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Abstract: A large number of medically important viruses,
including HIV, hepatitis C virus, and influenza, have RNA
genomes. These viruses replicate with extremely high
mutation rates and exhibit significant genetic diversity.
This diversity allows a viral population to rapidly adapt to
dynamic environments and evolve resistance to vaccines
and antiviral drugs. For the last 30 years, quasispecies
theory has provided a population-based framework for
understanding RNA viral evolution. A quasispecies is a
cloud of diverse variants that are genetically linked
through mutation, interact cooperatively on a functional
level, and collectively contribute to the characteristics of
the population. Many predictions of quasispecies theory
run counter to traditional views of microbial behavior and
evolution and have profound implications for our
understanding of viral disease. Here, we discuss basic
principles of quasispecies theory and describe its rele-
vance for our understanding of viral fitness, virulence, and
antiviral therapeutic strategy.

Introduction

The rapid evolution of RNA viruses complicates the manage-

ment of chronic infections and the control of emerging infectious

agents [1–3]. The ongoing global AIDS pandemic and the

resurgence of influenza highlight the difficulties associated with

these genetically labile pathogens [4–6]. RNA viruses have also

been responsible for recent sporadic epidemics of emerging and

reemerging viral diseases including dengue, West Nile fever, and

Ebola [7,8]. Because of their high mutation rates, these viruses are

moving targets for therapeutic intervention and frequently develop

resistance to vaccines and antiviral drugs [9]. A clearer

understanding of viral evolutionary dynamics and its relationship

to virulence and drug resistance may facilitate the development of

more effective therapeutics.

The evolutionary dynamics of RNA viruses are complex and

their high mutation rates, rapid replication kinetics, and large

population sizes present a challenge to traditional population

genetics [10]. Quasispecies theory is a mathematical framework

that was initially formulated to explain the evolution of life in the

‘‘precellular RNA world [11].’’ It builds on classical population

genetics, but seeks to explore the consequences of error-prone

replication and near-infinite population sizes for genome evolution

[12,13]. More recently, quasispecies theory has been used to

describe the evolutionary dynamics of RNA viruses, and many of

its predictions have been validated experimentally in model

systems [2,14,15]. Some of these observations challenge more

traditional views of evolution and have profound implications for

the control and treatment of viral diseases.

Here we explain basic aspects of quasispecies theory, describe

key experiments that define ‘‘quasispecies effects,’’ and highlight

how these results may shape our view of viral pathogenesis,

antiviral drug development, and vaccine design. We will stress

three clinically relevant principles. First, the fitness of a particular

virus sequence may be determined more by its freedom to mutate

into related sequences than by its own replicative capacity.

Second, many viruses operate near a threshold of ‘‘error

catastrophe’’ and may be combated by increasing their replication

error rates. Third, increasing the fidelity of genome replication

may paradoxically attenuate viruses.

Error-Prone Replication and Viral Quasispecies

Most viruses encode enzymes responsible for replicating their

DNA or RNA genomes. The intrinsic error rate, or fidelity, of the

replicase determines the mutation rate for that virus and the

range of genetic variation upon which natural selection can act.

Viral RNA polymerases exhibit characteristically low fidelity with

measured mutation rates of roughly 1024 mutations per

nucleotide copied, which is orders of magnitude greater than

those of nearly all DNA-based viruses and organisms [10,15,16].

Given the large population sizes observed in both experimental

and natural infections, it is estimated that every possible point

mutation and many double mutations are generated with each

viral replication cycle and may be present within the population

at any time [17]. Because RNA viruses exist as swarms of similar

variants that are continuously regenerated by mutation of related

sequences, our ability to predict the outcome of an infection or a

therapeutic intervention from studies of isolated clones is limited.

Even a defined molecular clone will quickly transform into a

collection of related sequences when introduced into cells. This

collection is the quasispecies and is organized around a master

sequence [12].

The genetic organization of populations is often depicted using

the concept of sequence space, a geometric representation of all

possible sequences where physical distance reflects genetic

similarity. For example, a given viral genome will undergo

replication and generate hundreds of progeny that differ at

roughly one position (Figure 1). Subsequent rounds of replication

will generate a more complex mutant distribution with variants

lying farther away from each other in sequence space. This

ensemble of mutants forms a ‘‘cloud’’ of variants, or quasispecies,
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in which mutation generates a swarm of candidate genomes that is

pruned by natural selection. According to population genetics, the

frequency of a given variant in a population is closely

approximated by its ability to survive and reproduce—its fitness.

