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Abstract

Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain
membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of
Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal
budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to
the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the
IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in
IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the
daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that
IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where
Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites.
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Introduction

The group known as alveolata unites apicomplexan parasites,

dinoflagellates and ciliates to a novel infrakingdom [1]. Despite the

large morphological differences between the phyla they share an

endomembrane system underneath the plasma membrane comprised

of membranous sacs named alveoli [2]. Apicomplexan parasites are

enclosed by a pellicle comprising the plasmalemma beneath which

double membraned aleveolin sacs are forming the Inner Membrane

Complex (IMC). Several homologues of apicomplexan IMC-

proteins, called alveolins, have been identified in other alveolates,

demonstrating a common origin of the alveoli/IMC [3,4].

The IMC plays a central role during intracellular parasite

replication and as an anchor for the machinery driving gliding

motility and invasion of the host cell during the extracellular state

of the parasite [5,6]. Beneath the pellicle and closely associated

with it is the sub-pellicular network, which connects the pellicle to

the cortical microtubules that originate from the microtubule

organising centres (MTOC) at the apical tip of the parasite [7,8].

This association results in extraordinary mechanical strength and

flexibility that is further increased by the fact that the sub-

pellicular microtubules are unusually stable [9].

Given the importance of the IMC as an anchor for the gliding

machinery in apicomplexan parasites, research has focused on the

identification and characterisation of proteins residing or anchored

within the IMC (i.e. IMCs, GAPs [3,4,8]). However, the mech-

anisms involved in the biogenesis of the daughter cell IMC are

unknown. Early studies have suggested that clathrin coated vesicles

are generated at the single Golgi-apparatus of the parasite and

subsequently delivered to the IMC [10]. However, functional loss

of the Golgi-localised dynamin-related protein B (DrpB) does not

result in a defect in IMC formation [11]. Duplication of the Golgi

is among the earliest visible event of parasite replication and

shortly precedes the onset of IMC biogenesis [12,13]. It has been

speculated that the early establishment of a polarised secretory

system is a prerequisite for the formation of the daughter cell IMC

[6]. As mentioned above, the IMC is in tight contact with the sub-

pellicular microtubules [14] and microtubule formation is at least

temporally linked to IMC biogenesis during daughter cell

formation [15].

Recently it has been suggested that the actin like protein 1

(Alp1) is involved in IMC formation, since overexpression of Alp1

disrupts IMC formation in Toxoplasma gondii [16]. Similarly

MORN1 (a protein with a membrane occupation and recognition
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nexus motif) has been demonstrated to localise to the basal

complex and the centrocone (a unique apicomplexan structure

associated with the intranuclear spindle) during daughter cell

assembly [17,18,19]. Overexpression or deletion of MORN1

results in defects in parasite replication due to a failure in

centrocone formation [17,20].

We recently characterised the small Rab-GTPase Rab11A as an

essential component of the cell division machinery. Conditional

ablation of Rab11A function results in a late block in cytokinesis that

also affects the late maturation of the IMC. In particular we

demonstrated that late components that are anchored in the IMC,

such as the glideosome, are not associated with the IMC of the

daughter cells [21]. Since ablation of Rab11A function does not lead

to a block in IMC biogenesis itself, other factors must exist that are

required for vesicular trafficking to this unique compartment.

Since alveolins are unique to this group of organisms we

speculated that a specific Rab-GTPase must be essential in this

process and identified Rab11B as an alveolate specific sub-family

of Rab11-GTPases. Using T. gondii as a model organism we found

that Rab11B localises to the Golgi-apparatus in resting parasites,

while in replicating parasites Rab11B accumulated at the IMC of

the growing daughter parasites. Conditional ablation of Rab11B

function led to a loss in IMC biogenesis, demonstrating that this

GTPase is essential for the transport of vesicles to the IMC during

daughter cell assembly. Nevertheless, formation of sub-pellicular

microtubules still occurs in absence of Rab11B function. We

present a model, summarising our current and previous findings

on the molecular mechanisms involved in biogenesis and

maturation of the IMC during replication of T. gondii.

Results

Rab11B a Novel Member of the Rab11 Family that is
Conserved only in Alveolates

Rab-GTPases play a crucial role in the regulated delivery of

vesicles from a specific donor to an acceptor compartment [22].

Given that the alveoli represent a unique organelle in the

Alveolata we speculated that the presence of a unique Rab-

GTPase might be the molecular basis for the evolution of this

unique organelle. Therefore we searched the OrthoMCL-database

(www.orthoMCL.org) for Rab-GTPases that are conserved in

alveolates but are absent in other eukaryotes. The only alveolate

specific Rab-GTPase identified in this search, i.e. Rab11B,

belonged to orthology group OG4_21991 (Table S1). Interestingly

the second Rab11 gene (Rab11A) was grouped as a regular Rab11

orthologue together with Rab11 proteins of other eukaryotes,

including red algae and human. Sequence alignments suggest

several unique features of Rab11B when compared to ‘‘conven-

tional’’ Rab11 proteins. We identified several unique amino acid

substitutions, most notably in the P-loop region that is essential for

Mg2+ and GTP-binding and in the effector (switch) regions that

contain binding motifs for Rab-associated, regulatory proteins

(Figure S1) [23,24].

