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Abstract

Ribonucleotide reductases (RRs) are evolutionarily-conserved enzymes that catalyze the rate-limiting step during dNTP
synthesis in mammals. RR consists of both large (R1) and small (R2) subunits, which are both required for catalysis by the
R12R22 heterotetrameric complex. Poxviruses also encode RR proteins, but while the Orthopoxviruses infecting humans [e.g.
vaccinia (VACV), variola, cowpox, and monkeypox viruses] encode both R1 and R2 subunits, the vast majority of
Chordopoxviruses encode only R2 subunits. Using plaque morphology, growth curve, and mouse model studies, we
investigated the requirement of VACV R1 (I4) and R2 (F4) subunits for replication and pathogenesis using a panel of mutant
viruses in which one or more viral RR genes had been inactivated. Surprisingly, VACV F4, but not I4, was required for
efficient replication in culture and virulence in mice. The growth defects of VACV strains lacking F4 could be complemented
by genes encoding other Chordopoxvirus R2 subunits, suggesting conservation of function between poxvirus R2 proteins.
Expression of F4 proteins encoding a point mutation predicted to inactivate RR activity but still allow for interaction with R1
subunits, caused a dominant negative phenotype in growth experiments in the presence or absence of I4. Co-
immunoprecipitation studies showed that F4 (as well as other Chordopoxvirus R2 subunits) form hybrid complexes with
cellular R1 subunits. Mutant F4 proteins that are unable to interact with host R1 subunits failed to rescue the replication
defect of strains lacking F4, suggesting that F4-host R1 complex formation is critical for VACV replication. Our results
suggest that poxvirus R2 subunits form functional complexes with host R1 subunits to provide sufficient dNTPs for viral
replication. Our results also suggest that R2-deficient poxviruses may be selective oncolytic agents and our bioinformatic
analyses provide insights into how poxvirus nucleotide metabolism proteins may have influenced the base composition of
these pathogens.
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Introduction

Critical for the replication of all organisms and DNA viruses is

the conversion of ribonucleotides to deoxynucleotides to serve as

building blocks for genome synthesis and repair. Ribonucleotide

reductase (RR) is a key enzyme involved in this process, catalyzing

the reduction of rNDPs to dNDPs [1,2]. RRs can be grouped into

one of three classes, based on their requirement for oxygen and the

mechanism by which a catalytically-important thiyl radical is

generated [1]. Mammals typically encode class I RR proteins

while class II and III proteins are found only in microorganisms

[1,3]. Class I RR enzymes are assembled from both large (R1; 80–

100 kDa) and small (R2; 37–44 kDa) protein subunits, which

associate to form enzymatically-active R12R22 tetrameric com-

plexes [1]. These complexes require oxygen to generate a tyrosyl

radical found within R2 subunits [1,4], which is ultimately

transferred to R1 subunits to generate a thiyl radical used in

rNDP reduction. Transfer of the tyrosyl radical from R2 to R1

subunits is thought to occur through a ‘‘radical transfer pathway’’

that uses a series of at least eleven highly-conserved amino acid

residues to promote long-range electron transfer [4,5,6,7,8].

Mutant proteins containing amino acid substitutions at either

the tyrosine involved in radical formation [9] or any of the

proposed transfer pathway residues [4,6,8,10,11] form inactive

RR complexes, indicating that both radical formation and transfer

are required for catalysis.

Mammalian cells encode a single R1 gene that is only

transcribed during S-phase [12]. However, due to the long half-

life (,15 h) of R1 proteins, R1 levels remain essentially constant

throughout the cell cycle [13]. The primary small subunit, R2, is

also only expressed during S-phase [12,14] however, this protein

has a short half-life (,3 h) and is rate-limiting for R1-R2 complex
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formation [13]. The short half-life of R2 is due to its

polyubiquitination by the anaphase-promoting complex (APC)-

Cdh1 ubiquitin ligase, which leads to its degradation during

mitosis [15]. This degradation is dependent upon APC-Cdh1

recognition of a ‘‘KEN’’ box sequence in the N-terminus of R2

(Figure 1). Mammals also encode a second small subunit, p53R2,

so named because its elevated expression in response to DNA

damage is dependent upon the tumor suppressor p53 [16].

