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Abstract

Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria
meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease
gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield
clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they
display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two
rare alterations in the gene encoding the CcoP protein component of cytochrome cbb3 oxidase that are phylogenetically
informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the
species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event
and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains
engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent,
microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and
ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings
provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant
macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic
innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape
within a single host.
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Introduction

The genus Neisseria comprises Gram-negative, oxidase-positive

diplococci that are frequently isolated from the mucosal surfaces of

humans and two closely related species are important pathogens of

man [1]. Neisseria gonorrhoeae is the etiologic agent of gonorrhea that

remains one of the most common sexually transmitted diseases

contributing to worldwide morbidity, mortality and infertility.

Although treatable with antibiotics, no vaccine is currently

available against the gonococcus. Neisseria meningitidis is primarily

a commensal of the human oropharynx that, under incompletely

understood circumstances, causes invasive disease and meningitis.

Most cases of meningococcal disease are caused by clonal

complexes of related sequence types (STs), the so-called hyper-

invasive lineages [2]. These lineages are underrepresented in

healthy carriers and significant numbers of individuals are

colonized with carriage isolates belonging to an array of STs that

rarely cause disease [3].

Despite their differing host interactions, mechanisms of

transmission and ecology, N. gonorrhoeae and N. meningitidis display

remarkable conservation and uniformity at the levels of coding

sequences, gene content and synteny. Nonetheless, comparative

genome analyses have identified genes and gene clusters unique to

either N. gonorrhoeae or N. meningitidis but few if any of the

corresponding products can be specifically connected to the

differential host interactions observed. A prime example of this

situation would be the genes required for biosynthesis of

polysaccharide capsule, which is essential to systemic meningo-

coccal disease, and that are absent in N. gonorrhoeae. However, only

a limited subset of capsular serogroups is associated with disease
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and 16–20% of meningococcal carriage isolates do not possess

these genes [4]. A recent study documented that the presence of

the insertion sequence IS1655 is restricted to N. meningitidis but

how this element might relate to speciation or specifically to

meningococcal biology remains unclear [5]. Attempts to reconcile

the relationships between genotype and lifestyle of N. meningitidis

and N. gonorrhoeae are further complicated by the existence of the

closely related species Neisseria lactamica, a harmless commensal

found predominantly in the upper respiratory tracts of infants and

children [6]. In contrast to N. meningitidis in which carriage is low

during infancy and rises to high levels in adolescents and young

adults, carriage of N. lactamica is high in young children but

declines with age [7]. Microarray-based genome hybridization

studies showed that the majority of coding sequences are highly

conserved in all three species although some genes unique to both

N. gonorrhoeae and N. meningitidis were identified [8,9,10]. Included

in the latter are the iga1 and pptA genes encoding an extracellular

endopeptidase and a protein targeting phosphoethanolamine

transferase [11,12]. Validation of the impact of putative virulence

components has been hampered by a lack of relevant animal

models for neisserial disease.

The highly conserved genetic structure and human host

restriction observed for N. gonorrhoeae and N. meningitidis are most

consistent with allopatric divergence from a single common

ancestor. Such a model was first proposed by Vazquez and

colleagues based on the relatively reduced diversity of N. gonorrhoeae

strains measured by multilocus enzyme electrophoresis (vs N.

meningitidis) of house keeping genes and the fact that the primary

niche for all human Neisseria species other than N. gonorrhoeae is the

oropharynx [13]. Specifically, it was suggested that N. gonorrhoeae

arose as a clone of N. meningitidis that could colonize the urogenital

tract. Prolonged physical isolation, niche specialization and genetic

isolation would thus have driven speciation. This model was

further supported by the analyses of the porA gene (encoding the

class 1 outer membrane porin protein PorA) that is found in all

strains of N. meningitidis and N. gonorrhoeae but absent in N. lactamica

and other commensal Neisseria species [14]. While PorA is a major

constituent of the outer membrane of most meningococcal isolates,

all strains of N. gonorrhoeae examined to date carry an identical

frameshift mutation that disrupts the integrity of the porA ORF

[15]. Two other genes unique to the pathogenic Neisseria, ggt and

adhC (encoding gamma-glutamyl transpeptidase and S-nitrosoglu-

tathione oxidoreductase respectively), are also intact in N.

meningitidis but inactivated due to frameshift mutations in N.

gonorrhoeae [16,17]. While the presence of these three pseudogenes

in N. gonorrhoeae denotes descent from an organism carrying active

forms of the genes, it remains unknown how extant isolates of N.

meningitidis and N. gonorrhoeae might relate to such an ancestral

population. Despite the potentially confounding contributions of

shared ancestry and genetic exchange, a recent study utilizing

multilocus sequence typing (MLST) demonstrated the ability to

readily categorize isolates of N. meningitidis, N. gonorrhoeae and N.

lactamica into three distinct species [18].

Oxygen reductase members of the heme-copper superfamily act

as terminal oxidases in all domains of life and play a central role in

aerobic energy generation and conservation [19]. Given their

critical function, alterations in their structure are likely to have

important consequences and therefore be targets of natural

selection. Adaptive changes in cytochrome c oxidases have been

implicated in major evolutionary transitions in anthropoid

primates and carnivorous plants [20,21]. Most bacteria utilize

branched electron-transfer networks that enable them to use

diverse electron donors and/or electron acceptors in respiration.

The sole oxygen reductase catalysing the reduction of dioxygen to

water encoded in Neisseria genomes is of the c-family or cytochrome

cbb3 oxidase type [22]. Canonical cytochrome cbb3 oxidases consist

of four subunits encoded by tandemly arranged genes (Figure 1A)

[23]. CcoN is the highly conserved, catalytic subunit that contains

a dinuclear centre formed by the iron of a high-spin heme and an

associated copper ion (CuB) where dioxygen is reduced [24].

Figure 1. Organization of the neisserial ccoNOQP locus and
domain architectures of c-type multiheme CcoPs. (A) The
organization of the neisserial ccoNOQP gene cluster. Numbers denote
the nucleotide sequence coordinates from the genome sequence of N.
gonorrhoeae strain FA1090 (Genbank AE004969). (B) Modular structures
of the cognate neisserial tri-heme CcoP and the di-heme form
associated with isolates of N. meningitidis. The region encompassing
the premature stop codon resulting in CcoP truncation and the
corresponding region in tri-heme CcoP are indicated by yellow
rectangles and the specific residues and the corresponding codons
are numbered according to those of intact polypeptides. The single
base change creating a premature stop codon in ccoPNme (CAG to TAG)
is indicated in red. Note that the codon involved corresponds to residue
366 in N. meningitidis but to residue 362 in gonococcal CcoP owing to a
12 base pair deletion in the N. gonorrhoeae alleles (Figure S1).
doi:10.1371/journal.ppat.1001055.g001

Author Summary

The closely related bacterial species N. meningitidis, N.
gonorrhoeae and N. lactamica exclusively colonise mucosal
surfaces in humans. While N. gonorrhoeae leads to
gonorrhea, the other two species persist mainly in their
host in the absence of disease. N. meningitidis does
occasionally cause severe, life threatening illness, however.
Little is known about the factors and elements that dictate
the unique human interactions exhibited by each species.
Moreover, the evolutionary relationships between these
species are poorly characterized. Here, we describe two
successive alterations in a single gene that can be linked
first to all species within the genus Neisseria and then the
species N. meningitidis. We also show these signature
alterations have phenotypic consequences by affecting
core respiratory metabolic processes. These findings have
significant implications for the evolution of related
bacterial species within a single host and provide a novel
perspective on the episodic and reversible nature of
innovative adaptation.

Molecular Evolution of Respiration in Neisseria
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CcoO and CcoP are both membrane-bound c-type cytochromes

believed to channel electrons to the dinuclear center [25]. CcoQ is

a small, single-spanning membrane protein believed to function in

stabilizing the interaction of CcoP with the CcoNO complex [26].

The roles of CcoQ and CcoP may vary between species as active

forms of the complex can be detected in their absence in some but

not all cases [27,28]. Cytochrome cbb3 oxidase in some organisms

has a high affinity for oxygen and is often associated with growth

under conditions of oxygen-restriction [22] and both N. gonorrhoeae

and N. meningitidis inhabit niches associated with low oxygen

tension [29,30]. Importantly, cytochrome cbb3 oxidases couple

oxygen reduction to translocating protons across the inner

membrane such that metabolic energy is conserved for subsequent

ATP synthesis [31].