We next performed a phylogenetic analysis of Rab11-GTPases

that confirmed that the two Rab11-members of Alveolata differ

significantly from one another (alignment can be downloaded as

dataset DataS1). While Rab11A groups together with the Rab11

sequences from other eukaryotes (albeit without strong bootstrap

support), Rab11B forms a strongly supported, clearly distinct clade

that only contains alveolate homologues (Figure 1). Interestingly,

Rab11 has undergone independent gene duplications in several

taxa (i.e. plants, animals, fungi). However, the phylogenetic trees

do not allow us to determine if the presence of two types of

alveolate Rab11-GTPases is due to an ancestral, phylum-specific

gene duplication, or if one of the two copies has been introduced

via the secondary endosymbiosis of a red alga that took place

during the evolution of the chromalveolate lineage [25]. Although

the proximity of the red algal Rab11 sequences to alveolate

Rab11A in the phylogenetic tree (Figure 1) is suggestive of the

second scenario, the lack of bootstrap support for this affiliation

and the absence of further evidence for a potential shared ancestry

of alveolate Rab11A and red algal Rab11 leave this issue

unresolved.

In summary we found that Rab11B is a unique homologue of

the Rab11 family of small GTPases that can only be found in the

Alveolata.

Rab11B Cycles between the Golgi and the Inner
Membrane Complex of the Daughter Parasites

To analyse the role of Rab11B, we used Toxoplasma gondii as a

model system. Since the location of most Rab-GTPases is

determined by geranylation of C-terminal cysteines, we decided

to express N-terminally tagged versions of Rab11B. Therefore we

generated two constructs for the localisation study and generated

stable transfected parasites. The first construct allowed expression

of a myc-tagged version of Rab11B under control of its own

promoter region (pRab11B) to ensure correct timing of expression.

The second construct allowed expression of a ddFKBP-tagged

copy of Rab11B and therefore tuneable control of the protein level

[26], which minimises the risk of overexpression phenotypes at low

inducer concentrations. We found identical location and behav-

iour of the transgenic Rab11B-versions (Figure 2 and Figure 3A).

The location of Rab11B was highly dynamic and strongly

dependent on the cell cycle of the parasite. In resting parasites

(prior to the occurrence of the daughter cell IMCs) Rab11B was

concentrated at the apical side of the nucleus (Figure 2A,B,C

upper panels). During cell division Rab11B accumulated at the

growing IMC of the developing daughter cells (Figure 2A,C

middle panels). This accumulation was observed until endodyo-

geny of the parasites has been completed and daughter parasites

bud out from the mother cell (Figure 2A,B lower panels).

We confirmed that in resting parasites the observed accumu-

lation of Rab11B close to the nucleus corresponds to the single

Golgi-stack [13,12] as demonstrated by co-localisation with the

Golgi-marker GRASP-RFP [27], while in dividing parasites

Rab11B accumulated with the IMC of the developing daughter

parasites (Figure 2B,C).

Author Summary

Apicomplexan parasites belong to a group of protists
known as alveolata that also includes ciliates and
dinoflagellates. One of the few morphological similarities
within this group is the presence of membranous sacs
beneath the plasma membrane, called alveoli. In the case
of apicomplexan parasites, alveoli are well developed and
described as the Inner Membrane Complex (IMC) that
serves as a scaffold for the machinery driving gliding
motility and host cell invasion. Given the unique nature of
this organelle we aimed to identify key factors that are
involved in its formation. We identified a unique family of
Rab11-GTPases in Alveolata. Using Toxoplasma gondii as a
model system, we show that this small GTPase is essential
for the delivery of vesicles from the Golgi to the nascent
IMC of the daughter parasites. Interestingly, biogenesis of
the IMC is not linked to the formation of subpellicular
microtubules. We propose a model where the action of
Rab11B is necessary for IMC formation.

IMC Biogenesis by Rab11B
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Likewise, in parasites co-expressing ddRab11Bwt and mCherry-

tagged alpha-Tubulin we found that Rab11B co-localised with the

nascent IMC of the daughter cells at the onset of endodyogeny

(Figure 2C).

In conclusion our localisation study indicated that Rab11B is

cycling between the Golgi and the IMC of the forming daughter

cells and strongly suggested a role of Rab11B in the vesicular

transport of vesicles from the Golgi to the IMC.

Expression of a Dominant-Negative Rab11B
During the delivery of vesicular material from a donor- to an

acceptor-membrane Rab-GTPases cycle between the different

compartment [28]. In order to characterise the function of Rab

proteins different strategies, including overexpression and expres-

sion of dominant negative versions of the respective Rab-protein

have been employed (see for example [29,30]).

To functionally analyse the role of Rab11B we generated a

construct for the expression of a dominant negative version of

Rab11B. Therefore a point mutation was introduced in the

GTPase domain at position 125 exchanging an asparagine to

isoleucine that locks the protein in the GDP bound form [21]

(supplementary Figure S1). We generated parasites stably

expressing ddRab11BN125I and confirmed that the protein can

be efficiently regulated in dependence of Shld-1 as evident on

immunoblot and immunofluorsecence microcopy (Figure 3A,C).

As expected the GDP-locked Rab-protein featured a rather

vesicular pattern in the cytosol of the parasite (Figure 3A, 4A).

The ddFKBP-system allows a rapid stabilisation of protein levels

and we previously demonstrated that upregulation of dominant

negative Rab11A in extracellular parasites results in a significant

decrease in host cell invasion [21,26]. In contrast, upregulation of

dominant negative Rab11B did not have any effect on the ability

of the parasites to invade the host cell (data not shown). Instead we

found that stabilisation of ddRab11BN125I results in a block in

intracellular growth of the parasite with a strong phenotypic defect

on the formation of the IMC (Figure 3A and Figure S2). The

defect is consistent with almost complete growth inhibition with

the absence of visible plaques in the growth assay (Figure 3B lower

panel). Interestingly, nuclear division took place in parasites

expressing the dominant negative Rab11B, while IMC formation

is completely disrupted ultimately leading to the formation of

multinucleated cells (supplementary Figure S2, Figure 3A).