In quasispecies formulations, where mutation rates are elevated,

frequency is also subject to the probability that the variant will be

generated de novo by mutation of its neighbors in sequence space

[12]. In RNA viruses, the contribution of mutation to genotype

frequency is significant, and variants are ‘‘coupled’’ in sequence

space [18]. That is, a low fitness variant can be maintained at a

higher than expected frequency because it is coupled to a well-

represented, higher fitness genotype in sequence space. The

phenomenon of mutational coupling is one of the defining

characteristics of a quasispecies, as it places individual mutants

within a functional network of variants [2].

Viral populations evolve within a fitness landscape where the

‘‘ground level’’ is a representation of the range of genotypes in

sequence space. The ‘‘altitude’’ at any given location is the fitness

associated with that particular genotype. The environment and its

selective pressures determine the contours of the corresponding

landscape, and adaptation to an environment involves a

mutational walk from one point in the fitness landscape to another

(Figure 2A). In quasispecies theory, a network of mutationally

coupled variants will span the corresponding peaks and valleys of

the fitness landscape. A fast replicating population well suited to a

given environment will inhabit a high and narrow peak in the

fitness landscape, while a less fit but more genetically diverse

population will occupy a lower, broader one.

A viral quasispecies, then, is a cloud of diverse variants that are

genetically linked through mutation, interact cooperatively on a

functional level, and collectively contribute to the characteristics of

the population. The unit of selection is the population as a whole,

and the nature of the functional interactions among genetically

distinct variants is therefore of critical importance to pathogenesis

in infected hosts. These effects and their biomedical implications

are described below.

The Problem of Fitness and Survival of the
Flattest

Mutation and selection are the most fundamental processes in

evolution. In Darwinian evolution, natural selection acts on

existing genetic variation to optimize fitness. Conceptually, fitness

refers to how well a given organism ‘‘fits’’ into its environment,

often reflected in how well it survives and reproduces [19]. In

experimental settings, precise fitness measurements are para-

mount, and virologists typically use replicative capacity as a

surrogate for fitness [20]. While replication is useful as a first

approximation, other factors such as immune escape, transmissi-

bility, and cellular tropism are important components of fitness in

the dynamic host environment [21]. Furthermore, because

quasispecies theory adds the complexity of mutant networks, we

must incorporate a population-based model into our fitness

definition.

Measuring the fitness of individual variants within a population

may misrepresent the fitness of a quasispecies. Early experiments with

vesicular stomatitis virus (VSV) established that high fitness variants

could be suppressed to low levels within a complex population [22].

Conversely, longitudinal studies of dengue virus isolates have

identified defective clones that are stably maintained at a high

frequency in the population [23]. Further consideration of the fitness

landscape model may explain these paradoxical results (Figure 2B).

Consider two populations, generated from either a fast replicator or a

slower one. At low mutation rates, the fast replicator will triumph

because its progeny are genetically identical and generated more

quickly. In the fitness landscape, this population occupies a tall,

narrow peak, where there is little genotypic diversity and maximal

fitness. In RNA viruses, elevated mutation rates mean that a fast

replicator will give rise to genetically diverse progeny, many of which

are significantly less fit than the parent. Quasispecies theory predicts

that slower replicators will be favored if they give rise to progeny that

are on average more fit; these populations occupy short, flat regions of

the fitness landscape [18]. This effect, termed survival of the flattest,

Figure 1. RNA viruses exist as a quasispecies. A virus replicating with a high mutation rate will generate a diverse mutant repertoire over the
course of a few generations. In these trees, each branch indicates two variants linked by a point mutation and the concentric circles represent serial
replication cycles. The resulting distribution is often represented as a cloud centered on a master sequence. This two dimensional schematic is a vast
oversimplification of the intraquasispecies connectivity. In the mathematical formulations of quasispecies theory, sequence space is
multidimensional, with numerous branches between variants.
doi:10.1371/journal.ppat.1001005.g001
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has been observed in digital organisms, bacteriophages, and VSV

[24–28]. Flat quasispecies accept mutation without a corresponding

effect on fitness, and these mutationally robust populations form a

large, selectively neutral network of variants in sequence space. While

neutral mutations do not change the corresponding phenotype, they

may have epistatic effects on subsequent mutations and redraw the

genotype–phenotype map [29].