Although p53R2 is 80–90% identical to cellular R2 and can form

active complexes with R1 [17], it lacks ,33 N-terminal amino

acid residues found in R2, including those containing the KEN

box (Figure 1) [15]. The absence of the KEN box sequence likely

explains why p53R2 levels are relatively constant throughout the

cell cycle in the absence of DNA damage [18]. It has been

hypothesized that p53R2 plays some role in supporting mito-

chondrial DNA synthesis and/or DNA repair outside of S-phase

[17,18,19,20]. Therefore, despite their similarity, R2 and p53R2

appear to be differentially regulated and probably serve different

purposes during the cell cycle.

Many Chordopox-, herpes-, asfra- and iridoviruses, also encode

their own class I RR proteins [21,22,23,24,25]. These enzymes are

generally thought to support viral replication since ribonucleotide

reduction is normally the rate-limiting step in de novo dNTP

biogenesis [26]. Although most Chordopoxviruses encode RR

proteins, many only encode one of the two RR subunits with a

clear bias towards the conservation of R2 proteins (Table S1).

Only the Suipox- and Orthopoxviruses contain both R1 and R2

genes. The latter group contains viruses of medical importance

including variola virus, the causative agent of smallpox, as well as

monkeypox and cowpox viruses, which are responsible for

zoonoses in humans [27,28]. Most understanding of poxvirus

RR proteins comes from studies with another Orthopoxvirus,

vaccinia virus (VACV).

Slabaugh and Mathews [29] were the first to show that RR

activity increased in VACV-infected cells and subsequent studies

identified the I4L [25,30] and F4L [24] genes as those encoding

the 87 kDa I4 (R1) and 37 kDa F4 (R2) proteins, respectively.

Biochemical studies showed that VACV and cellular RR enzymes

share many features, including a similar tertiary architecture,

similar pH dependence, allosteric modulation of activity by

nucleotides, and comparable specific activities on most rNDP

substrates [31,32,33]. However, unlike cellular RR, the viral

enzyme is less sensitive to allosteric modulation and shows little

activity on UDP substrates, indicating that viral and cellular RR

enzymes also differ in important ways [33]. The similarities

between VACV and mammalian RR are not unexpected given

that VACV (and other poxvirus) RR subunits typically share

.70% sequence identity with their mouse and human homologs

(Figure 1).

Previous studies have shown that inactivating VACV I4L does

not affect plaque size and that I4L-deficient mutant strains

replicate their DNA and produce viral particles to levels

comparable to wild-type VACV in cell culture [34,35]. Due to

these observations, the I4L locus has been suggested to be an

excellent site for insertion of foreign genes into VACV [36].

Furthermore, I4L mutants are only mildly attenuated in their

virulence in mouse models, exhibiting an ,10-fold increase in

lethal dose 50 (LD50) values when compared to wild-type virus

[34]. Paradoxically, another group reported that targeted

inactivation of F4L attenuated VACV in mice by ,1000-fold

compared to wild-type virus [37], but the reason for this

attenuation was unknown. Although these were separate studies

using different strains of VACV, they suggested that the F4 subunit

is more important for virus replication and pathogenesis than I4,

despite the fact that both subunits are needed for RR activity [32].