N. gonorrhoeae and N. meningitidis also possess a truncated

denitrification pathway in which nitrite (NO2
2) is first reduced

to nitric oxide (NO) by NirK (AniA) that is then reduced to nitrous

oxide (N2O) by NorB [32,33,34,35]. The linked nirK and norB

genes are differentially controlled by a number of transcriptional

regulators that are responsive to changes in the levels of oxygen,

NO2
2 and NO [36,37,38,39,40,41]. Although previously consid-

ered to be an anaerobic process, denitrification under oxic

conditions has been documented in many species including N.

gonorrhoeae and N. meningitidis [35,42]. Taken together, the latter

species appear to be adapted to similar growth environments at

distinct ecological sites (i.e. urogenital versus oropharyngeal

mucosal sites) and have highly related respiratory chains that

allow them to co-metabolize oxygen and nitrite as electron

acceptors under microaerobic conditions.

A cardinal feature of N. gonorrhoeae and N. meningitidis is their

highly recombinogenic nature that results from inter- and

intraspecies genetic exchange [43]. Efficient lateral gene transfer

in these instances is mediated through natural competence for

transformation requiring specific uptake sequences in the donor

DNA [44]. As these DNA uptake sequences are dramatically

overrepresented only in the genomes of Neisseria species, this

largely restricts imports to donors from within the genus. In the

particular case of N. meningitidis, interspecies recombination at

numerous loci encoding surface antigens has been widely

documented [45,46,47]. Still as N. gonorrhoeae, N. meningitidis and

N. lactamica species represent cohesive, differentiated entities [18],

gene flow must be constrained at some level in order to limit

convergence and despeciation [48]. However, the molecular and

ecological factors constraining genetic structuring in these

instances remain to be determined. Given these circumstances,

the phylogenetic basis for the evolution of human Neisseria species

remains poorly understood. Moreover, it remains unclear what

genetic elements dictate the unique human interactions exhibited

by each species.

Rare genomic changes, signature mutations occurring in the

genomes of particular clades, have frequently been employed to

resolve phylogenetic uncertainties [49]. Here, we report the

identification of a single nucleotide polymorphism (SNP) that

results in a molecular marker for the species N. meningitidis as it is

found in all strains examined and absent from all isolates of N.

gonorrhoeae and N. lactamica and of other commensals tested.

Although this mutation results in the truncation of an essential

component of the cytochrome cbb3 oxidase, the sole neisserial

respiratory oxidase, it conditionally affects nitrite consumption by

the nitrite reductase that functions in the denitrification pathway.

These findings provide evidence that an alteration in the circuitry

of respiratory electron-transfer networks is associated with N.

meningitidis speciation.

Results

A SNP leading to truncation of the CcoP subunit of
cytochrome cbb3 oxidase is associated with the species
N. meningitidis

In the course of characterizing a general O-linked protein

glycosylation system in N. gonorrhoeae strain MS11 [50], we

discovered that its CcoP is a glycoprotein possessing a tri-heme

c-type cytochrome domain architecture as opposed to the di-heme

form found in all other CcoP proteins (as annotated by possessing

the IPR004678 domain of the InterPro database) (Figure 1B).

When the status of N. meningitidis CcoP was examined using the

genome sequences for 5 strains available, the nucleotide and

deduced amino acid sequences were highly related (greater than

97%) to that in N. gonorrhoeae save for the presence of transitional

substitution in codon 366 (CAG to TAG resulting in a premature

stop codon). The N. meningitidis forms would then be predicted to

be truncated at the end of the AlaSerPro-rich, low complexity

region (LCR) that separates the second and third c-type heme

domains and encompasses the glycan attachment site [50]. DNA

sequencing of ccoP from 78 additional N. meningitidis isolates used in

this study (Table S1) further supported the presence of the SNP

seen in the genomic sequences resulting in CcoP truncation. In

contrast, ccoP DNA sequencing and accessing genome sequencing

projects for which ccoP data were available revealed the absence of

the SNP from 26 N. gonorrhoeae strains, 13 N. lactamica strains and

11 commensal Neisseria strains encompassing 8 species (Table S2).

Thus, the association of the SNP with the species N. meningitidis was

complete. Furthermore, we conclude that the tri-heme encoding

ccoP allele is ancestral to the N. meningitidis alleles.

Phylogenetic examination of ccoP genes using the majority rule

consensus tree constructed with Clonalframe revealed five distinct

branches corresponding to each of the Neisseria species: N.

meningitidis, N. gonorrhoeae, N. lactamica and other Neisseria including

N. cinerea, N. polysaccharea, N. sicca, N. subflava and N. flavescens further

differentiating these isolates from one another. Within each clade,

ccoP genes were well conserved (p-distances: N. lactamica = 0.010, N.

meningitidis = 0.004, N. gonorrhoeae = 0.002) although ccoP genes

belonging to commensal isolates other than N. lactamica were much

more diverse (p-distance = 0.165) (Figure 2). This was apparent in

the alignment of polymorphic sites (Figure S1) where synonymous

and non-synonymous substitutions along the ccoP gene were more

abundant when these neisserial commensals were included in the

analysis further confirming the homology of ccoP genes belonging to

N. meningitidis, N. gonorrhoeae and N. lactamica isolates. Recombination

events among ccoP genes were uncommon with a total of five events

predominantly among ccoP genes belonging to commensal Neisseria.

One horizontal gene transfer event from a meningococcal isolate

and gonococcal isolate to N. cinerea was also detected with high

probability by ClonalFrame (Table S3).

The extended, third c-type heme domain of CcoP
impacts on denitrification respiratory flux

Given the unique association between the SNP resulting in

expression of the truncated, di-heme CcoP form and N. meningitidis,

we sought to determine what phenotypic consequences might ensue

from such an alteration. We therefore took a comparative approach

to addressing this point by constructing strains of N. meningitidis MC58

expressing the tri-heme CcoP form found in N. gonorrhoeae and strains

of N. gonorrhoeae VD300 expressing the truncated di-heme form from

N. meningitidis (Figures 3A and B, respectively). This was done using

transposon insertions mapping 39 of ccoP as selectable markers in

trans-species transformation experiments. Direct sequencing of ccoP

was used to ensure that the entire, specific ORFs were transferred and

Molecular Evolution of Respiration in Neisseria
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exchanged in the recombinants used. In addition, a strain of N.

gonorrhoeae was constructed in which solely the SNP responsible for

CcoP truncation in N. meningitidis was incorporated into the otherwise

unaltered N. gonorrhoeae allele. When subjected to a variety of aerobic

growth conditions, we observed no differences between isogenic

strains expressing the di- and tri-heme forms in either N. meningitidis or

N. gonorrhoeae (Figures S2A, B and S3A, B respectively, data not

shown). Thus, the skewed distribution of CcoP forms was not a

consequence of gross metabolic incompatability as measured in vitro.

In another approach, BLAST searches were performed using the

third heme encompassing domain immediately C-terminal of the

major AlaSerPro-rich LCR in N. gonorrhoeae CcoP as a query. This

segment was highly related to the C-terminally localized domain in

cytochrome c5, a di-heme c-type cytochrome encoded by the cycB

gene (NMB1677 in N. meningitidis and NGO1328 in N. gonorrhoeae).

Like CcoP, c5 is predicted to be membrane-associated and also

possesses an AlaSerPro-rich LCR that encompasses the attachment

sites of its O-linked glycan between its two c-type heme domains

[50]. In N. meningitidis, a tetracycline resistance gene cassette

insertion mutation in cycB that disrupts the integrity of the ORF

distal to the first heme domain was shown to abolish nitrite

reduction and nitrite-dependent growth under microaerobic

conditions [51]. In N. gonorrhoeae, a cycB null mutation was reported

to result in increased sensitivity to growth inhibition by excess

oxygen and small decreases in respiratory capacity [52]. Thus, c5 is a

prime candidate to act as an electron carrier in pathways ultimately

targeting both cytochrome cbb3 oxidase and NirK.

