacterial interactions, the role of this system in

the lifestyle of B. mallei is more difficult to envisage. Indeed, the

cluster encoding T6SS-1 is the most deteriorated of the T6S

clusters of B. mallei and is unlikely to function [27]. Of the 13

conserved T6S-associated orthologous genes, 8 of these appear to

be deleted in B. mallei T6SS-1, however the remaining T6S clusters

of the organism are largely intact (0–3 pseudogenes or absent

genes).

Figure 6. T6SS-1 is required for resistance against P. putida-induced growth inhibition. (A–C) B. thai and P. putida growth following
inoculation of competitive cultures (A, B) or mono-cultures (C) onto LB 3% w/v agar. (D, E) B. thai and P. putida growth following inoculation of
competitive cultures into LB broth. (F) Quantification of dead cells 7.5 hours after initiating competition between P. putida and the indicated B. thai
strain on LB 3% w/v agar (n$7,000). Error bars are 6 SD.
doi:10.1371/journal.ppat.1001068.g006
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Of the 33 organisms screened, the effects of B. thai T6SS-1 were

most pronounced in competitions with P. putida, P. fluorescens, and

S. proteamaculans. Whether these organisms are physiologically

relevant B. thai T6SS-1 targets is not known, however P. putida and

P. fluorescens have been isolated from soil in Thailand [44,45], and

the capacity of these organisms to form biofilms is well

documented [46,47,48]. P. putida and P. fluorescens are recognized

biological control agents, suggesting that the rhizosphere could be

one habitat where antagonism with B. thai might occur [49].

Notably, we did not observe T6SS-dependent effects on B. thai

proliferation in the presence of the five Gram-positive organisms

included in our screen. The number and diversity of organisms we

tested were too low to ascribe statistical significance to this

observation, however it is tempting to speculate that the effects of

T6S might be limited to Gram-negative cells. This would not be

unexpected given the structural relatedness of T6S apparatus

components to the puncturing device of T4 bacteriophage

[18,19,20].

We found that T6SS-1 allows B. thai to proliferate in the

presence of the TDCs. This surprising and counterintuitive finding

raises the question of what inhibits B. thai DclpV-1 growth, and is it

an intrinsic (derived from B. thai) or extrinsic (derived from the

TDC) factor? Our data indicate that the activity or production of

this factor manifests in the absence of T6SS-1 function only when

a TDC is present and intimate cell contact occurs. If the factor is

intrinsic, we postulate that its activity is inappropriately triggered

by DT6SS-1 in the presence of the TDCs, but that its function

serves an adaptive role for wild-type B. thai. For example, under

circumstances where it is not advantageous for B. thai to

proliferate, such as when it is exposed to particular organisms,

Figure 7. T6SS-1 is required for B. thai to persist in mixed biofilms with P. putida. Fluorescence confocal microscopy images of B. thai
(green) and P. putida (cyan) biofilm formation in flow chambers. (A) Representative images of monotypic B. thai biofilms of the indicated strains
immediately following seeding (Day 0) and after four days of maturation. (B) Representative images of mixed biofilms seeded with a 1:1 mixture of P.
putida with the indicated B. thai strains.
doi:10.1371/journal.ppat.1001068.g007
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antibiotics, or stresses, this factor could initiate dormancy. There is

evidence that T6S components can participate in cell-cell

recognition in bacteria. Gibbs et al. recently reported the discovery

of an ‘‘identification of self’’ (ids) gene cluster within Proteus mirabilis

that contains genes homologous to hcp (idsA) and vgrG (idsB) [50].

Inactivation of idsB caused a defect in recognition of its parent,

resulting in boundary formation between the strains.

If the factor is extrinsic, T6SS-1 might be more appropriately

defined as a defensive, rather than an offensive pathway. T6SS-1

could provide defense by either influencing the production of the

extrinsic factor within the TDC, such as by repressing expression,

or it could provide physical protection against the factor by

obstructing or masking its target. If the fitness effect that T6SS-1

provides B. thai depends on a specific offensive pathway present in

competing organisms, the presence of this pathway in an organism

could be the basis for the apparent specificity we observed in our

screen. Future studies must address whether the determinants of

T6SS-1 effects are intrinsic, extrinsic, or a combination of the two.