We initiated our studies of VACV RR because VACV

recombination appears to be catalyzed by poxviral DNA

polymerases in vivo [38], and we wanted to determine if perturbing

dNTP pools would affect this process. However, it soon became

apparent that some of the mutant strains we generated exhibited

previously uncharacterized replication defects. This prompted us

to revisit how VACV RR affects viral replication and pathogen-

esis. To do this, we generated a panel of mutant strains containing

mutations in the VACV RR genes. We also generated strains

lacking a functional J2R (thymidine kinase or TK) gene, thus

unable to access the parallel viral salvage pathway of dTTP

biogenesis [39]. Our studies show that both the VACV R1 and R2

proteins can form a diversity of virus-virus and virus-host protein-

protein interactions in vivo, but that the VACV R2 subunit is far

more critical for VACV replication and pathogenicity than is the

R1 subunit. Our model suggests that poxvirus R2 subunits form

active complexes with host R1 proteins in order to ensure a

sufficient dNTP supply to support viral replication. This model is

substantiated by previous biochemical studies that found a

chimeric RR enzyme consisting of VACV F4 and mouse R1

(MR1) to be more active than strictly viral or mouse RR

complexes [33]. Our studies also provide insights into why

poxviruses have often conserved their R2 but not their R1 genes

(Table S1). To our knowledge this is the first report of a chimeric,

virus-host RR forming in vivo. Our study provides further evidence

that poxviruses recruit cellular enzymes, in addition to those

previously identified such as topoisomerase II [40] and DNA ligase

I [41], to support viral replication. Our bioinformatic analysis of

other large DNA viruses suggests that recruitment of host RR

subunits may represent a more widespread viral strategy to

parasitize host nucleotide biosynthetic machinery.

Results

Generation of VACV RR mutant strains
A series of mutant strains were generated in which one (DI4L;

DF4L) or both (DI4L/DF4L) of the VACV RR genes were deleted

Author Summary

Efficient genome replication is central to the virulence of
all DNA viruses, including poxviruses. To ensure replication
efficiency, many of the more virulent poxviruses encode
their own nucleotide metabolism machinery, including
ribonucleotide reductase (RR) enzymes, which act to
provide ample DNA precursors for replication. RR enzymes
require both large (R1) and small (R2) subunit proteins for
activity. Curiously, some poxviruses only encode R2
subunits. Other poxviruses, such as the smallpox vaccine
strain, vaccinia virus (VACV), encode both R1 and R2
subunits. We report here that the R2, but not the R1,
subunit of VACV RR is required for efficient replication and
virulence. We also provide evidence that several poxvirus
R2 proteins form novel complexes with host R1 subunits
and this interaction is required for efficient VACV
replication in primate cells. Our study explains why some
poxviruses only encode R2 subunits and identifies a role
for these proteins in poxvirus pathogenesis. Furthermore,
we provide evidence that mutant poxviruses unable to
generate R2 proteins may become entirely dependent
upon host RR activity. This may restrict their replication
to cells that over-express RR proteins such as cancer
cells, making them potential therapeutics for human
malignancies.

Viral Ribonucleotide Reductase
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from the viral genome (Figure 2A). We also constructed VACV

encoding an insertional inactivation of the J2R (TK) gene in

combination with DI4L and/or DF4L mutations generating DI4L/

DF4L/DJ2R and DF4L/DJ2R strains. These strains provide

insights into the relative biological importance of the de novo

(RR-dependent) and salvage (TK-dependent) pathways in VACV

replication. We also constructed VACV DF4L strains encoding a

His6-tagged F4L gene, or a His6-tagged F4L gene encoding a

Y300F amino acid substitution, inserted into the J2R locus. These

viruses are referred to as VACV strains DF4L/DJ2RHisF4L and

DF4L/DJ2RHisY300FF4L, respectively. The marker rescue strategies

used to generate these mutant strains are depicted in Figure 2A.

PCR-based analysis confirmed the deletion or inactivation of

the targeted loci in constructed VACV strains (data not shown).

Western blotting confirmed the presence or absence of viral RR

subunit expression in each of the isolates (Figure 2B). The DF4L/

DJ2RHisF4L strain appeared to express elevated levels of F4

compared to wild-type virus, whereas the DF4L/DJ2RHisY300FF4L

strain had slightly reduced F4 expression (Figure 2B). The former

case is likely a result of the F4L gene being under the control of an

early/late promoter present on the pSC66 transfer vector whereas

the endogenous F4L promoter is activated only at early times

during infection [42]. The lower F4 expression of the DF4L/

DJ2RHisY300FF4L strain is likely due to its poor replication in

culture (see below). These and other VACV strains are

summarized in Table 1. See Text S1 for details of virus

construction.