Given the structural similarities between c5 and the tri-heme

CcoP form, we examined what genetic interactions might exist

between cycB and the different ccoP alleles with regard to the

truncated dentrification pathway. To this end, a cycB null mutation

was generated in which the entire open reading frame was deleted.

Derivatives of N. gonorrhoeae carrying this allele were distinctive in

that they exhibited a severe growth defect manifested as poor

plating efficiency and slow growth that was not seen in equivalent

strains carrying the previously characterized cycB insertion

mutation (data not shown). While profiling of c-type heme proteins

confirmed the absence of intact c5 in both backgrounds, strains

carrying the cycB insertion mutation expressed a c-type heme

protein whose migration corresponded to that predicted for a

truncated, mono-heme c5 form resulting from disruption of the

open reading frame at residue 171 (Figures 3A, B and Figure S4).

As the cycB null mutation was pleiotropic, the cycB insertion

mutation was used in this study. As previously reported [51],

introduction of cycB insertion mutation into N. meningitidis MC58

led to a clear defect in nitrite-dependent, microaerobic growth and

measurements from culture medium showed that this growth

defect was associated with an inability to reduce nitrite (Figures 4A

and B). In contrast, the strain carrying both the ccoPNgo and cycB

alleles was remarkably similar to the wildtype strain and that

carrying only the ccoPNgo allele in these phenotypes (Figures 4A and

B). No differences in growth for any of these strains were seen

under aerobic and microaerobic conditions (Figures S2A and B,

data not shown). Thus, the ccoPNgo allele was epistatic to cycB

demonstrating that the CcoP tri-heme isoform and c5 overlap

functionally in supporting NirK-mediated, nitrite reduction.

Reciprocal experiments were carried out in N. gonorrhoeae

VD300 using backgrounds carrying either endogenous ccoP or

alleles encoding truncated di-heme CcoP forms. Here again, no

significant differences in growth for any of these strains were seen

under aerobic and microaerobic conditions (Figures S3A and B).

Both N. gonorrhoeae strains expressing di-heme CcoP forms were

reduced in rates of growth under nitrite supplemented, micro-

aerobic conditions relative to the strain expressing the tri-heme

form and this property was paralleled by delayed nitrite

consumption (Figures 5A and B). These results were similar to

those reported elsewhere in which missense mutations predicted to

disrupt the integrity of the third c-type heme domain of N.

gonorrhoeae CcoP were associated with diminished nitrite-depen-

dent, microaerobic growth and reduced capacities to reduce nitrite

[42]. These same phenotypes were exhibited by the N. gonorrhoeae

strain with the cycB insertion mutation alone. However, when

combined with the alleles encoding di-heme CcoP, the cycB

mutation led to a complete defect in nitrite-dependent, micro-

aerobic growth (Figure 5A). Measurements from culture medium

showed that this growth defect was associated with the inability to

Figure 2. Genealogical representation of the ccoP gene among Neisseria strains using ClonalFrame. Phylogenetic trees were constructed
using ClonalFrame version 1.1 available at http://www.xavierdidelot.xtreemhost.com/clonalframe.htm [74]. In the present study, over 300,000
iterations and 100,000 burn-ins were performed with every hundredth tree sampled after which, a 95% consensus tree was derived. Annotation was
then undertaken by importing the tree into the Molecular Evolutionary Genetics Analysis software package (MEGA v4.0) [73].
doi:10.1371/journal.ppat.1001055.g002
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reduce nitrite (Figure 5B). These phenotypes were not attributable

to a defect in NirK expression, as the latter was detected at similar

levels in all backgrounds (Figure S5). To ensure that the defect in

nitrite reduction in these backgrounds was not due to a spurious

mutation or genetic alteration arising during strain construction or

propagation, a wildtype copy of cycB was reintroduced at an

ectopic site. This led to restoration of nitrite-dependent, micro-

aerobic growth and nitrite reduction in the cycB, ccoP2X (di-heme

form of N. gonorrhoeae CcoP made by changing codon number 362

from CAG to the stop codon TAG) backgrounds (data not shown).

Taken together, these results document clear differences in the

requirements for nitrite reduction associated with di- and tri-heme

encoding ccoP alleles. Accordingly, the findings strongly suggest

that strains of N. meningitidis are fundamentally distinct from those

of other neisserial species with regard to respiratory denitrification.

The di-heme CcoP form is essential to microaerobic
growth in N. meningitidis and N. gonorrhoeae

To examine the role of CcoP in N. meningitidis, transposon

insertion mutations were generated in the cloned ccoP gene that

were then introduced into a wildtype background. However,

transformants were only recovered for those insertions that

mapped 39 to the ORF encompassing the second c-type heme

domain (i.e. within the LCR and third c-type heme domain). To

ensure that this selectivity was not due to some peculiarity of the

constructs themselves, a strain carrying a second active copy of

ccoP at an ectopic site was created. Transformants for all insertion

mutations were recovered using this merodiploid strain (Figure 6A).

A similar approach was taken to examining CcoP function in N.

gonorrhoeae with transposon insertion mutations being generated in

the cloned gene that were then introduced into a wildtype

background. As seen in the N. meningitidis wildtype background,

transformants were only recovered for those mutations that

mapped 39 to the ORF encoding the second c-type heme domain

(i.e. within the LCR and third c-type heme domain). Here as a

control, a strain carrying a tandem duplication of ccoP (by

Campbell-type plasmid integration) was used in which the distal

gene copy was non-functional due to a deletion of the promoter

and translational initiation sites. Transformants for all insertion

mutations were recovered using this strain and importantly, all

those that could not be recovered in the wildtype background

mapped exclusively in the non-expressed ccoP copy (Figure 6B). As

mutations that disrupt the integrity of the di-heme form are

conditionally defective in microaerobic growth, CcoP appeared to

be an essential gene product in both N. meningitidis and N.

gonorrhoeae. Moreover, the structural features and constraints for

minimal CcoP function (imparted by the di-heme form) were likely

identical in both species.

Figure 3. Heme-stained protein blots showing altered expression
of c5 and CcoP in defined backgrounds. Samples of total cell extracts
were separated by 12% SDS-PAGE, blotted and stained for heme-
dependent peroxidase activity. (A) N. meningitidis strains: 1, wild type
(MC58); 2, cycB (c5-); 3, ccoPNgo (KS348); 4, cycB, ccoPNgo (KS349). (B) N.
gonorrhoeae strains: 1, wild-type (VD300); 2, cycB (KS336); 3, ccoP2x (KS335);
4, ccoP2x, cycB (KS337); 5, ccoPNme (KS340); 6, ccoPNme cycB (KS341).
doi:10.1371/journal.ppat.1001055.g003

Figure 4. Effects of CcoP domain alterations on microaerobic
growth and nitrite reduction in N. meningitidis. Cultures of wild-
type (MC58) (open squares); ccoPNgo (KS348) (open circles); cycB (c5-),
(filled squares) and ccoPNgo, cycB (KS349) (filled circles) growing under
microaerobic conditions plus 5 mM nitrite (A). Growth was monitored
by measuring OD600. (B) Nitrite reduction was monitored for
microaerobic cultures from (A). The results shown are representative
of three independent experiments.
doi:10.1371/journal.ppat.1001055.g004

Molecular Evolution of Respiration in Neisseria
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To confirm the essentiality of ccoP, a transcriptional fusion

construct was made in which expression was linked to tac-UV5

control sequences and introduced at an ectopic site in the neisserial

genome. As this construct does not include an associated lacIQ

gene, repression requires a background expressing LacIQ. For

practical purposes, we therefore carried out these experiments in

N. gonorrhoeae which enabled us to first introduce the ectopic de-

repressible ccoP allele in a background expressing di-heme CcoP

from the endogenous locus (Figure 7A). Transposon mutations

previously established as abrogating CcoP function were then

introduced into these backgrounds and transformants were

selected in the presence of IPTG. Those that acquired IPTG

dependent growth were readily identified in N. gonorrhoeae and in

each instance, the transposon mapped to the endogenous ccoP gene

(Figure 7B). It was quite easy to pick out revertants in which

growth became IPTG-independent and in these instances, this

phenotype was associated with restoration of de-regulated CcoP

expression (data not shown). These findings demonstrated that

CcoP was essential to growth under the microareobic conditions

examined and reinforced the hypothesis that this effect was due to

its role in cytochrome cbb3 oxidase activity.