Prolonged growth in the presence of the ligand subsequently

leads to a collapse of the mother cell. In contrast parasites

expressing wild type Rab11B showed a relatively mild effect on

IMC biogenesis that can only be detected at a high ligand

concentration (.0.5 mM, Figure 3A,B). The results are consistent

with the determined protein level from whole – cell – extract on

western blot, which indicated that the wild-type protein can be

expressed at much higher concentrations compared to the

dominant – negative protein. In case of the wild type protein

maximal stabilisation can be reached already at low inducer

concentration (,0.1 mM Shld-1), when no phenotype can be

observed. In comparison the dominant negative version of

Rab11B is barely detectable at inducer concentrations that lead

to a complete growth inhibition (,0.1 mM Shld-1; Figure 3C).

Rab11B is Essential for Early Steps in the Biogenesis of
the Daughter IMC

In the developing daughter cells the biogenesis of the IMC

proceeds in a stepwise process associated with a lateral growth and

a subsequent maturation comprising the final assembly of the

gliding machinery [21,31]. To define the step of IMC biogenesis

that requires Rab11B, we investigated the fate of different

components of the IMC, such as the early components IMC1 (a

structural element of the sub-pellicular network [8]) and the

gliding associated protein 50 (GAP50) (an anchor protein for the

pre-assembled glideosome complex, [31]) and late components

such as the proto-glideosome associated proteins (GAP45, MyoA

and MLC1; [31]). We found that stabilisation of ddRab11BN125I

results in mislocalisation of early components during IMC

assembly. This apparent lack of IMC biogenesis results in

multinucleated parasites that maintained the IMC of the original

mother cell (Figure 4B, see signal for IMC1 and GAP50).

Similarly, late components of the IMC were only identified at

the IMC of the mother cell (Figure 4A,B). Moreover, in case of the

motor protein MyoA and its light chain MLC1, we observed

several cases, where MLC1 is associated with filament like

structures that lack a signal for MyoA (Figure 4A, lower panel).

We were also interested if other steps are affected during the

intracellular development of the parasite, such as biogenesis of the

apically localised secretory organelles (micronemes and rhoptries).

Although biogenesis of these organelles appeared to take place in

absence of IMC formation, we observed several cases where the

organelles were more randomly distributed within the parasites,

indicating a loss of cell polarity due to the apparent lack of IMC

biogenesis (Figure 5A, B). We also confirmed that SAG1 (surface

antigen 1) is normally localised in the plasmamembrane of the

mother cell (Figure 5C).

In addition, we did not observe significant effects on the

duplication and segregation of mitochondria or apicoplast

(Figure 5D,E). Together these data demonstrate that Rab11B is

exclusively required for the formation of the IMC.

Expression of Rab11BN125I does not Affect Segregation of
the Golgi and Formation of the Sub-pellicular
Microtubules

So far our analysis indicated that Rab11B plays a role in the

transport of vesicles from the Golgi to the nascent IMC of the

daughter cells. Since biogenesis of secretory organelles appeared to

be unaffected (Figure 5A,B), we predicted that expression of

Figure 1. Alveolate organisms possess two distinct types of Rab11 homologues. (A) This tree, which presents the best maximum likelihood
(ML) phylogeny out of 12 trees (ln likelihood = 213,028.03), clearly shows the two distinct apicomplexan Rab11 subfamilies Rab11A and Rab11B.
While the Rab11B cluster includes several alveolate sequences from outside the Apicomplexa and is well supported by the bootstrap analysis, the
apicomplexan Rab11A sequences are situated among the larger diversity of eukaryote Rab11 homologues, usually in close proximity to Rab11 from
red algae. The apicomplexan Rab11A cluster is generally unsupported by the bootstrap analysis but does occur as a monophyletic unit in some trees:
panel (B) shows the corresponding branch of another ML tree with a slightly lower likelihood (ln likelihood = 213,033.89). Bootstrap support values
(100 replicates) for ML and Neighbor-Joining (NJ) analyses are indicated above and below the relevant branches, respectively, where they are greater
than 50. GenBank accession numbers are indicated in the figure behind the genus names. Species names: Arabidopsis thaliana, Aspergillus flavus,
Babesia bovis, Chlamydomonas reinhardtii, Cryptococcus neoformans, Cryptosporidium hominis, Cryptosporidium parvum, Cyanidioschyzon merolae,
Danio rerio, Dictyostelium discoideum, Drosophila melanogaster, Entamoeba histolytica, Gracilaria lemaneiformis, Homo sapiens, Leishmania major,
Monosiga brevicollis, Neurospora crassa, Paramecium tetraurelia, Perkinsus marinus, Phaeodactylum tricornutum, Phytophthora infestans, Picea
sitchensis, Plasmodium falciparum, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Tetrahymena thermophila, Thalassiosira pseudonana,
Theileria parva, Toxoplasma gondii, Trichomonas vaginalis, Trichoplax adhaerens, Trypanosoma cruzi, Ustilago maydis.
doi:10.1371/journal.ppat.1001029.g001
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Rab11BN125I has no direct effect on the Golgi apparatus. In fact,

segregation of the Golgi appeared normal, since each nucleus was

associated with a Golgi apparatus (Figure 6A). To examine

whither steps upstream of IMC formation might be affected, we

analysed the location of MORN1, a marker of the centrocone/

nuclear pole and the posterior polar ring of the pellicle of the

mother cell [17]. The typical location of MORN1 at the

centrocone and posterior pore of the mother cell appeared

relatively normal. However, the abrogation of IMC biogenesis

appeared to block the development and relocation of the posterior

polar rings normally associated with daughter cell formation,

resulting in multinucleated parasites with MORN1 positive

centrocones and absence of formation of posterior polar rings in

the cytoplasm (Figure 6B,D). Interestingly, we found that

abrogation of IMC biogenesis did not lead to a block in formation

of the sub-pellicular microtubules. Thus, elongation of the sub-

pellicular microtubules appears independent from the formation of

the daughter IMC (Figure 6C,D and see below). We verified that

in absence of IMC biogenesis nascent sub-pellicular microtubules

were not associated with a MORN1 ring (Figure 6B,D).