DF4L strains exhibit a small plaque phenotype
Plaque size and morphologies of the generated strains were

analyzed on BSC-40 cells as an initial step to characterize their

growth properties. The wild-type and DI4L strains exhibited

similar plaque morphologies. These plaques typically had large

central clearings and were accompanied by smaller secondary

plaques that are formed when extracellular enveloped virus are

released from infected cells and initiate new infections near

primary plaque sites (Figure 3A). Upon measurement of primary

plaque areas, no significant differences were found between wild-

type and the DI4L strain (Figure 3B). In contrast, the DF4L,

DF4L/DJ2R, and DI4L/DF4L/DJ2R strains all produced signif-

icantly smaller plaques (P,0.05) that were only 55–60% of the

plaque size exhibited by wild-type virus (Figure 3B). In addition,

the primary plaques produced by DF4L strains were typically

devoid of nearby secondary plaques (Figure 3A). Incorporation of

Figure 1. Alignment of cellular and poxvirus small RR subunits. Alignment of human R2 (HR2; Genbank accession: NP_001025.1), mouse R2
(MR2; Genbank accession: NP_033130.1), human p53R2 (Hp53R2; Genbank accession: BAD12267.1), mouse p53R2 (Mp53R2; Genbank accession:
Q6PEE3.1) as well as R2 subunits encoded by vaccinia (VACV; Genbank accession: AAO89322.1), ectromelia (ECTV; Genbank accession: NP_671546.1),
myxoma (MYXV; Genbank accession: NP_051729.1), and Shope fibroma (SFV; Genbank accession: NP_051904.1) viruses was performed using
ClustalW. Asterisks indicate catalytically-important residues [61]. The solid box indicates the ‘‘KEN’’ box found in cellular R2 proteins [15]. The dashed
box indicates the putative R1-binding domain.
doi:10.1371/journal.ppat.1000984.g001

Viral Ribonucleotide Reductase
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a His6-tagged form of F4L into the TK locus appeared to

complement DF4L strain replication as the DF4L/DJ2RHisF4L

strain displayed plaques characteristic of wild-type virus in terms

of size and the presence of secondary plaques (Figure 3A and B).

Strikingly, DF4L strains rescued with a His6-tagged F4L gene

encoding the Y300F substitution produced plaques that were not

only significantly smaller than wild-type virus [(P,0.05);

Figure 3B], but were only 35–40% the size of plaques produced

by any of the strains with F4L deleted and these differences were

statistically significant (P,0.05). These results suggested that

deletion of F4L has a more detrimental effect on plaque size than

deletion of I4L. They further suggested that re-introduction of a

His6-tagged F4L gene into the TK locus can rescue the small

plaque phenotype of DF4L strains. However, this rescue effect is

lost and the DF4L strain replication defect is exacerbated when

the re-introduced F4 protein encodes the Y300F amino acid

substitution.

Y300 represents a highly-conserved tyrosine residue found in

essentially all mammalian small RR subunits (Figure 1). The

homologous residue in mouse R2 (MR2; Y370) is required for the

transfer of radicals from MR2 to MR1 subunits, which is necessary

for catalysis [4]. A Y370F substitution abolishes catalysis but does

not impede physical interaction of MR1 and MR2 subunits [4].

The same substitution of the homologous tyrosine residue in

human p53R2 (Hp53R2) also abolishes RR activity of Human R1

(HR1)-Hp53R2 complexes [43]. Therefore, the Y300F substitu-

tion in F4 is predicted to inhibit catalysis while still allow for R1-

R2 subunit interaction. These predicted properties of the Y300F

F4 protein may explain the dominant negative-like phenotype

exhibited by the DF4L/DJ2RHisY300FF4L strain.