The design of our competition screen was limited in this regard;

we measured T6SS-1 activity indirectly, and we were able to test

only a modest number of species. Understanding the mechanism

of action of T6SS-1, for example by identifying its substrates, will

provide insight into the specificity of the secretion apparatus.

While it is widely accepted that diffusible factors such as

antibiotics, bacteriocins, and quorum sensing molecules are

common mediators of dynamics between species of bacteria, an

analogous cell contact-dependent pathway has yet to be defined

[51]. We found that T6S can provide protection for a bacterium

against cell contact-induced growth inhibition caused by other

species of bacteria. Given that most organisms that possess T6S

gene clusters are either opportunistic pathogens with large

environmental reservoirs or strictly environmental organisms, we

hypothesize that T6SSs are, in fact, widely utilized in interbacter-

ial interactions. Bacteria-targeting T6SSs may be of great general

significance to understanding interactions and competition within

bacterial communities in the environment and in polymicrobial

infections.

Materials and Methods

Ethics statement
All research involving live animals was conducted in compliance

with the Animal Welfare Act and other federal statutes and

regulations relating to animals and experiments involving animals,

and adhered to the principles stated in the Guide for the Care and Use

of Laboratory Animals, National Research Council, 1996. All work

involving animals was approved by the Institutional Animal Care

and Use Committee at the University of Washington.

Strains and growth conditions
B. thai E264 and E. coli cloning strains were routinely cultured in

Luria-Bertani (LB) broth or on LB agar at 37uC. All bacterial

species used in this study are listed in the legend of Figure 4. The

medium was supplemented with trimethoprim (200 mg/ml),

ampicillin (100 mg/ml), zeocin (2000 mg/ml), irgasan (25 mg/ml)

or gentamicin (15 mg/ml) where necessary. For introducing in-

frame deletions, B. thai was grown on M9 minimal medium agar

plates with 0.4% glucose as a carbon source and 0.1% (w/v) p-

chlorophenylalanine for counter-selection [52].

Construction of markerless in-frame deletions of T6SS
genes

B. thai T6SSs were inactivated utilizing a previously described

mutagenesis technique based on the suicide plasmid pJRC115

containing a mutated phenylalanine synthetase (pheS) gene for

counter-selection [52]. Unmarked in-frame deletions of three to

five T6SS genes per T6SS gene cluster (at least two of which are

core T6SS genes; see Figure 1) were constructed by splicing by

overlap PCR of flanking DNA [53]. The open reading frames

were deleted except for 4–8 codons at the 59 end of the upstream

gene and 39 end of the downstream gene, and the insertional

sequence TTCAGCATGCTTGCGGCTCGAGTT was added as

previously described [14]. E. coli SM10 lpir was used to deliver the

deletion constructs into B. thai by conjugational mating and

transconjugants were selected on LB agar plates supplemented

with trimethoprim and irgasan.

Genetic complementation of DtssK-5 and DclpV-1
The conserved T6SS genes tssK-5 (BTH_II0857) and clpV-1

(BTH_I2958) were deleted using the in-frame deletion mutagen-

esis technique described above. For single copy complementation,

the mini-Tn7 system was utilized [34]. For this, the B. thai

ribosomal promoter PS12 sequence was cloned into the suicide

vector pUC18T-mini-Tn7T-Tp using complementary oligonucle-

otides to yield pUC18T-mini-Tn7T-Tp-PS12 [54]. The tssK-5 and

clpV-1 open reading frames along with 16–20 bp upstream were

amplified and inserted into pUC18T-mini-Tn7T-Tp-PS12. The

resulting plasmids and the Tn7 helper plasmid, pTNS3, were

introduced into appropriate deletion strains by electroporation

using a previously described protocol [52,54]. Transposition of the

Tn7-constructs into the chromosome of B. thai was determined by

PCR as described previously [55].