Together these results demonstrate that the maturation and

formation of the posterior polar ring is dependent on IMC

Figure 2. Dynamic location of Rab11B between the golgi and the nascent IMC during cell division. (A) Immunofluorescent analysis of
parasites expressing the wild type Rab11B under control of the endogenous promoter (pRab11Bwt). Parasites were double-labelled with anti-myc
(red) and anti-IMC1 (green) to visualise Rab11B and IMC1. Rab11B cycles from a location close to the nucleus (interphase parasites in upper panel) to
the growing IMC of the daughter parasites (dividing parasites in middle and lower panel) in a cell cycle dependent manner. (B) Immunofluorescent
analysis of parasites expressing ddRab11Bwt and the Golgi marker (GRASP-RFP in red) in presence of 0.1 mM Shld-1 for 24 h. Parasites are labelled with
anti-myc antibody (green). Rab11B localises to the Golgi at the initial phase of cell division (upper panel and inlet) and accumulates to the nascent
IMC of daughter parasites during endodyogeny (see A,C middle panel). After endodyogeny is completed Rab11B again accumulates at the Golgi
(lower panel and inlet). (C) Immunofluorescent analysis of parasites expressing the ddRab11Bwt and the a-tubulin marker (mCherry-a-Tubulin in red)
in presence of 0.25 mM Shld-1 for 24 h. Parasites are labelled with anti-myc antibody (green). At the onset of endodyogeny (upper panel) Rab11B
accumulates to the newly assembled conoid of the daughter cells. Later becomes concentrated along the daughter scaffold throughout
endodyogeny (middle and lower panel). Scale bars represent 5 mm.
doi:10.1371/journal.ppat.1001029.g002

IMC Biogenesis by Rab11B

PLoS Pathogens | www.plospathogens.org 5 July 2010 | Volume 6 | Issue 7 | e1001029



biogenesis, while segregation of the centrocone and Golgi and

polymerisation of sub-pellicular microtubules is independent of

vesicular transport from the Golgi to the IMC of the forming

daughter cells.

Ultrastructural Analysis of Dominant-Negative Expressing
Rab11B

To verify the results obtained from light microscopy we

performed ultrastructural analysis of ddRab11BN125I expressing

Figure 3. Functional loss of Rab11B results in the disruption of the daughter cell IMCs. Analysis of parasites expressing an ectopic copy of
ddRab11Bwt or ddRab11BN126I. (A) A Shld-1 concentration gradient with the clonal ddRab11Bwt (upper panel) and ddRab11BN125I (lower panel) using
immunofluorescent analysis. Parasites were double-labelled with anti-myc (red) to visualise Rab11B and anti-IMC1 (green). Parasites expressing
ddRab11BN125I show a severe defect on the IMC formation at low Shld-1 concentration. In contrast, ddRab11Bwt expressing parasites demonstrate a
relative weak phenotypic deformation of the IMC at high Shld-1 concentrations. Scale bar represents 5 mm. (B) Growth analysis of the indicated
parasites grown on HFF cells for 7 days. In the ddRab11Bwt expressing parasites plaque size is slowly reduced with increasing Shld-1 concentrations
(upper panel). In the dd-Rab11BN125I parasites growth is strongly inhibited at low concentrations of Shld-1 and completely absent at concentrations
,0.5 mM Shld-1 (lower panel). Scale bar represents 5 mm. (C) Immunoblot analysis of clonal ddRab11Bwt (left) and ddRab11BN125I (right) transfectans.
Rising levels of the fusion proteins (40 kDa) can be detected in presence of increasing Shld-1 concentrations. For detection of Rab11B the blot was
probed with anti-FKBP12 (Affinity BioReagents). MIC8 served as internal loading control. Note that in presence of 0.1 mM Shld-1 ddRab11Bwt is almost
fully stabilised, whereas ddRab11BN125I is barely detectable.
doi:10.1371/journal.ppat.1001029.g003
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parasites. Parasites were grown in presence or absence of Shld-1

and analysed after 24 and 36 hours, as indicated (Figure 7 and 8).

At both time points, the samples not treated with Shld-1

possessed large parasitophorous vacuoles (PV) with multiple

daughters (2–16) showing evidence of repeated endodyogeny

(Figure 7A). In contrast, the parasites in the Shld-1 treated samples

display a range of features. Most PVs contain few parasites (2–4)

and a high proportion of these displayed abnormal features. Many

of the parasites were enlarged and more spherical in appearance

(lost their polarised shape, Figure 7B,C,D). In a number of

parasites there appeared to have been nuclear division with

multiple nuclei distributed through the cytoplasm with no evidence

of the initiation of daughter formation (Figure 7B). However, in

others there was a large nucleus with an elongated and lobated

appearance (Figure 7C). In addition, in many parasites there was

evidence of the early stages of daughter formation (Figure 7D).