Figure 2. Construction of recombinant VACV strains. (A) Schematic of strategy used to inactivate I4L, F4L and/or J2R function in VACV using
homologous recombination. The DI4L and DF4L strains were generated using the pZIPPY-NEO/GUS vector [109]. The DI4L/DF4L strains were
generated with the pDGloxPKOINV vector which replaces I4L sequence with a yfp-gpt fusion cassette flanked by loxP sites (not shown). A pSC66
shuttle vector was used to insert several different ectopic genes into the J2R locus although only pSC66HisF4L is shown as an example. See Materials
and Methods and Text S1 for further details. (B) Western blot analysis of I4 and F4 expression. Proteins were extracted from HeLa cells 8 h post-
infection with the indicated strains, size fractioned and blotted using the indicated antibodies. Blotting for the constitutively-expressed viral I3
protein and cellular actin served as loading controls. Note that in I4 blots the lower band (indicated by an arrow) represents I4 (87.6 kDa) and the
upper band is due to cross-reactivity with HR1 (89.9 kDa).
doi:10.1371/journal.ppat.1000984.g002

Viral Ribonucleotide Reductase
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DF4L strains exhibit impaired replication kinetics in
culture

We also examined the growth kinetics of these mutant strains in

HeLa cells. As previously reported [34], deleting I4L had little

effect on viral replication, with the DI4L strain replicating to titers

that were 2-fold lower than those produced by wild-type virus 48 h

post-infection (Figure 3C). In contrast, large (.5-fold) differences

between wild-type and DF4L strains were readily apparent by 18 h

post-infection. This trend continued to the end of the experiment,

with the wild-type strain producing ,15–50-fold more virus than

DF4L strains 48 h post-infection. This growth defect could be

complemented with a His6-tagged F4L gene but not if this gene

encoded the Y300F substitution (Figure 3D). In fact, the DF4L/

DJ2RHisY300FF4L strain was unable to undergo productive

replication in HeLa cells (Figure 3D). These results suggested that

deletion of the F4L gene impairs VACV replication to a higher

degree than deletion of I4L, and that concomitant deletion of F4L

and J2R does not impede replication further (Figure 3C and 3D).

Furthermore, the fact that one can rescue the DF4L growth defect

with a His6-tagged form of F4L inserted at the TK locus, implies

that the defect seen in a DF4L strain is not due to other possible

idiosyncratic effects caused by deleting the F4L locus (Figure 3D).

Finally, these studies further illustrate the dominant negative effect

on virus growth imposed by a catalytically-inactive, Y300F-

substituted F4 protein.

One explanation for the properties of virus encoding a Y300F-

substituted F4 protein is that the mutant protein could be

competing with cellular R2 proteins for binding to cellular and/

or viral R1 subunits. However, the studies shown in Figure 3C and

D suggested that deleting I4L does not result in significant

replication defects and so the dominant negative phenotype was

likely mediated by interaction with cellular R1 proteins. To rule

out a role for I4 interaction in this dominant negative phenotype,

the His6-tagged wild-type or Y300F-encoding F4L gene was

inserted into the J2R locus of DI4L/DF4L strains. The DI4L/

DF4L/DJ2RHisF4L strain produced plaques indistinguishable in

size from those formed by wild-type virus (P.0.05; Figure 3B).

However, deleting I4L had no further effects on the plating

properties of the DI4L/DF4L/DJ2RHisY300FF4L strain. This strain

still produced plaques that were significantly smaller than those

produced by wild-type (P,0.05) or DF4L strains (P,0.05) and

were not significantly different from DF4L/DJ2RHisY300FF4L virus

plaques (P.0.05; Figure 3B). These observations implied that the

plaque properties of DF4L strains are not influenced by the

presence or absence of I4L.

We also tested the ability of other, His6-tagged Chordopoxvirus or

host R2 proteins to rescue the small plaque phenotype of the DF4L

strain. The R2 genes encoded by ECTV, MYXV and SFV R2

genes were all able to rescue the small plaque phenotype, but

interestingly the Hp53R2 gene failed to rescue this phenotype

(Figure 3B). These results implied that Chordopoxvirus R2 proteins

have conserved a specific function and/or activity level that is not

recapitulated by Hp53R2.