A c5-CcoP hybrid supports nitrite reduction and related
phenotypes

The genetic interactions and degree of shared structural identity

suggested that the C-terminal c-type heme domains of c5 and CcoP

have related functions in chanelling electrons to support nitrite

reduction activity. Therefore, a translational fusion consisting of

Figure 5. Effects of CcoP domain alterations on microaerobic
growth and nitrite reduction in N. gonorrhoeae. Cultures of wild-
type (VD300) (open squares); and mutants ccoP2x (KS335) (open circles);
cycB (KS336) (filled squares); ccoP2x, cycB (KS337) (filled circles); ccoPNme

(KS340) (open triangles); ccoPNme, cycB (KS341) (filled triangles) growing
under microaerobic conditions plus 5 mM nitrite (A). Growth was
monitored by measuring OD600. (B) Nitrite reduction was monitored for
microaerobic cultures from (A). The results shown are representative of
three independent experiments.
doi:10.1371/journal.ppat.1001055.g005

Figure 6. Distribution of ccoP transposon insertion mutations
recovered in wildtype and merodiploid backgrounds. Shown
are the sites of mTn insertions with open circles denoting those
recoverable in N. meningitidis (A) and N. gonorrhoeae (B) wildtype
backgrounds. Filled circles denote those that were only recoverable in
strains carrying a second copy of ccoP. In the case of N. meningitidis
merodiploid background in which both gene copies were active,
insertions denoted by filled circles were recovered at both loci. In the
case of N. gonorrhoeae merodiploid background, the second ccoP copy
was inactive and all insertions denoted by filled circles mapped in the
non-expressed copy. Symbols: arrows indicate the ccoP open reading
frame, grey boxes represent regions encoding c-type heme domains,
green boxes show AlaSerPro-rich, low complexity regions and red
asterisks indicate stop codons. Insertions marked with single and triple
black asterisks were used to swap ccoP alleles between N. meningitidis
and N. gonorrhoeae. The insertion marked with double black asterisks
was used to inactivate the endogenous N. gonorrhoeae allele in the
background carrying the de-repressible ccoP allele at an ectopic site
(see text).
doi:10.1371/journal.ppat.1001055.g006

Figure 7. Conditional expression of CcoP confirms its essential
role in growth. (A) Heme-stained blot of N. gonorrhoeae extracts
showing profiles of c-type heme proteins. Total cell extracts from
wildtype and mutants were separated by 10% SDS-PAGE, transferred to
membrane and stained for heme-dependent peroxidase activity.
Strains: 1, wildtype (KS101); 2, ccoP2x (KS351); 3 and 4, ccoP2x, ccoPind

(KS345); 5, ccoP2x::mTnerm26, ccoPind (KS346). CcoPNgo and CcoP2x mark
the relative mobility of the tri-heme and di-heme forms. Note that strain
ccoP2x::mTnerm26, ccoPind (lane 5) expresses only the inducible CcoP
form. ‘+’ and ‘2’ at bottom denote the presence and absence of IPTG
respectively in the culture media. As shown in (B), the strain expressing
solely the inducible CcoP form requires IPTG for growth on solid
medium. Arrows indicate the presence of suppressor mutants that are
associated with IPTG-independent CcoP expression.
doi:10.1371/journal.ppat.1001055.g007
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the amino-terminus of c5 (encompassing the first c-type heme

domain) and the third heme domain of N. gonorrhoeae CcoP was

constructed. This was done in a manner such that the relative

spacing between the two heme domains in the hybrid was

maintained as seen for wildtype c5 and was facilitated by using a

conserved stretch of residues in the AlaSerPro-rich linker domains

(Figure S6). This gene fusion including the endogenous cycB

promoter sequences was then introduced at an ectopic site in the

N. gonorrhoeae background expressing the truncated cycB allele (from

its endogenous site) and a di-heme expressing ccoP allele. The c5-

CcoP chimaera was detected as a novel cytochrome c species that

migrated with a mobility equivalent to that seen for endogenous c5

(Figure 8A). This hybrid gene restored both nitrite reduction and

nitrite-dependent microareobic growth in this background

(Figures 8B and C). These findings formally demonstrate the

functional equivalence of the terminal heme domains of N.

gonorrhoeae CcoP and c5 when displayed in the context of otherwise

structurally identical polypeptides.

A modular domain fusion with c5 accounts for the
genesis of the tri-heme CcoP form

Given its unusual activity and unique distribution within

Neisseria species, the potential evolutionary origin of the tri-heme

CcoP was examined. As the vast majority of CcoP forms identified

to date are di-heme forms, a simple model might involve the

amplification of the tandemly arrayed, heme encoding gene

segments. However, this mechanism is inconsistent with the

observed lack of nucleotide sequence identity encoding the spacer

domains between the first and second heme units and the second

and third heme units. Instead, the most parsimonious scenario

entails a non-reciprocal recombination event involving the 39 ends

of the c5 gene and a primordial di-heme CcoP. In this model,

unequal crossing over within the homologous sequences of the c5

di-heme - encoding and CcoP second heme - encoding segments

would provide gene and protein structures most reconciliable with

that of extant tri-heme CcoP forms (Figure 9). This hypothesis is

particularly well supported by the high degree of structural

conservation between the carboxy-terminal segment (encompass-

ing the third heme domain) of CcoP and the two heme domains of

c5. The last 81 residues of CcoP (359–439) share 74% sequence

identity with the corresponding C-terminal segment of c5 and 47%

with the first heme domain of c5. Such a scenario would account

for the presence of the AlaSerPro-rich region between the second

and third CcoP heme domains. Although it is difficult to establish

amino acid identity within these AlaSerPro rich regions (due to

their underlying low complexity), both the lengths of the

AlaSerPro stretches (34 residues in c5 versus 42 in CcoP) and

overall alanine richness (47.1% Ala residues in c5 versus 47.6% in

CcoP) are similar between the two. Moreover, these stretches each

bear serine occupancy sites for the glycans associated with the

general O-linked glycosylation system in N. gonorrhoeae [50]. Taken

together, the conserved structural features and shared functional

attributes of c5 and the tri-heme CcoP provide strong evidence for

modular-based evolution underlying CcoP neofunctionalization.

Discussion

Three closely related species within the genus Neisseria represent

an intriguing model system in which to investigate the evolution

trajectories of related pathogenic and commensal bacteria in a

single host. Here, we report the identification of a SNP unique in

its association with the species N. meningitidis that leads to

truncation of the c-type heme protein CcoP, an essential

component of its sole, terminal respiratory cytochrome oxidase.

Figure 8. Ectopic expression of a c5-CcoP hybrid protein
complements a defect in nitrite-dependent, microaerobic
growth in N. gonorrhoeae. (A) Samples of total cell extracts from
wildtype and mutants separated by SDS-PAGE, blotted and stained for
c-type heme-dependent peroxidase activity. Strains: 1, wildtype
(VD300); 2, cycB (KS336); 3, cycB, ccoP2x (KS337); 4, cycB, ccoP2x, cycB-
ccoP (KS347). (B) Cultures of wild-type (VD300) (open squares); and
mutants cycB (KS336) (filled squares); cycB, ccoP2x (KS337) (filled circles)
and cycB, ccoP2x, cycB-ccoP (KS347) (open circles) growing under
microaerobic conditions supplemented with 5 mM nitrite. (C) Nitrite
depletion was monitored for microaerobic cultures from (B). The results
shown are representative of three independent experiments.
doi:10.1371/journal.ppat.1001055.g008
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The dichotomy in neisserial phylogeny revealed through this altered

molecular character raises the obvious question as to why this

change appears to be so adaptive on the one hand and yet at the

same time, so restricted in its distribution. From the sole viewpoint

of aerobic respiration, CcoP functions by supporting cytochrome

cbb3 oxidase activity. However, we failed to discern any phenotypic

alterations in either the N. gonorrhoeae or N. meningitidis strains varying

solely in expression of the di- versus tri-heme forms under standard

lab conditions. Therefore, a key factor here may be the altered

circuitry of electron transfer favoring microaerobic (oxygen

reduction by cytochrome cbb3 oxidase) versus combined micro-

aerobic denitrifying (oxygen reduction by cytochrome cbb3 oxidase

supplemented by nitrite reduction by NirK) respiration. For

example, the ability of di-heme CcoP to promote solely cytochrome

cbb3 oxidase activity (at the expense of reduced electron carriage to

NirK) could be adaptive under more aerobic conditions or in

situations where nitrite levels might be diminished. Moreover,

nitrite reduction could come with significant metabolic cost as it

generates nitric oxide that can be toxic and growth inhibitory [39].