Unlike normal endodyogeny with the initiation of two daughters,

there was evidence for the simultaneous initiation of up to eight

daughters associated with the multiple nuclei (Figure 7D). These

were identified by the formation of conical structures with a

central conoid (Figure 7D,E). However, on closer examination,

these daughter anlagen were abnormal in lacking the double unit

membranes (Figure 7E,F) of the IMC but in certain cases it was

possible to identify what appear to be unfused vesicles located

along the anlagen (Figure 7E). This was slightly variable and

certain parasites did have some remnants of the IMC

(Figure 8C,D). In all cases it was possible to identify the sub-

pellicular microtubules running posteriorly from the conoid

forming the typical conical shape associated with early daughter

formation (Figure 7E,F,8A,B). There was also evidence of some

electron dense material which may represent the sub-IMC cortical

material (Figure 7F). The sub-pellicular microtubules of these

atypical anlagen stretched for a short distance and could be seen

partial enclose the apicoplast but not the nucleus. In certain

parasites, it was noted that typical bulbous rhoptries and

micronemes, not normally present in early daughters, could be

associated with these structures (Figure 8A,B). However, due to the

limited nature of daughter formation, these multiple apical

complexes were randomly distributed throughout the cytoplasm,

which would explain the immuno-fluorescent images (Figure 5B

and 8A). The apicoplast appeared normal and had undergone

division. In fact the division of the nucleus and the simultaneous

formation of multiple daughters and their location are similar to

that undergone during endopolygeny -prior to IMC biogenesis- in

the coccidian stages in the cat intestine (compare Figure 7B and D

with 5C in [48] and Figure 2A in [19] respectively).

Discussion

The three layered pellicle consisting of the plasma membrane

and the alveolar sacs is a unique structure in Alveolata [2]. This

system plays a crucial cytoskeletal role in apicomplexan parasites,

where the so called IMC has not only a structural function but is

also crucial for the special mode of locomotion, called gliding

motility [5] and the specialised form of intracellular cell division.

There are three diverse mechanisms of cell division in Apicom-

Figure 4. Phenotypic analysis of the IMC formation in dd-
Rab11BN125I expressing parasites. (A) ddRab11BN125I parasites co-
expressing YFP-MyoA (green) were treated without and with 1 mM Shld-
1 for 24 h. For detection of the dominant negative Rab11B, parasites
were labelled with anti-myc (red). (B) ddRab11BN125I parasites co-
expressing different YFP-tagged components of the glideosome/IMC
(green) were treated without and with Shld-1 for 24 h. In absence of
Shld-1 Gap50 can be identified in the IMC of first- and premature
second-generation daughter parasites, while Gap45 can only be
detected in the mature IMC (upper panel). In presence of Shld-1, early
and late components appear comparably affected during IMC assembly.

Initial nucleation of the daughter IMC can still take place (white arrow,
second panel). MLC1 remains restricted to the pellicle of the first
generation mother cell, while only a faint staining of IMC 1 can be
detected (white arrow, middle panel). MLC 1 and MyoA only co-localise
at the IMC of the mother, while MLC1 also accumulates close to the
nucleus of forming daughter cells (white arrow, last panel). Scale bars
represent 5 mm.
doi:10.1371/journal.ppat.1001029.g004
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plexa termed schizogony, endopoly- or endodyogeny in respect to

time point of karyokinesis and cytokinesis [6,19]. In all cases a

major process during cell division involves the biogenesis of the

scaffolding IMC/cytoskeleton complex. Once the replication of

the daughter parasites is initiated the de novo synthesis of the apical

organelles and the fission of the endosymbiotic organelles take

place [12,18].

During all these steps the parasite has to efficiently coordinate

and control its vesicular traffic to ensure proper timing of organelle

biogenesis and proper transport of the respective cargo to the

Figure 5. Fate of the secretory organelles and mitochondrial division in dd-Rab11BN125I expressing parasites. (A,B and C)
Immunofluorescent analysis of ddRab11BN125I expressing parasites incubated in absence and presence of Shld-1 for 24 h and stained with the
indicated antibodies. In presence of Shld-1 the organelles are still formed, although the organelles lose their apical localisation (see also Figure 7, 8).
SAG1 appears to be correctly localised to the plasma membrane of the mother parasite indicating functional transport of GPI-anchored proteins to
the surface.(D and E) ddRab11BN125I parasites co-expressing the mitochondrial marker HSP60-RFP (red) or the apicoplast marker FNR-RFP (red) were
treated without and with Shld-1 for 24 h and subsequently labelled with anti-IMC1 (green). In presence of Shld-1 mitochondrial division and
apicoplast segregation appeared normal. Scale bars represent 5 mm.
doi:10.1371/journal.ppat.1001029.g005
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nascent organelles [32]. The importance of vesicle trafficking for

the formation and maturation of the IMC has been previously

suggested based on ultrastructural studies that implicated Golgi-

derived, clathrin coated vesicles in IMC biogenesis [10]. In fact

our own data support this observation, since a mutant parasite for

the clathrin heavy chain (CHC1) is not capable of forming an IMC

or secretory organelles (Breinich et al., in preparation).

Given the fact that the Alveolata evolved unique organelles

linked to the secretory traffic, we speculated that an alveolate

specific trafficking factor must be responsible for the vesicular

transport to these organelles. We recently demonstrated that an

alveolate specific mechanoenzyme, the dynamin-related-protein B

(DrpB), is essential for the biogenesis of the specialised secretory

organelles (micronemes, rhoptries and dense granules) [11].

Here we identified the alveolate specific Rab-GTPase, Rab11B

as essential for IMC formation during endodyogeny in T. gondii.

The genomes of these organisms contain two types of Rab11

homologues, with the Rab11B gene apparently being present in

multiple almost identical copies in some taxa like for example the

ciliate Paramecium (e.g. accession numbers CAI44564 and

CAI44529) and the oyster pathogen Perkinsus (e.g. EER08226

and EER20492). Interestingly, Rab11 genes have been duplicated

independently also in several other phyla with multiple copies

being found for example in plants, vertebrates and the protozoans

Trichomonas and Entamoeba (Figure 1; see also e.g. [33,34]), which is

similar to the situation found for other trafficking factors, such as

Rab5 [35,36]. However, in the case of alveolate Rab11 we found

that the sequences comprising the two groups Rab11A and

Rab11B are highly distinct and have been derived either by a gene

duplication event in an early ancestor of the alveolates, or, as one

may argue, by the secondary endosymbiotic uptake of a red alga,

in agreement with the chromalveolate hypothesis [25]. However,

in the absence of further corroborating evidence our analyses

cannot definitely determine the origin of the alveolate Rab11

homologues. T. gondii Rab11B is specifically required for the

biogenesis of the IMC during replication of the parasite. We

demonstrated that Rab11B shows a highly dynamic, cell cycle

dependent location between the Golgi and the IMC of forming

daughter parasites.