VACV DNA synthesis is impaired in cells infected with a
DF4L strain

We hypothesized that the reduced replication of the DF4L

strains was due to impaired genome replication. This is because

Table 1. Major VACV strains used in this study.

Strain1 I4L locus2 F4L locus2 J2R locus2

Wild-type (WR) + + +

DI4L 2(neo; gusA) + +

DF4L + 2(neo; gusA) +

DJ2R + + 2(lacZ)

DI4L/DF4L 2(yfp-gpt) 2(neo; gusA) +

DI4L/DF4L/DJ2R 2(yfp-gpt) 2(neo; gusA) 2(lacZ)

DF4L/DJ2R + 2(neo; gusA) 2(lacZ)

DF4L/DJ2RHisF4L + 2(neo; gusA) 2(lacZ; HisF4L)

DF4L/DJ2RHisY300FF4L + 2(neo; gusA) 2(lacZ; HisY300FF4L)

DI4L/DF4L/DJ2RHisF4L 2(yfp-gpt) 2(neo; gusA) 2(lacZ; HisF4L)

DI4L/DF4L/DJ2RHisY300FF4L 2(yfp-gpt) 2(neo; gusA) 2(lacZ; HisY300FF4L)

DF4L/DJ2RHisF4LDR1BD + 2(neo; gusA) 2(lacZ; HisF4LDR1BD)

DF4L/DJ2RHisY300FF4LDR1BD + 2(neo; gusA) 2(lacZ; HisY300FF4LDR1BD)

DF4L/DJ2RHisECTVR2 + 2(neo; gusA) 2(lacZ; HisECTVR2)

DF4L/DJ2RHisMYXR2 + 2(neo; gusA) 2(lacZ; HisMYXR2)

DF4L/DJ2RHisSFVR2 + 2(neo; gusA) 2(lacZ; HisSFVR2)

DI4L/DJ2RFlagI4L 2(neo; gusA) + 2(lacZ; HisSFVR2)

DJ2RFlagHR1 + + 2(lacZ; FlagHR1)

DJ2RHisHp53R2 + + 2(lacZ; HisHp53R2)

DF4L/DJ2RHisHp53R2 + 2(neo; gusA) 2(lacZ; HisHp53R2)

1All strains were generated in the Western Reserve (WR) strain of VACV.
2‘‘+’’ indicates locus is intact and ‘‘2’’ indicates locus is disrupted. Marker genes and inserted viral or human genes present at disrupted loci are in parentheses.
Abbreviations: His, His6 epitope tag; Flag, Flag epitope tag; R1BD, R1-binding domain; VACV, vaccinia virus; ECTV, ectromelia virus; MYX, myxoma virus; SFV, Shope
fibroma virus; HR1, human R1; Hp53R2, human p53R2. See Materials and Methods and Text S1 for further details.

doi:10.1371/journal.ppat.1000984.t001
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Figure 3. DF4L strains exhibit a small plaque phenotype and impaired replication in vitro. (A) Representative plaques formed by each of
the indicated strains 48 h post-infection on BSC-40 cells. (B) Scatter plots illustrating independent (n = 20) as well as mean (horizontal bar) plaque area
measurements in arbitrary units (AU) for each of the indicated strains. Open circles indicate that the mean plaque area was statistically different
(P,0.05) from wild-type virus based on a one-way ANOVA. (C) and (D) virus growth in HeLa cells infected with each of the indicated strains at a MOI