Construction of fluorescently labeled B. thai and P. putida
The mini-Tn7 system was utilized to integrate green fluorescent

protein (GFP) and cyan fluorescent protein (CFP) expression

cassettes into the chromosome of B. thai and P. putida, respectively

[55,56]. To construct a mini-Tn7 derivative for constitutive

expression of GFP, the GFP cassette was amplified from pQBI-

T7-GFP (Quantum Biotechnologies) without the T7 promoter

region as previously described and inserted into KpnI and StuI sites

of pUC18T-mini-Tn7T-Tp-PS12 [27]. This plasmid was then

introduced into relevant B. thai strains and insertion of Tn7-GFP

into the chromosome was verified as described above. To

construct a GFP-labeled DclpV-1 complemented strain, we made

use of the fact that two Tn7 insertion sites (attTn7) are present in

the genome of B. thai. The chromosomally integrated Tn7 Tpr

resistance cassette of DclpV-1 complemented was excised using

pFLPe2, which expresses a Flp recombinase, before introducing

pUC18T-mini-Tn7T-Tp-PS12-GFP. Insertion of Tn7-GFP into

the other attTn7 site was confirmed by PCR as described

previously [55,56]. To engineer CFP labeled P. putida, the mini-

Tn7(Gm)-CFP plasmid and the helper plasmid pUX-BF13 were

introduced into the strain by electroporation as previously

described [56].

In vitro growth kinetics
Growth kinetics of B. thai strains were measured in LB broth

using the automated BioScreen C Microbiology plate reader

(Growth Curves) with agitation at 37uC. Three independent

measurements were performed in triplicate for each strain.

Swimming motility assays
Swimming motility of B. thai strains was analyzed in 0.25% LB

agar. Swimming plates were stab-inoculated with overnight

cultures and incubated at 37uC for 48 h. Two independent

experiments were performed.
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Murine infection model
Specific-pathogen-free C57BL/6 mice were obtained from

Jackson Laboratories (Bar Harbor, ME). MyD882/2 mice were

derived by Dr. Shizuo Akira (University of Osaka) and

backcrossed for at least 8 generations to C57BL/6 [57]. Mice

were housed in laminar flow cages with ad lib access to sterile food

and water. The Institutional Animal Care and Use Committee of

the University of Washington approved all experimental proce-

dures. For aerosol infection of mice, bacteria were grown in LB

broth at 37uC for 18 hours, isolated by centrifugation, washed

twice, and suspended in Dulbecco’s PBS to the desired

concentration. An optical density at 600 nm (OD600) of 0.20

yielded approximately 16108 CFU/ml. Mice were exposed to

aerosolized bacteria using a nose-only inhalation system (In-Tox

Products, Moriarty, NM) [30]. Aerosols were generated from a

MiniHEART hi-flo nebulizer (Westmed, Tucson, AZ) driven at

40 psi. Airflow through the system was maintained for 10 minutes

at 24 l/min followed by five minutes purge with air. Immediately

following aerosolization, the pulmonary bacterial deposition was

determined by quantitative culture of left lung tissue from three to

four sentinel mice. Following infection, animals were monitored

one to three times daily for illness or death. Ill animals meeting

defined clinical endpoints were euthanized. At specific time points

after infection, mice were euthanized in order to quantify bacterial

burdens and inflammatory responses. To determine bacterial

loads, the left pulmonary hilum was tied off and the left lung,

median hepatic lobe, and spleen each were removed and

homogenized in 1 ml sterile Dulbecco’s PBS. Serial dilutions were

plated on LB agar and colonies were counted after 2–4 days of

incubation at 37uC in humid air under 5% CO2.

Interbacterial growth competition assays
Overnight cultures of B. thai and competitor bacteria were

adjusted to an OD600nm of 0.1 and mixed 5:1 (v/v). For

competitions using fluorescent strains, 2.5 ml of the mixture was

spotted on 3% w/v LB agar and fluorescence was measured after

approximately one week following incubation at 30uC. For

quantitative competitions using non-fluorescent strains, 10 ml of

the mixture was spotted on a filter (0.22 mm; GE Water & Process

Technologies) and cells were harvested and enumerated at the

indicated time points. Colonies of the competing organisms were

distinguished from B. thai strains using a combination of colony

morphology, growth rate and inherent antibiotic susceptibility.