Functional loss of Rab11B resulted in a specific defect in the

morphology and the assembly of the IMC. Surprisingly, we found

that a block of IMC membrane biogenesis has no direct effect on

the formation of conoid or sub-pellicular microtubules of the

daughter parasites. In contrast, treatment of intracellular parasites

with the plant herbicide oryzalin causes a block in polymerisation

Figure 6. Absence of IMC biogenesis does not interfere with
formation of sub-pellicular microtubules. (A) ddRab11BN125I

parasites co-expressing the Golgi marker GRASP-RFP (red) were treated
without and with Shld-1 for 24 h and labelled with the indicated
antibodies (green). In presence of Shld-1 no IMC is formed, but nuclear
and Golgi division appears normal (B) ddRab11BN125I parasites co-
expressing IMC1-YFP (green) were grown in absence and presence of
Shld-1 for 24 h and subsequently labelled with anti-MORN1 (red). In
presence of inducer the centrocone close to the nucleus appears
normal (arrow head). However, disruption of IMC formation inhibits
formation and relocalisation of the posterior polar ring of daughter cells
(white arrow). (C and D) ddRab11BN125I parasites co-expressing
mCherry-a-Tubulin (red) were treated without and with inducer for
24 h and labelled with the anti-IMC1 antibody (green) or with anti-
MORN1 antibody (green), respectively. Abrogation of IMC formation
does not inhibit assembly and growth of the sub-pellicular microtu-
bules (white arrow). Nevertheless, no formation of the basal complex
can be observed despite presence of initial daughter formation (see
inlet). Scale bar represents 5 mm.
doi:10.1371/journal.ppat.1001029.g006
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of sub-pellicular microtubules and subsequently blocks IMC

formation [37]. Therefore it appears that IMC formation depends

on the formation of sub-pellicular microtubules as a scaffold but

not vice versa. Indeed we observed several vesicles accumulated at

the sub-pellicular microtubules in the Rab11B mutant, indicating

that vesicles are still transported to their destination, but are

unable to fuse in order to form the nascent IMC membrane of the

daughter cells (see Figure 7E).

In summary we propose that an alveolate specific Rab GTPase

Rab11B is required for the biogenesis of the IMC. In the

interphase parasites Rab11B resides at the Golgi (Figure 9A).

Contemporaneously to the segregation of the Golgi the polar ring

becomes tethered with the Golgi which provides the membrane

source for the nascent IMC. Additionally, the polar ring serves as

MTOC responsible for assembly of the conoid and template for

the polymerisation of the cortical microtubules. At the same time

relocalisation of Rab11B is initiated to transport the Golgi-derived

vesicles to induce nucleation of the daughter IMC (Figure 9B).

Furthermore, Rab11B appears responsible for the delivery of the

alveolar vesicle to provide sufficient membrane material for the

on-growing IMC scaffold (Figure 9C). After completion of IMC

formation, Rab11A-mediated delivery of vesicular cargo to the

plasma membrane occurs which is important for completion of

cytokinesis, similar to its role in other eukaryotes (Figure 9D and

[21,38]). During this process late components of the glideosome

are delivered to the IMC [21].

Materials and Methods

Generation of Constructs
For the pRab11BmycRab11B-HXGPRT construct the 59 UTR

of Rab11B was amplified from genomic DNA RH Dhxgprt parasites

using the oligo set pRab11B-sense (59 CGGGGTACCAGTC-

CATCCCGTCTTTTGTGCATC) and pRab11B-antisense (59

CCGGAATTCGAAAAACGACTTTTTCCGCTTTACAAGA-

GAGC). The fragment was introduced into the pRab11Amy-

cRab11A-HXGPRT plasmid [21] by replacing the Rab11A

promoter through the KpnI and EcoRI restriction sites. In a

second step the full length cDNA of Rab11B was amplified using the

oligo set Rab11B-sense (59 GCGATGCATGGGGGTTCTGAA-

GACTACG) and Rab11B antisense (59 GCGTTAATTAACCA-

CAGCAGGACAGATTCTGAGGG) and placed downstream of

the myc-tag using the NsiI and PacI restriction sites.

To place Rab11B under the control of the ddFKBP – system, the

full length cDNA was introduced into the p5RT70DDmycGFP-

HXGPRT plasmid [26] by replacing the GFP fragment through the

NsiI and PacI restriction sites. To generate the dominant negative

Rab11B construct the point mutation N125I was introduced into

the wild type Rab11B cDNA using a mutated oligo Rab11B-N125I

(59 GGTTGGGATCAAACTCG) and the megaprimer method

described previously [39]. The mutated cDNA fragment was

subsequently introduced into the p5RT70DDmycGFP-HXGPRT

plasmid [26] by replacing GFP fragment through the NsiI and PacI

restriction sites.

For the co localisation studies the following fusion proteins were

transfected YFP-MyoA [40], YFP-GAP50 [31], IMC1-YFP [15],

FNR-RFP ([27], GRASP-RFP [27], HSP60-RFP [41] and

mCherry - a Tubulin (kind gift from Borris Striepen).