Although N. meningitidis strains express the NorB nitric oxide

reductase (reducing nitric oxide to innocuous nitrous oxide), toxic

NO can accumulate so rapidly that growth inhibition occurs before

sufficient NorB activity has been expressed (as it is specifically de-

repressed by NO acting on the nitric oxide responsive repressor

NsrR) [37,39,40]. This effect can be detected in N. meningitidis as

NirK-dependent, nitrite sensitivity occurring under a number of

growth conditions [53]. Additionally, there is strong evidence that

N. meningitidis strains are under relaxed selective constraints with

regard to NirK-mediated nitrite reduction. Specifically, nirK was not

detected in 7 of 26 N. meningitidis strains examined by microarray-

based genome hybridization technology [10]. Moreover, two

reports examining nirK found frameshift and inactivating missense

mutations in 5 of 23 and 8 of 31 strains respectively [54,55]. Whilst

the selection pressure for maintaining a functional NirK is relaxed in

N. meningitidis, this is not the case in N. gonorrhoeae and other Neisseria

species. In the latter strains, alleles encoding intact NirK are found

in all available genomic and individual sequences (6 commensal

neisserial strains and 36 strains of N. gonorrhoeae including those

presented in Figure 2, Table S2 and in [54]. Thus, the fixation of the

SNP- associated ccoP allele is consistent with the hypothesis that N.

meningitidis is an organism in the process of evolving into a

microaerobe that no longer supplements growth via NirK-mediated

denitrification.

Another extraordinary aspect of the N. meningitidis ccoP allele is

the fact that it represents a reversal of a previous rare genetic

change in CcoP domain architecture. We provide a data-based

model for how the tri-heme encoding ccoP arose by a homologous

recombination event between c5 and a primordial, di-heme

encoding ccoP allele and suggest that like the case of the SNP

mutation, this event occurred only once and radiated by vertical or

lateral transmission due to its adaptive value. Thus, the ccoP tri-

heme allele (in its wildtype and derivative SNP variant forms) is a

molecular marker of species within the genus Neisseria. The ability

of tri-heme CcoP to act as a redox partner in a pathway that

ultimately can transfer electrons to NirK would dramatically

reshape the organization of electron transport chain, providing

broader connectivity to electrons emanating from bc1 through c4 as

well as c5 (Figure 10) [51,52]. Reprogramming of electron flow

Figure 9. Model for the origin of the tri-heme CcoP in the genus Neisseria. Based on the shared domain architecture, high degrees of primary
sequence identity and function, the most parsimonious model invokes a gene fusion event between cycB (encoding c5) and a primordial c-type di-
heme encoding ccoP gene (top panel). This hypothesis is particularly well supported by the high degree of structural conservation between the
carboxy-terminal segment (encompassing the third heme domain) of CcoP and the heme domains of c5 (heme domains in grey). Specifically, residues
359–439 of CcoP share 74% identity with the corresponding C-terminal segment of c5 and 47% with the first heme domain of c5 (bottom panel, the
two cysteine and single histidine residues found in a CXXCH motif required for disulfide bonding to the vinyl groups of heme are shown in red).
Secondly, such a scenario would account for the presence of the AlaSerPro-rich region (in green) between the second and third CcoP heme domains
that is similar in sequence composition and length to the equivalent interdomain segment of c5. Finally, both of these same stretches each bear
serine occupancy sites for the O-linked glycosylation [50].
doi:10.1371/journal.ppat.1001055.g009

Figure 10. Proposed pathway for electron transfer from NADH
to nitric oxide, oxygen and nitrite in N. meningitidis and N.
gonorrhoeae. Electron flow from cytoplasmic reductants (NADH,
succinate, etc. shown as [H]) to terminal electron acceptors NO, O2,
and NO2 are shown by arrows. The unique pathway associated with the
tri-heme CcoP form in N. gonorrhoeae (absent in N. meningitidis) is
designated by the red arrow. UQ, ubiquinone; NirK, nitrite reductase;
NorB, nitric oxide reductase. The model is based on data from this work
and that found in [51,52,78].
doi:10.1371/journal.ppat.1001055.g010
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circuitry might facilitate fine-tuning of the partition of electrons

between the oxygen and nitrite reduction pathways. Such a system

might be particularly useful when both electron acceptors are

available but vary dynamically in relative abundance. Further

studies of ccoP status in neisserial species are warranted as the

number of strains examined here was restricted and some findings

may be subject to sample bias. This concern may be particularly

relevant to the N. meninigitidis isolates carrying capsule null loci (cnl)

and N. lactamica isolates used here that were derived from carriage

studies within the United Kingdom as well to other commensal

species for which the data set is small. Nonetheless, the ccoP tri-

heme allele is present in all Neisseria species for which data are

available and it is conspicuously absent in any other species

including members of the most closely related genera in the family

Neisseriaceae such as Chromobacterium, Eikenella, Kingella, and Laribacter

and more distant relatives within Betaproteobacteria.

The SNP-associated ccoP allele suggests that N. meningitidis as a

clade has either undergone a relatively recent, dramatic reduction

in population size (with a ccoP SNP -bearing strain first to pass the

bottleneck) or that there has been a selective sweep of the SNP

allele through the population via natural genetic transformation.

Both scenarios are plausible given the relatively short time period

over which sequential bottlenecks associated with epidemic spread

can lead to clonal descent [43,56] and the well - established

capacity for frequent intraspecies recombination [57,58]. N.

meningitidis, N. lactamica and other commensal Neisseria species

inhabit the same apparent oropharyngeal niche and bi-directional,

interspecific genetic exchange of some loci occurs frequently [59].

We assume therefore that strains of N. meningitidis expressing tri-

heme CcoP and of N. lactamica and other commensal species

expressing di-heme CcoP arise but are purged due to reduced

fitness. Consistent with this idea, the low p-distances observed by

ClonalFrame for ccoP genes belonging to N. meningitidis, N. lactamica

and N. gonorrhoeae are indicative of the conserved nature within

species such that diversity may result in reduced fitness of the

organism. The lack of recombination observed by RDP3 analysis

(Table S3) among N. meningitidis, N. lactamica and N. gonorrhoeae

(when compared to those found in other Neisseria species which

exhibited higher p-distance values) further support this hypothesis.

Therefore, other as yet unidentified differences in gene repertoire

or expression are likely epistatic to ccoP.

An important aspect of this topic relates to which redox partners

carry out direct electron transfer to neisserial NirK. Although in vitro

studies have identified both azurins (members of the cupredoxin

family) and c-type heme cytochromes as electron donors to other

members of the blue, copper - containing nitrite reductase (CuNIR)

family [60,61], only rarely have the physiological contributions been

addressed in vivo. Although both N. meningitidis and N. gonorrhoeae

express a lipoprotein form of azurin termed Laz, it has been reported

that Laz is nonessential for growth under either aerobic or anerobic

conditions (in the presence of nitrite) [62]. A null mutation in the gene

encoding Cyt c550 protein was recently shown to disrupt NirK

dependent growth and nitrite utilization in Bradyrhizobium japonicum

[63]. Also, CuNIRs that carry c-type heme domains translationally

fused to the carboxy-termini of the nitrite reductase domain have

been identified in other proteobacterial species by genome mining

[64]. Perhaps most relevant, the recent high-resolution crystal

structure of a blue CuNIR together with a c-type cytochrome

provided conclusive evidence for the direct transfer of electrons

between these partners [65]. Based on the genetic interactions

established between cycB and ccoP here along with related

observations [42], we favor a model in which both of the

corresponding gene products directly donate electrons to NirK. A

prerequisite for such a model is that c5 and CcoP (presumably in the

context of cbb3) come in close contact with NirK. However, the NirK

lipoprotein in its active trimer form is proposed to be linked to the

outer membrane [66,67] while cytochrome cbb3 oxidases must be

integrated into the inner membrane in order to fulfil their role in

proton pumping essential to ATP synthesis. While the carboxy

terminal extensions (encompassing both the flexible LCR and distal

heme domain) found in CcoP and c5 might function to bridge a

potential periplasmic gap, more detailed studies of the spacial

distribution and organization of the structures involved are needed to

address this matter. Regardless of the molecular nature of electron

transfer between CcoP and NirK, our finding here that a component

of the oxygen reducing respiratory complex can be essential to the

activity of an alternative reductase is unprecedented.