A flat quasispecies with an expansive mutant repertoire can

explore vast regions of sequence space without consequence and

is poised to adapt to rapid environmental change. This

framework may explain many observed phenomena with direct

clinical relevance. Arboviruses must successfully adapt to insect

and mammalian hosts and their associated fitness landscapes. A

quasispecies that occupies a broad, flat region of sequence space

Figure 2. The fitness landscape and survival of the flattest. (A) Population 1 has high fitness but is trapped in sequence space because
mutation leads to a dramatic loss of fitness. Population 2 is more mutationally robust because mutation leads to minor fitness losses. The flatter
population is ideally situated to move through sequence and access other local peaks through neighboring mutational networks (indicated in
different colors). (B) At low mutation rates, variants will be genotypically stable and cluster at the top of the fitness peak. The variant with the highest
fitness will easily outcompete all others. At high mutation rates, variants spread out over the corresponding peaks. Variants on the flatter peak (green)
remain near their fitness optimum and have a higher mean fitness than the population located on the steeper peak (red). The flatter population will
prevail.
doi:10.1371/journal.ppat.1001005.g002
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could access neutral networks and local fitness peaks in either

environment. Similarly, retrospective studies of primary HIV

isolates suggest that HIV could be moving to a flatter and less fit

region of sequence space [20,30–32]. In the case of influenza,

detailed antigenic mapping of the hemagglutinin protein

suggests that interpandemic strains remain antigenically stable

for years despite genetic drift and evolve over a neutral region of

sequence space. This steady accumulation of genetic diversity is

punctuated by epochal shifts in antigenicity [33]. Though this

adaptive process occurs on the interhost level over a long time

scale, it highlights the importance of ‘‘flatness’’ in viral

evolution.

Error Catastrophe

Given their high mutation rates, it is not surprising that many

discussions of RNA virus evolution focus on the relationship

between genetic diversity and adaptability. While it is clear that

RNA viruses have the capacity to quickly explore large regions of

sequence space, genome size and selective constraints place

significant limitations on the amount of diversity that is actually

expressed [34]. Most RNA virus genomes are relatively small and

contain either overlapping reading frames or sequences that serve

both coding and structural functions. Similarly, coding mutations

that mediate escape from host immune surveillance may

compromise protein function. In VSV, for example, approximate-

ly 60% of spontaneous mutations are deleterious [35]. Evolution-

ary theory would suggest that the short-term cost of mutation is

balanced by the long-term benefit of adaptability in the face of a

dynamic environment [36,37].

Quasispecies theory accepts this trade-off, and proposes an

upper limit to mutation rate, the ‘‘error threshold’’ (Figure 3A).

According to Eigen’s original formulations, a quasispecies can

remain at equilibrium despite a high mutation rate [38,39]. Small

increases in mutation rate will upset this balance as the master

sequence itself disappears and meaningful genetic information is

lost in an avalanche of errors. Because Eigen compared this

process to chemical phase transitions, it has been termed

‘‘mutational meltdown.’’ It is now clear that many RNA viruses

replicate near the error threshold. Early studies with VSV showed

that chemical mutagens generally reduced viral infectivity, and

studies with poliovirus clearly demonstrated that mutagenic

nucleoside analogs push viral populations to extinction [40–43].

The effect is dramatic—a 4-fold increase in mutation rate resulted

in a 95% reduction in viral titer. Others have found similar results

with lymphocytic choriomeningitis virus (LCMV) and foot and

mouth disease virus (FMDV) [44–48]. The lethal mutagenesis of

viral populations is perhaps the most important implication of the

error threshold.

Recent work on host cell restriction of retroviral infection

suggests that lethal mutagenesis is a natural form of antiviral

defense [49]. The cytidine deaminase APOBEC3G was initially

identified as a protein targeted by the HIV Vif protein during

replication [50]. Humans have 11 APOBEC proteins that edit

cellular messages by converting cytosine bases to uracil. Subse-

quent work demonstrated that APOBEC proteins could induce

lethal mutagenesis of HIV through widespread deamination of the

HIV genome during reverse transcription, and highly mutagen-

ized HIV genomes with signatures of deamination have been

observed in patients [51–56]. This mechanism appears to be

evolutionarily conserved and active against hepatitis B virus,

simple retroviruses, and endogenous retroelements [57]. While

mutation-independent activities have also been identified, it is

clear that APOBEC-mediated lethal mutagenesis is a critical

cellular defense against RNA viruses. The fact that these

pathogens replicate close to the error threshold makes them

particularly sensitive to slight increases in mutational load

(Figure 3A).

These observations suggest that lethal mutagenesis could be an

effective therapeutic strategy for RNA virus infections [58].