T. gondii Cultivation and Transfection
T. gondii parasites (RH Dhxgprt) were grown in human foreskin

fibroblast (HFF) and maintained in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal calf serum, 2 mM

glutamine and 25 mg/ml gentamycine. For the generation of stable

transformants, 56107 freshly released RH Dhxgprt parasites were

transfected by electroporation with 30 mg of linearized plasmid

DNA [42] and selected in presence of 25 mg/ml mycophenolic

acid and 40 mg/ml xanthine as previously described [43]. The

selection of the fusion proteins was based on 1 mM pyrimethamine

or 20 mM chloramphenicol acetyltransferase (CAT) described

previously [44];[45].

Immunofluorescence Analysis
For immunofluorescence analysis, HFF cells grown on cover-

slips were inoculated with T. gondii parasites in absences or

presence of 0.1–1 mM Shld-1 for 24 h. Cells were fixed either with

4% w/v paraformaldehyde in phosphate buffered saline (PBS) for

20 min at room temperature or 220uC cold methanol for 5 min,

respectively. Fixed cells were permeabilized with 0.2% Triton X-

100 in PBS for 20 min followed by blocking in 2% w/v bovine

serum albumin (BSA) in PBS for 20 min.

The staining was performed using different combinations of

primary antibodies for 60 min and followed by secondary Alexa

Fluor 488 or Alexa Fluor 594 conjugated antibodies for another

60 min, respectively (1:3000, Invitrogen-Molecular Probes).

For image acquisition z-stack of 0.15 mm increments were

collected on a PerkinElmer Ultra – View spinning disc confocal

Nikon Ti inverted microscope equipped with a Hamamatsu EM –

charged coupled device (CCD) camera, using a 1006 (1.6 NA) oil

immersion lens kindly provide by the Nikon Imaging Centre,

Heidelberg, Germany. Deconvolution was performed using SVI’s

Huygens Deconvolution Software (http://www.svi.nl) and further

processed using ImageJ 1.34r software.

Immunoblot Analysis
For immunoblot analysis intracellular parasites were cultivated

in HFF cells in absence or presence of 0.1–1 mM Shld-1 for 10 h.

Subsequently parasites were harvested and washed twiced in ice-

cold PBS and lysed in 40 ml ice-cold RIPA buffer (150 mM

NaCl, 1% Triton X-100, 0.5% Deoxycholat, 0.1% SDS, 50 mM

Tris pH8.0 and 1 mM EDTA). SDS page and western blot

analysis was performed as described previously [40]. Per

experiment 56106 parasites/lane were loaded on 12% SDS –

polyacrylamid gel using reducing conditions with 100 mM DTT.

For detection, polyclonal anti-FKBP12 (1:500, Affinity BioR-

eagents) was used and a polyclonal anti-Mic8Nt (1:1000, [46]) as

internal control.

Figure 7. Electron micrographs of sections of T. gondii in fibroblast. Parasites were grown without (A) or with Shld-1 (B–E) for 36 h. (A) Low
power through a parasitophorous vacuole showing a rosette of eight parasites having undergone three cycles of repeated endodyogeny. N –
nucleus. (B) Low power of a large spherical parasite that appears to have a number of nuclei (N) but no evidence of daughter formation. (C) Section
through a slightly elongated parasite that appears to have a complex nuclear structure (N) with a number of lobes (arrows). (D) Section through a
parasite with two nuclei (N) in which four conical structures representing the initiation of daughter formation (D1–4) can be identified. In A–D scale
bar represents 1 mm. (E) Detail showing an early daughter from a stage similar to that in D. The apical conoid (C) and longitudinally running sub-
pellicular microtubule (MT) can be identified. Note the absence of IMC on the outside of the microtubule although a number of vesicles (arrows)
could be identified. (F) Detail of a cross section through an early daughter showing the sub-pellicular microtubules (MT) with overlying electron
dense material (arrows) and an absence of the IMC. A – apicoplast. In E and F scale bar represents 100 nm.
doi:10.1371/journal.ppat.1001029.g007
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Growth Assay
The growth assay was performed as previously described [47].

Monolayer of HFF, grown in six-well plates, were infected with 500

parasites per well in absence or presence of different Shld-1

concentrations. After 7 days of incubation at normal growth conditions

(37uC, 5% CO2), cells were fixed 10 min with 220uC methanol 100%,

stained for 10 min with Giemsa stain and washed with PBS. Images

were captured with a 106 (0.07 NA) objective on a Leica DMIL

microscope equipped with a Leica DFC320 camera. Images were

further processed with Photoshop (Adobe Systems Inc., USA).

Figure 8. Electron micrographs of parasites cultured with Shld-1. Parasites were cultured for 24 h (C, D) and 36 h (A, B) Prior to Fixation. (A)
Low power of sub-spherical parasite showing multiple nuclei (N) and abnormally located conoids (C) and groups of rhoptries (R) and micronemes
(MN) within the mother cell cytoplasm. Scale bar represents 1 mm. (B) Detail of the enclosed area in (A) showing the conoid and sub-pellicular
microtubules (MT) representing the anterior of a daughter. There are normal appearing rhoptries (R) and micronemes (MN) associate with the apex of
the daughter but note the absence of an overlying IMC. Scale bar represents 100 nm. (C) Lower showing two parasites that appear to be undergoing
endodyogeny in which the developing daughters (D) can be identified. N – nucleus. Scale bar represents 1 mm. (D) Detail of the enclosed area in C
showing the presence of the IMC and underlying microtubules (MT) but note the abnormal gaps and overlapping between the plates of the IMC.
Scale bar represents 100 nm.
doi:10.1371/journal.ppat.1001029.g008
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Replication Assay
For the analysis of the intracellular growth 36104 and 36105

freshly released extracellular parasites were pre-incubated in

absence and presence of 1 mM Shld-1 for 1 h. Subsequently,

parasites were allowed to invade HFF cells for 4 h. After removing

non invaded parasites by washing with PBS, parasites were

incubated in absence and presences of 1 mM Shld-1 for 24 h. To

determine the replication efficiency an immunofluorescence

analysis was performed and the number of nuclei per vacuoles

was counted.