Live/dead staining of bacterial cells
Growth competitions of B. thai against P. putida were performed

on filters as described above. At 7.5 h after initiating the

experiment, the filters were resuspended in 200 ml LB broth and

cell viability was measured using the LIVE/DEAD BacLight

Bacterial Viability Kit for microscopy according to the manufac-

turer’s protocol (Invitrogen). The number of dead cells was

determined for five random fields per competition using

fluorescence microscopy. Two independent experiments were

performed in duplicate.

Flow-chamber biofilm experiments
Biofilms were grown at 25uC in three-channel flow-chambers

(channel dimensions of 164640 mm) irrigated with FAB medium

supplemented with 0.3 mM glucose. Flow-chamber biofilm

systems were assembled and prepared as previously described

[58]. The substratum consisted of a 24650 mm microscope glass

cover slip. Overnight cultures of the relevant strains were diluted

to a final OD600nm of 0.01 in 0.9% NaCl, and 300 ml of the diluted

bacterial cultures, or 1:1 mixtures, were inoculated by injection

into the flow chambers. After inoculation, the flow chambers were

allowed to stand inverted without flow for 1 h, after which

medium flow was started with flow chambers standing upright. A

peristaltic pump (Watson-Marlow 250S) was used to keep the

medium flow at a constant velocity of 0.2 mm/s in the flow-

chamber channels. Microscopic observation and image acquisition

of the biofilms were performed with a Leica TCS-SP5 confocal

laser scanning microscope (CLSM) (Leica Microsystems, Ger-

many) equipped with lasers, detectors and filter sets for monitoring

GFP and CFP fluorescence. Images were obtained using a 636/

1.4 objective. Image top-down views were generated using the

IMARIS software package (Bitplane AG). The flow-chamber

experiment reported here was repeated twice, and in each

experiment each mono-strain or mixed-strain biofilm was grown

in at least two channels, and at least 6 CLSM images were

recorded per channel at random positions. Each individual image

presented here is therefore representative of at least 24 images.

T6S phylogenetic tree construction
Annotated genomes were downloaded from the Genome Reviews

ftp site (ftp://ftp.ebi.ac.uk/pub/databases/genome_reviews/, Janu-

ary 2010, 926 bacterial genomes (1814 chromosomes and plasmids)

[59]. Protein sequences from all genomes were aligned with rpsblast

[60] against the COG section of the CDD database (January 2010)

[61]. Only proteins showing an alignment covering at least 30% of

the COG PSSM with an E-value #1026 were retained. To avoid

any errors in COG assignments, we discarded all hits that overlap

with another hit with a better E-value on more than 50% of its

length. We considered the following 13 COGs as ‘T6SS core

components’: COG0542, COG3157, COG3455, COG3501,

COG3515, COG3516, COG3517, COG3518, COG3519,

COG3520, COG3521, COG3522, COG3523 [3,4]. Two genes

were considered neighbours if they are separated by less than

5000 bp. Only clusters containing the VipA protein (COG3516) and

genes coding for at least five other T6SS core components were

included in the analyses. The Edwardsiella tarda (EMBL access

AY424360) system was added manually because the complete

genome sequence and annotation of this organism was unavailable

in Genome Reviews.

In three of the 334 T6SS clusters, two VipA coding genes were

identified. Manual inspection of two of these clusters in Acinetobacter

baumannii (ATCC 17978) and Vibrio cholerae (ATCC 39541)

revealed that they resulted from apparent gene fissions; in both

cases we kept the longest fragment corresponding to the C-

terminal part of the full length protein. In the third case,

Psychromonas ingrahamii (strain 37), the two VipA coding genes

resulted from an apparent duplication event: one of the two copies

showed a high mutation frequency and was discarded. In total, we

included 334 VipA orthologs in T6SS clusters. The 334 VipA

protein sequences were aligned using muscle [62]. Based on this

alignment, a neighbour-joining tree with 100 bootstrap replicates

was computed using BioNJ [63].

Supporting Information

Figure S1 Dendrogram of T6S phylogeny based on VipA

sequences from 334 T6SSs. Color coding is the same as in Figure 1

and is taken from the bacterial taxonomy tree shown in upper left.

Found at: doi:10.1371/journal.ppat.1001068.s001 (4.21 MB TIF)
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