In summary, these findings provide a novel perspective on the

evolution of species within the genus Neisseria. They also

demonstrate that microaerobic denitrification is a metabolic

pathway of major influence in these bacteria and support the

position that N. gonorrhoeae, N. lactamica and N. meningitidis fully

deserve their designation as a distinct species, because they are

clearly evolving independently. These findings also provide a

dramatic example of how evolutionary change at the molecular

level can be linked to metabolic innovation and its reversal as well

as demonstrating how genotype can be used to infer alterations of

the fitness landscape within a single host.

Materials and Methods

Bacterial strains, plasmids and growth conditions
A total of 71 N. meningitidis isolates initially employed in the

evaluation of the (MultiLocus Sequence Typing) MLST typing

method were used for ccoP sequence analysis [68]. The collection,

which was assembled to be representative of organisms causing

endemic and epidemic disease in the latter part of the 20th century,

included several isolates from each of seven recognised hyper-

invasive clonal complexes: (Sequence Type) ST-1, ST-5, ST-4,

ST-11, ST-32, ST-8, and ST-41/44 in addition, to isolates

belonging to clonal complexes ST-22, ST-23 and ST-13 (cc269) as

well as isolates with unique sequence types. A total of 11

unencapsulated N. meningitidis isolates containing the capsule null

locus were also investigated and these included isolates from clonal

complexes ST-53, ST-198 and ST-334 (Table S1). The non-

pathogenic Neisseria and N. gonorrhoeae isolates used for sequence

studies are listed in Table S2. All isolates described above were

grown overnight on Mueller Hinton agar supplemented with 5%

defibrillated sterile horse blood in a 5% CO2 atmosphere. DNA

was extracted using an IsoQuick Nucleic Acid Extraction kit (Orca

Research Inc.) according to manufacturer’s instructions. The

neisserial strains used for functional studies are described in

Table 1 and unless otherwise stated, all these strains were cultured

on conventional GC plates over night at 37uC, in the presence of

5% CO2 as described previously [69]. Aerobic cultures were

carried out in 7.5 ml of broth in 50 ml tubes shaken at 190 r.p.m

(SARSTEDT, Nümbrecht, D). Microaerobic culture was carried

out using 23 ml of GC broth, supplemented with 10mM

NaHCO3, in 25 ml Sterilin McCartney bottle shaken at 190

r.p.m. [35]. Where appropriate, cultures were supplemented with

5mM NaNO2. Growth was monitored by measuring the optical

density at 600 nm (OD600) in a WPA biowave CO 8000 Cell

Density Meter. E. coli DH5a and HB101 were used for plasmid

propagation and cloning experiments and were grown on Luria-

Bertani media (LB). Antibiotics were used at the following

concentrations for N. gonorrhoeae: chloramphenicol, 10mg/ml;

erythromycin, 8mg/ml; tetracycline, 4mg/ml; for N. meningitidis:

erythromycin, 8mg/ml; tetracycline, 20mg/ml; for E. coli: chlor-
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amphenicol, 30 mg/ml; erythoromycin 300mg/ml; kanamycin

50mg/ml; ampicillin 100mg/ml; tetracycline, 15mg/ml; streptomy-

cin, 100mg/ml. pUP6 is a derivative of pHSS6 that carries two

gonococcal DNA uptake sequences [70]. pGCC6 carries a

chloramphenicol resistance cassette and a lac promoter/operator

at an intergenic chromosomal site located between the gonococcal

genes lctP and aspC. Cloning in front of the lac promoter thus

allows for chromosomal integration of the insert between lctP and

aspC in N. gonorrhoeae and subsequent IPTG inducible expression

[71]. Isolation and purification of plasmid DNA was performed

using QIAprep Spin Miniprep columns according to manufactur-

ers specifications (Qiagen, Chatsworth, CA, U.S.A). The nucleo-

tide sequences of all clones and constructs were determined from

plasmid DNA or from PCR products by ABI 3730 high-

throughput capillary electrophoresis sequencing.

Nucleotide sequence determination of ccoP alleles
Amplification and sequencing of ccoP genes from strains

described in Tables S1 and S2 were completed using the primers

listed in Table S4. PCR amplification consisted of a denaturation

step at 94uC for five minutes followed by 30 cycles of 94uC for

30 s, 55uC for 30 s, and 72uC for three minutes. PCR products

were PEG purified and sequenced directly by cycle sequencing

with BigDye Ready Reaction Mix (Applied Biosystems) according

to manufacturer’s instructions and using an ABI 377 automated

DNA sequencer.

Sequence data manipulation and analysis
Nucleotide sequence data for forward and reverse strands were

assembled with the STADEN software package [72], reformatted

into the Genetics Computer Group (GCG) format and aligned

manually using the Molecular Evolutionary Genetics Analysis

(MEGA) v4 software package [73]. Phylogenetic relationships

between individual sequences were inferred using ClonalFrame

v1.1 [74]. This software is based on a model of genetic

diversification that accounts for the way recombination occurs in

bacterial populations. This enables the inference of phylogenetic

relationships based on sequence data even if they are partly

incongruent due to recombination. Sequence data for all isolates

were input into ClonalFrame and default values were used for all

options. Three independent runs were performed, each consisting

of 300,000 iterations with 100,000 burn-in iterations. The

convergence of the Markov Chain Monte Carlo (MCMC) in the

different runs were judged satisfactory based on the Gelman-

Rubin test as implemented in ClonalFrame GUI interface. The

samples from the three runs were then concatenated for further

analysis with a 95% majority rule consensus tree constructed using

the ClonalFrame GUI. The consensus tree was then imported as a

newick file into MEGA v4 for further annotation. Calculations of

recombination tests were performed using RDP3 [74].

ccoP allele exchange between N. gonorrhoeae and
N. meningitidis

To exchange the endogenous ccoP locus of N. meningitidis with the

tri-heme ccoP allele of N. gonorrhoeae and vice versa, the endogenous

ccoP locus of N. gonorrhoeae with the di-heme ccoP allele of N. meningitidis,

the strains MC58 and VD300 were transformed with the plasmids

pUP6NGOccoP::mTnerm#22 and pUP6NMEccoP::mTnerm#17 re-

spectively, and selected on GC agar plates containing erythromycin

(each plasmid carries a transposon insertion downstream of the ccoP

stop codon, see Figures 6A and B).

Construction of a gonococcal strain expressing di-heme
CcoP

The premature stop codon was introduced into N. gonorrhoeae

ccoP by PCR-based splicing-by-overlap extension (SOE) reactions

into an otheriwse wildtype allele. Each pair of PCR fragments

containing the mutation was created using primers FE1141 (59-

CGGAATTCGAGCTCTCTTTATCTGTTTCCTGTTAGT-

AC-39) in combination with FE1156 (59-AACGGTTTCGTA-
GACCTATTTGCCATCCGCTTTGGCGGC-39), and FE1155

(59-CGGATGGCAAATAGGTCTACGAAACCGTTTGTGC-

CGCCTGCC-39) in combination with Av2045 (59-TTGGAC-

GACGGACGAAGTCTC-39) was used to make the second

overlapping PCR fragment. Altered base pairs including the

novel stop codon and an AccI restriction site (underlined) are

shown in bold. The overlapping PCR fragments were spliced

together using primers ccoP seq59 (59- TCGGTTATCTGGT-

TATGTATCC -39) and Av2044 (59-GAATACGCTCTCCC-

TCTTTACC-39). Purified PCR products were used to geneti-

cally transform N. gonorrhoeae strains [75] and correct transfor-

mants were screened for by AccI digestion of PCR fragments.

Direct DNA sequencing of PCR fragments derived from the

Table 1. Neisseria strains used in this work.