Ribavirin, a nucleoside with broad antiviral activity, has attracted

considerable interest, and can induce lethal mutagenesis of

Hantaan virus and poliovirus [42,43,59]. While ribavirin is used

clinically for the treatment of both respiratory syncytial virus and

hepatitis C virus, it has pleiotropic effects, and its mechanism of

action in these infections is unclear [60]. Another mutagen, 5-

fluorouracil, is licensed as a chemotherapeutic agent, and its

antiviral activity against LCMV in animal models may predict

efficacy for other arenaviruses, such as Lassa fever [61,62].

Spurred by these results, Loeb and colleagues have identified a

number of nucleoside analogs capable of inducing the lethal

mutagenesis of HIV [63–65].

While these results are encouraging, much work needs to be

done before lethal mutagenesis can be considered as a

quasispecies-inspired therapeutic strategy. Some have argued

for a distinction between lethal mutagenesis and error

catastrophe, and have suggested, on theoretical grounds, that

the above experiments do not show a true phase transition with

loss of a master sequence. Indeed, careful studies of lethal

mutagenesis by Lowenstein and colleagues have shown an

imperfect correlation between mutational load and population

extinction [46]. Pre-extinction populations exhibit marked

heterogeneity in both the location and number of mutations

per genome. The dynamics of extinction are further complicat-

ed by the observation that highly mutagenized genomes can

accelerate extinction by interfering with the replication of their

less mutated brethren [47,66]. In that case, a mutagenized

population would collapse without the genetic melting of an

error catastrophe. While these discrepancies may reflect the gap

between mathematical theory and biological complexity, the

distinction could have ‘‘real world’’ implications. Mutation is a

double-edged sword, and adaptive evolution can be accelerated

at high mutation rates [67]. Absent a true mutational meltdown,

a large pre-extinction population could serve as a reservoir for

novel mutants that mediate antiviral resistance or immune

escape [68–70].

The potential for mutagen resistance is another important

concern. In principle, a virus could evolve biochemical resistance

to nucleosides either by excluding the drug from its active site or

by lowering its intrinsic error rate (see below). Quasispecies theory

suggests that viruses could also achieve resistance by moving to

flatter regions of the fitness landscape, where the density of neutral

mutations is higher. Combination therapy with mutagens and

traditional antivirals may minimize the probability of mutagenic

escape, and work in the FMDV system is encouraging [71,72].

The safety of nucleoside analogs is a major concern that is largely

unexplored. Drug concentrations in the above studies were often

in the millimolar range, and mutagenic nucleosides with a wider

therapeutic index are clearly needed. Given the potential for off-

target effects on host cell polymerases, therapy would likely need to

be short term—a problem for HIV, where eradication of the latent

reservoir is critical.

Mutation Rate, Virulence, and Attenuation

Evolutionary theory predicts that high mutation rates are

favored in a dynamic environment, and viral error rates may have

been optimized by natural selection [36,37]. For RNA viruses, low
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replicative fidelity generates a diverse population of variants.

While these variants are generally less fit, they may quickly

dominate if a sudden change in environment, such as immune

pressure, shifts the corresponding fitness landscape. Conversely, a

homogeneous population, generated by high replicative fidelity,

would lack this flexibility and might be less successful in the

dynamic host environment.

Recent work by two groups in the poliovirus system provides

experimental support for this model. Drawing on experience with

ribavirin and lethal mutagenesis, they hypothesized that a mutant

with a low mutation rate would be less sensitive to lethal

mutagenesis and resistant to ribavirin. Both groups sought to

isolate ribavirin resistant mutants from a poliovirus quasispecies

and recovered a variant with a single amino acid substitution in

Figure 3. Mutant distributions and the error threshold. (A) The majority of viruses in a wild-type population has few mutations and is
viable Some viruses, bearing a higher mutational load, are nonviable and considered beyond the threshold of error catastrophe (shown in
green). Small increases in mutation frequency, mediated by host APOBEC proteins or exogenous mutagen, push the distribution to the right,
past the error threshold. The number of errors per genome is sufficiently high to lethally mutate a majority of the population. (B) A high fidelity
polymerase results results in a narrower quasispecies situated farther from the error threshold. This population is more resistant to the effect of
mutagen, because it does not accumulate as many mutations, as the wild type does not cross the error threshold. Figure adapted from Crotty
et al. [42].
doi:10.1371/journal.ppat.1001005.g003
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the viral polymerase (3DpolG64S) [73,74]. This mutant was

relatively resistant to lethal mutagenesis, and assays for selectable

markers indicated that the G64S population had a lower

mutation rate and exhibited less genetic diversity (Figure 3B)

[73,75,76]. While wild-type and G64S quasispecies replicated

with similar kinetics, the former was more ‘‘fit’’ in direct

competition assays [75,76]. Together, these data suggested that

high mutation rates confer an evolutionary advantage to RNA

viruses.