Electron Microscopy
Monolayer of HFF, grown on 6 cm dishes, were infected with

ddRab11BN125I parasites and cultured for 24 and 36 h in absence or

presence of 1 mM Shld-1 and subsequently fixed with 2.5%

glutaraldehyde in 0.1 M phosphate buffer pH 7.4. Samples were

processed for routine electron microscopy as described previously

[48]. In summary samples were post-fixed in osmium tetroxide,

dehydrated, treated with propylene oxide and embedded in Spurr’s

epoxy resin. Thin sections were stained with uranyl acetate and lead

citrated prior to examination in a JEOL 1200EX electron microscope.

Figure 9. Overview of the Rab11 functions during endodyogeny. (A) In interphase parasites Rab11B resides at the Golgi. (B) During the initial
phase of endodyogeny duplication of the Golgi and the formation the apical complex takes place and subsequently the nucleation of the IMC. (C) In
developing daughter cell Rab11B cycles between Golgi and the nascent IMC of the daughter. (D) In the final step of cytokinesis separation of the two
daughter cells requires the formation of novel plasma membrane by Rab11A dependent vesicular transport. The green and black arrows indicate
Rab11B and Rab11A mediated transport respectively.
doi:10.1371/journal.ppat.1001029.g009
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Multiple Sequence Alignment and Phylogenetic Analysis
Protein sequences were retrieved from NCBI/GenBank, Tox-

oDB.org, PlasmoDB.org, and the Cyanidioschyzon merolae database

(http://merolae.biol.s.u-tokyo.ac.jp/). After randomizing sequence

order, alignments were created with ClustalX v1.83 [49] using the

default Pairwise and Multiple Alignment Parameters (the sequence

Alignment can be downloaded as supplemental data). The variable

C-terminal region (after amino acid position 187 in TgRab11B,

accession XP_002369905) of the alignment was removed before

carrying out phylogenetic analysis using the PHYLIP v3.69

programs SEQBOOT, PROML, PROTDIST, NEIGHBOR,

and CONSENSE [50]. PROTDIST and PROML were run

employing the Jones–Taylor–Thornton amino acid substitution

matrix, and gamma distribution parameters for four variable and

one unvariable rate categories were estimated with TREEPUZZLE

v5.2 [51]. Sequence input order was randomized in PROML and

NEIGHBOR, and global rearrangements were carried out in

PROML. For bootstrapping, 100 re-sampled replicates were

generated with SEQBOOT and an unrooted Majority Rule

consensus tree was created with CONSENSE. Phylogenetic trees

were visualized with TREEVIEW v1.6.6 [52].

Supporting Information

Data S1 Alignment used to produce phylogenetic tree shown in

Figure 1

Found at: doi:10.1371/journal.ppat.1001029.s001 (0.05 MB

DOC)

Figure S1 Alignment of Rab11 proteins. ClustalW alignment of

indicated Rab11-GTPases. Highly conserved regions are indicated

in red. Alveolate specific amino acid substitutions in Rab11B can

be identified in critical regions, such as the P-loop, the Switch I

and Switch II region (indicated by black arrows). Note that in case

of some alveolates duplications of Rab11B occurred (i.e. PtRab11-

1 and PtRab11-2). (Hs: Homo sapiens; Sc: S.cerevisia, Tth: Tetrahymena

thermophila; Pt: Paramecium tetraurelia; Pf:P.falciparum; Cp: Cryptosporid-

ium parvum; Cm: Cyanidioschyzon merolae; Cr: Chlamydomonas reinhardtii;

Tb: Trypanosoma brucei; Gl:Giardia lamblia; Dd: Dictyostelium discoidum;

Nt: Nicotiana tabacum; Pm: Perkinsus marinus; Tg: Toxoplasma gondii; Bb:

Babesia bovis).

Found at: doi:10.1371/journal.ppat.1001029.s002 (7.86 MB TIF)

Figure S2 Quantification of replication of the dominant

negative Rab11B parasites. (A) Time course of ddRab11BN125I

parasites grown in absence and presence of 1 mM Shld-1 over

24 h, 36 h and 48 h. Scale bars represent 10 mm. Parasites were

double-labelled with anti-myc (green) and anti-IMC1 (red) to

visualise Rab11B and IMC1. Note that IMC formation is

completely blocked after 24 hours, resulting in multi-nucleated

parasites. (B) Quantification of nuclear division of the same

parasite strain treated with or without Shld-1 (2/2 parasites not

treated with Shld-1; 2/+ parasites treated with Shld1 after

invasion and +/+, parasites treated with Shld1 before and after

invasion). Number of nuclei per parasitophorous vacuole (PV) was

determined. Mean values of independent experiments s.d. are

shown. In presence of Shld-1 expression of ddRab11BN125I

results in a decrease in replication rate and a tendency to

asynchronised nuclear division, as indicated by an increased

number of odd nuclei per PV. Asterisks indicate significant

differences in asynchronized replication (P,0.05, two tailed

Student’s t-test). (C) Quantification of the observed defect in

IMC formation of the same parasites (2/2 parasites not treated

with Shld-1; 2/+ parasites treated with Shld1 after invasion and

+/+, parasites treated with Shld1 before and after invasion). Total

number of parasitophorous vacuoles was counted showing a

deformed IMC. Parasites treated with 1 mM Shld-1 showed a

defect in IMC formation (100%).

Found at: doi:10.1371/journal.ppat.1001029.s003 (4.02 MB TIF)

Table S1 List of protein sequences within orthology group

OG4_21991

Found at: doi:10.1371/journal.ppat.1001029.s004 (0.04 MB

DOC)
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