Strain
name

Parental
strain Relevant genotype Reference

VD300 MS11 Opa2 derivative of MS11 [79]

KS101 VD300 pilEind [70]

KS335 VD300 ccoP2x
a This study

KS336 VD300 cycB::tet This study

KS337 KS335 ccoP2x
a, cycB::tet This study

KS338 KS335 ccoPNgo
b This study

KS339 KS337 ccoPNgo
b, cycB::tet This study

KS340 VD300 ccoPNme
c This study

KS341 KS340 ccoPNme
c, cycB::tet This study

KS342 KS336 cycB::tet, iga::cycB This study

KS343 KS337 ccoP2x
a, cycB::tet, iga::cycB This study

KS344 KS101 ccoP::pUP6::ccoPd This study

KS351 KS101 ccoP2x
a This study

KS345 KS351 ccoP2x
a, lctP::ccoPind This study

KS346 KS345 ccoP2x::mTnerm26e, lctP::ccoPind This study

KS347 KS337 ccoP2x
a, cycB::tet, iga::cycB-ccoP This study

MC58 Wild-type serogroup B strain [80]

c5- MC58 cycB::tet [51]

KS348 MC58 ccoPNgo
b This study

KS349 c5- ccoPNgo
b, cycB::tet This study

KS350 MC58 lctP::ccoP This study

a)Di-heme form of N. gonorrhoeae CcoP made by changing codon number 362
from CAG to the stop codon TAG.

b)Di-heme form of ccoP exchanged by wildtype (tri-heme) N. gonorrhoeae ccoP
by using pUP6NGOccoP::mTnerm22 carrying a transposon insertion just
downstream of the endogenous stop codon.

c)N. gonorrhoeae ccoP exchanged by MC58 ccoP by using
pUP6NMEccoP::mTnerm17 carrying a transposon insertion just downstream of
the endogenous stop codon in MC58.

d)Tandem duplication of ccoP made by transformation with the plasmid
pUP6NGOccoP (Campbell-type integration).

e)The endogenous/wildtype ccoP2x locus in N. gonorrhoeae carries a transposon
insertion in the second heme domain inactivating the gene (see Figure 6B;
transposon labelled with double asterisk).

doi:10.1371/journal.ppat.1001055.t001
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transformants was done, using appropriate primer sets, to verify

the introduction of the stop codon and the absence of any other

alterations.

Mini-transposon mutagenesis of the ccoP locus
The N. gonorrhoeae ccoP gene along with 133 bp upstream of the

gene and 151 bp downstream of the gene was amplified using

primers FE1140 (59-TACTCTATATCGTCTTCAACAGG-39)

and FE1144 (59-CAAAAATATCAGTCGGTCTGACTGC-39).

The resulting PCR fragments were digested with unique, flanking

EcoRI/SacI sites and cloned into the polylinker of pUP6, yielding

plasmid pUP6NGOccoP. Similarly, the N. meningitidis ccoP gene

along with 133 bp upstream of the gene and 350 bp downstream

of the gene was amplified using primers FE1140 and FE1181 (59-

GCGGGATCCGAGCTCTTACAACAAATAGGCAGTCTG-

CG-39). The resulting PCR fragments was digested with unique,

flanking EcoRI/BamHI and cloned into the polylinker of pUP6,

yielding plasmid pUP6NMEccoP. Mini-transposon (mTn) muta-

genesis was performed on both pUP6NGOccoP and PUP6NMEc-

coP as previously described [76]. The series of mTn insertions,

conferring resistance to either chloramphenicol (mTncm) or

erythromycin (mTnerm), were isolated, mapped by PCR and

sequencing using appropriate primer sets, depending on the

location of the transposon insertion. Primer sequences and the

detailed location of each transposon insertion site are available

upon request.

Construction and expression of an ectopic de-repressible
ccoP allele

For construction of a gonococcal strain carrying an ectopic de-

repressible ccoP gene the coding region of ccoP and 20 bp of

upstream DNA, to include the RBS, was amplified by PCR from

N. gonorrhoeae strain VD300 by using the forward primer av2226 (59

- CGAAAACCTTAATTAATGTGATAACGGAGCAAAACA-

ATG - 39), PacI site underlined, and the reverse primer FE1144

(59 - CAAAAATATCAGTCGGTCTGACTGC - 39). The PCR

reaction was performed by Advantage HD polymerase (AH

diagnostics) to create blunt ends. The resulting PCR product was

cut with PacI and cloned into pGCC6, digested with PmeI and PacI,

at an intergenic chromosomal site located between the gonococcal

genes lctP and aspC and linked to the lac promoter/operator. The

resulting plasmid pGCC6NGOccoP was then used to transform

strain KS351 (ccoP2x) and transformants were selected for growth

on GC agar plates containing chloramphenicol. To inactivate the

ccoP allele from the endogenous locus, the N. gonorrhoeae strain

carrying the ectopic de-repressible ccoP allele (KS345) was

transformed with pUP6NGOccoP::mTnerm#26 (position of this

mTn insertion is labelled with two asterisks in Figure 6B) and

selected on GC agar plates containing erythromycin and 250mM

IPTG.

Construction of ccoP transposon insertion mutants in
N. gonorrhoeae

To create an N. gonorrhoeae strain carrying a tandem duplication

of ccoP, strain KS101 was transformed with pUP6NGOccoP and

transformants were selected on GC agar plates containing

kanamycin. PCR using appropriate primer sets was used to

confirm the correct (Campbell-type) integration of pUP6NGOccoP

on the chromosome. The resulting N. gonorrhoeae strain carrying a

tandem duplication of ccoP (KS344) was transformed with a series

of characterized pUP6NGOccoP::mTnerm and pUP6NGOccoP::

mTncm plasmids and transformants were selected on GC plates

containing erythromycin and chloramphenicol respectively. The

location of each transposon insertion, to either the expressed or

non-expressed copy of ccoP, was determined by PCR using

appropriate primer sets (available upon request).

Construction of ccoP transposon insertion mutants in
N. meningitidis

For this purpose, the wildtype N. meningitidis strain MC58 was

transformed with the plasmid pGCC6NGOccoP to create a strain

carrying an ectopic copy of N. gonorrhoeae ccoP. Transformants were

selected on GC agar plates containing chloramphenicol and

confirmed correct by appropriate PCR primer sets and immuno-

blotting followed by heme-staining to visualize expression of the

tri-heme form of CcoP. The resulting N. meningitidis strain (KS350)

carrying the ectopic N. gonorrhoeae ccoP and the wildtype strain

MC58 were transformed in parallel with a series of characterized

pUP6NMEccoP::mTnerm plasmids and transformants were select-

ed on GC plates containing erythromycin.

Construction of cycB mutants
To generate the cycB insertion mutants, [51] the plasmid cycB::tet

was introduced into MC58 and into VD300 by transformation and

transformants were selected for growth on GC agar plates

containing tetracycline. To obtain a complete deletion of cycB in

N. gonorrhoeae the primers FE2223 (59 - TCCGCAAAGCGGTG-

GAAATG- 39) and FE2220 (59 – GTTTAAACTGTCGCG-

GAGTTGTTTCATTTG - 39) were used to amplify an 800 bp

fragment of genomic DNA upstream of the cycB gene and the

primers FE2221 (59-TGAAACAACTCCGCGACAGTTTAAA-

CACTATATGGCAAACCAATCCGGTGC -39) and FE2225 (59

–TATTTTGACAAACCACCGGAG - 39) were used to amplify a

900 bp fragment of genomic DNA downstream of the cycB gene.

The PCR products contained regions of homology at the 39 end of

the upstream fragment and at the 59 end of the downstream

fragment such that they could be spliced together by PCR-based

splicing-by-overlap extension leaving out the entire cycB gene. This

was done by using the primers FE2224 (59–TTCATCCGGA-

CAAACGCGTTG -39) and FE2222 (59–AACCTGTCGCTC-

TACGGCGAAC- 39). The purified PCR product was used to

genetically transform N. gonorrhoeae by a non-selective transformation

technique [75], and correct transformants were screened for by

PCR using the primers FE2223 and FE2225. The absence of c5

expression, including the truncated c5 form seen in the cycB::tet

mutants, was verified by heme-stained blots of whole cell extracts.