The G64S quasispecies was markedly attenuated in a transgenic

mouse model for poliovirus infection; the high fidelity variants

were less successful at accessing the central nervous system (CNS),

the site of disease [76]. Importantly, virulence was determined in

large part by the diversity of the coinfecting population (Figure 4).

When brain-derived polioviruses were introduced as members of

the genetically homogeneous G64S population, they were not able

to invade the CNS. In contrast, brain-derived viruses readily

accessed the CNS when the population inoculum contained a

wild-type distribution of variants. These results suggest that

quasispecies diversity, rather than the selection of individual

variants, correlates with enhanced virulence [76]. The demon-

stration of cooperative interactions among mutants in a population

established the relevance of quasispecies theory to studies of viral

pathogenesis. Vignuzzi and colleagues extended this model and

hypothesized that the observed attenuation of the high fidelity

variants could be exploited for vaccine design [77]. Focusing on

the G64 position, they engineered several high fidelity mutants

that were markedly attenuated in mice. These viruses stimulated

high titers of neutralizing antibody in immunized mice, and

provided lasting protection against subsequent lethal challenge

with wild-type virus.

This work shows how quasispecies theory and its predictions can

lead to the rational development of live, attenuated vaccines.

Because variants with low mutation rates would be less likely to

revert to wild type in a vaccinee, attenuation should be a stable

phenotype and increase the safety of candidate vaccines. Caution

is warranted, however, since the error rates of the high fidelity

variants are still orders of magnitude greater than those of DNA

viruses. It is also unclear whether reducing mutation rate will

similarly affect the adaptability and virulence of other RNA

viruses. Further work in other systems is clearly needed before this

work can be translated into new vaccines [78,79]. As in the case of

lethal mutagenesis, the modulation of fidelity offers an opportunity

to use mutation rate as a therapeutic strategy for the control of

viral disease.

Perspectives on the Future

Quasispecies theory has had a profound influence on

virology, and experiments with model RNA viruses have

validated many of its predictions. Considerably less is known

about how its population-based models apply to the evolution-

ary behavior of RNA viruses in infected hosts, and it will be

challenging to translate them to the complex reality of viral

infection in patients. The initial studies pose as many questions

as they answer. What is the best measure of viral fitness in a

dynamic population? How can we use a fitness landscape model

to understand selection pressure in vivo, where many such

landscapes coexist? Do the principles of mutational robustness

and survival of the flattest determine the behavior of

populations in the host ecosystem? How does population

diversity influence pathogenesis? What are the mechanisms by

which variants or subpopulations cooperate, and does this have

implications for coinfection?

While early forays into complex experimental systems have

provided tantalizing results, much more work is needed in this

area if quasispecies theory is to be translated from bench to

bedside. Improved assays for characterizing viral populations are

critical, and the advent of ultra high throughput, or ‘‘deep’’

sequencing, is particularly exciting. Several groups have used this

technology to explore the complexity of mutant spectra in clinical

samples from HIV- and HBV-infected patients, although the

sequencing error rate presents certain limitations for studies of

RNA as opposed to DNA viruses [80–82]. Discerning quasispecies

structure from the wealth of sequencing data presents significant

computational challenges as well, since current techniques are

underdeveloped and do not permit us to determine which

mutations are linked on the same genome. Complementary

approaches, such as molecular barcoding, will also be required if

we are to understand how the mutant spectrum changes

temporally or spatially within an infected host [83]. Finally, future

drug and vaccine studies will need to be carried out in well-defined

animal models, as subtle differences can have a significant impact

on experimental outcome. Despite these obstacles, we are

confident that quasispecies theory will soon move out of the

Figure 4. Population diversity is a virulence determinant. Results of experiments described in Vignuzzi et al. [76]. A neurovirulent clone of
poliovirus was isolated from the brains of mice that had been infected with a wild-type strain. Naive mice were then reinfected with this clone as part
of either a genetically constrained (top) or diverse population (bottom). Although all mice received the neurovirulent clone, only those infected with
a diverse quasispecies developed disease. Subpopulations within the diverse quasispecies cooperated with the neurovirulent clone to facilitate its
entry into the CNS.
doi:10.1371/journal.ppat.1001005.g004
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laboratory and begin to influence the control and treatment of

viral disease.
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