Ectopic expression of cycB and a cycB-ccoP hybrid allele
in N. gonorrhoeae

Ectopic expression of cycB and the cycB-ccoP hybrid allele was

performed by cloning PCR amplified products into a unique SacI

restriction site in plasmid p2/16/1 [70], allowing integration into

the iga locus of the gonococcal chromosome. The resulting

plasmids were then used to transform the mutant KS337 (VD300

ccoP2x, cycB) and transformants were selected for growth on GC

agar plates containing erythromycin.

For cloning of the wildtype cycB allele the coding region including

about 250 bp of upstream DNA was amplified by PCR from N.

gonorrhoeae strain VD300 by using the forward primer c555F_SacI (59

– TGCAGAGCTCAATTGGCAAAGGTTATCTTGCG - 39) in

combination with the reverse primer FE2200 (59 – ATTCGAGCT-

CACACCCATTTGATGTCATTTCC - 39), SacI sites underlined.

The cycB-ccoP hybrid allele was constructed by PCR-based splicing-

by-overlap extension such that the region encoding the amino-

terminus of cycB encompassing the first c-type heme domain and

about 250 bp of upstream DNA was fused to the region encoding the
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third heme domain of ccoP. The relative spacing between the two

heme domains in the hybrid protein was maintained as seen for

wildtype cycB by facilitating a conserved stretch of four residues (Ala-

Ala-Pro-Ala) in the C-terminal end of the AlaSerPro-rich linker

domains. The cycB part of the hybrid allele, including about 250 bp of

upstream DNA, was amplified by PCR using the flanking primer

c555F_SacI in combination with the primer FE2216 (59 – TC-

CGCTTTGGCCGCAGGGGCTGCCGCACCCTTGTC – 39).

The region encoding the third heme domain of ccoP was amplified

by PCR using the flanking primer FE2218 (59 – CCGGGAGCT-

CATTCGATATGAATCCGGATTTCTG – 39), SacI site under-

lined, in combination with the primer FE2217 (59 – ACA-

AGGGTGCGGCCGCACCTGCCGCCAAAGCGGATG– 39).

The two overlapping PCR fragments were spliced together by using

the flanking primers c555F_SacI and FE2218.

Nitrite consumption assays
Nitrite concentrations in culture media were measured by a

colourimetric assay as previously detailed [51].

Protein gels, immunoblotting and detection of c-type
cytochromes

Whole-cell extracts for detection of c-type cytochromes were

prepared by harvesting bacteria from plates into 10mM Hepes

buffer pH 7.0, subjecting the suspension to 5 cycles of freezing and

thawing, and finally suspending the bacteria in 1% w/v n-dodecyl

b-D-maltoside (Sigma-Aldrich). After 10 min incubation at 50uC
samples were separated on 10% or 12% Criterion XT Precast

Gels (Bio-Rad Laboratories, Hercules CA, USA) and blotted onto

PVDF membranes. To visualize heme-dependent, peroxidase

activity of the c-type cytochromes, the membranes were first

incubated with SuperSignal West Pico Chemiluminiscent Sub-

strate, according to manufacturers instructions (PIERCE, Rock-

ford, IL. USA), and then exposed to X-ray film (GE Healthcare,

Buckinghamshire, UK) [77]. Immunoblotting was used to detect

expression of nitrite reductase NirK. For SDS-PAGE, whole cell

extracts were prepared from equivalent numbers of cells by

heating cell suspensions to 100uC for 3 min in SDS-sample

loading buffer. The primary antibody used to detect NirK was a

polyclonal rabbit antibody and was diluted 1:1000 [51].

Procedures for immunoblotting using alkaline phosphatase-

coupled goat anti-rabbit and goat anti-mouse antibodies have

been described previously [76].

Supporting Information

Figure S1 CcoP polymorphisms. Distribution of polymorphisms

along the 1, 336 nt of gene ccoP in the 33 alleles among Neisseria

species. The scale above the graph is in amino acids. CcoP

functional domains are represented as distinct blocks with green

blocks representing heme groups and the red bar depicting the

AlaSerPro-rich region. Black vertical bars above this represent

synonymous nucleotide polymorphisms with non-synonymous

polymorphisms depicted below the diagram. Red vertical bars

both above and below represent synonymous and non-synony-

mous polymorphisms respectively detected among N. gonorrhoeae, N.

lactamica and N. meningitidis isolates only. The asterisk (*) indicates

the position of the stop codon found among N. meningitidis isolates.

The vertical bars found beside to the left of the alignment beside

allele numbers indicate the species to which the ccoP alleles belong;

black: N. gonorrhoeae; red: N. lactamica; blue: N. meningitidis; green:

other Neisseria species including N. cinerea, N. polysaccharea, N.

subflava, N. mucosa, N. flavescens and N. sicca.

Found at: doi:10.1371/journal.ppat.1001055.s001 (7.54 MB

TIF)

Figure S2 Effects of CcoP domain alterations on aerobic and

microaerobic growth in N. meningitidis. Cultures of wild-type

(MC58) (open squares); ccoPNgo (KS348) (open circles); cycB (c5-)

(filled squares) and ccoPNgo, cycB (KS349) (filled circles) growing

under aerobic conditions (A) and under microaerobic conditions

without nitrite (B). The results shown are representative of three

independent experiments.

Found at: doi:10.1371/journal.ppat.1001055.s002 (0.10 MB

TIF)

Figure S3 Effects of CcoP domain alterations on aerobic and

microaerobic growth in N. gonorrhoeae. Cultures of wild-type

(VD300) (open squares); and mutants ccoP2x (KS335) (open circles);

cycB (KS336) (filled squares); ccoP2x, cycB (KS337) (filled circles);

ccoPNme (KS340) (open triangles); ccoPNme, cycB (KS341) (filled

triangles) growing under aerobic conditions (A) and under

microaerobic conditions without nitrite (B). The results shown

are representative of three independent experiments.

Found at: doi:10.1371/journal.ppat.1001055.s003 (0.09 MB TIF)

Figure S4 The cycB insertion mutant expresses a truncated c5

protein. The cycB gene, encoding the c5 protein, was disrupted by

insertion of a tetracycline resistance (TetR) gene [51]. The arrow

indicates the ensuing c5 ORF that terminates at residue 171

followed by eleven residues derived from sequences within the

tetracycline resistance gene insertion before a stop codon

(indicated by an asterisk). This results in a 182 residue c5 protein

retaining the membrane-proximal heme domain (in gray).

Found at: doi:10.1371/journal.ppat.1001055.s004 (0.05 MB TIF)

Figure S5 NirK expression during growth under microaerobic

conditions. N. gonorrhoeae strains: 1, wild-type (VD300) and mutants

2, cycB (KS336); 3, ccoP2x (KS335); 4, ccoP2x, cycB (KS337); 5,

ccoPNme(KS340); 6, ccoPNme, cycB (KS341); were grown under

microaerobic conditions plus 5 mM nitrite. Samples were taken

after one (1) and six (6) hours of growth, and whole cell lysates

were analyzed by immunoblotting with anti-NirK antibodies.

Found at: doi:10.1371/journal.ppat.1001055.s005 (0.15 MB

TIF)

Figure S6 Strategy for construction of a c5-CcoP translational

fusion. A translational fusion consisting of the amino-terminus of

c5, encompassing the first c-type heme domain, and the third c-type

heme domain of CcoP was made by exploiting a conserved stretch

of residues (Ala-Ala-Pro-Ala, underlined) in the AlaSerPro-rich

linker domains. Also underlined are the two cysteine and single

histidine residues found in a CXXCH motif required for disfulfide

bonding to the vinyl groups of heme. The total number of amino

acids (and thus the relative spacing) between the two c-type heme

domains was maintained as seen for wildtype c5. The hybrid-

encoding gene was then expressed from an ectopic site.

Found at: doi:10.1371/journal.ppat.1001055.s006 (15.81 MB

TIF)

Table S1

Found at: doi:10.1371/journal.ppat.1001055.s007 (0.15 MB

DOC)

Table S2

Found at: doi:10.1371/journal.ppat.1001055.s008 (0.09 MB

DOC)

Table S3

Found at: doi:10.1371/journal.ppat.1001055.s009 (0.04 MB

DOC)
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Table S4

Found at: doi:10.1371/journal.ppat.1001055.s010 (0.03 MB

DOC)
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