Viral Ribonucleotide Reductase
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RR plays a key role in dNTP biogenesis and our initial studies

found that DF4L (Figure S1A), but not DI4L strains (Figure S1B),

exhibited reduced late gene expression, which is a common

consequence of defects in DNA replication. To test this hypothesis,

BSC-40 cells were infected with wild-type or DF4L viruses and

genome replication was measured in parallel with viral yields. The

results of these experiments are shown in Figure 4. As in HeLa

cells, the DF4L strain exhibited impaired replication kinetics in

BSC-40 cells, generating only 15% of the total titer observed with

the wild-type strain at 24 h post-infection (Figure 4A). This growth

defect was associated with impaired DNA synthesis, with the DF4L

strain exhibiting an ,3 h delay in genome synthesis as well as an

,5-fold reduction in DNA production at 24 h post-infection when

compared to wild-type infections (Figure 4B). We also tested what

effect the drug hydroxyurea (HU) would have on these strains,

since previous studies have correlated HU resistance with changes

in F4 expression [44]. Addition of 0.5 mM HU to DF4L strain-

infected cultures completely blocked virus DNA synthesis. In

contrast, wild-type virus still produced detectable amounts of

genomic DNA, albeit with delayed kinetics, at levels comparable

to what is seen in cells infected with the DF4L strain in the absence

of HU (Figure 4B). These results suggested that the reduced yields

observed with DF4L strains are at least partially due to impaired

genome synthesis. Furthermore, because sensitivity to RR

inhibitors is directly correlated to RR activity levels [45], the

hypersensitivity of the DF4L strain to HU suggests that these

effects on DNA replication are caused by a reduction in RR

activity.

DF4L strains are uniquely hypersensitive to cidofovir and
HU

We hypothesized that the impaired genome replication of the

DF4L strain was due to reduced dNTP pool sizes as a result of

decreased RR activity. However, it is difficult to interpret the

meaning of biochemical measurements of pool sizes because of

uncertainties surrounding how dNTPs are distributed in infected

cells. Instead, we tested whether VACV RR mutants exhibit an

altered sensitivity to the antiviral drug cidofovir (CDV). CDV is

converted by cellular kinases to the diphosphoryl derivative

(CDVpp) [46] which is competitive with respect to dCTP [47]

and inhibits VACV E9 DNA polymerase activity [48,49]. Thus,

CDV sensitivity can be used as an indirect probe for changes in

dCTP pool sizes. Table 2 summarizes how RR mutations affect

CDV sensitivity as assessed by plaque reduction assays and

calculated 50% effective concentration (EC50) values. Wild-type

and DF4L/DJ2RHisF4L strains exhibited similar mean EC50 values

of 42.0 and 41.2 mM, respectively. The DI4L strain was

significantly more sensitive than the aforementioned strains

(P,0.05) having a mean EC50 value of 25.1 mM. However, loss

of F4L (or F4L and J2R) resulted in greater hypersensitivities to

CDV (P,0.05) with EC50 values ,5–7-fold lower than wild-type

values. The DF4L/DJ2RHisY300FF4L virus was even more sensitive

to CDV (EC50 = 3.5 mM) than either wild-type (P,0.05) or DF4L

(P,0.05) strains. As noted previously [50,51], inactivation of J2R

did not further alter VACV sensitivity to CDV (Table 2). The

trends in CDV sensitivity closely mirrored those found in

measurements of HU sensitivity using a plaque reduction assay

(Table 2). The order of resistance to HU (from measurements of

EC50) was wild-type $DF4L/DJ2RHisF4L.DI4L.DF4L.DF4L/

DJ2RHisY300FF4L and seemed unaffected by the presence or

absence of the J2R gene (Table 2). In order to determine if the

hypersensitivities of DF4L and DF4L/DJ2RHisY300FF4L strains to

CDV and HU were specific and not simply due to the reduced

replicative abilities of these viruses, we performed a plaque

reduction assay using phosphonoacetic acid (PAA). PAA is a

pyrophosphate analog and DNA polymerase inhibitor that is

noncompetitive with dNTPs [52]. Therefore, the efficacy of PAA

in inhibiting virus replication would not be expected to be

dependent upon RR activity or dNTP pool sizes. Consistent with

of 0.03. Viruses were harvested at the indicated time points and tittered on BSC-40 cells. Note that experiments presented in (C) and (D) were done in
parallel but are presented in two graphs for clarity. Thus, the wild-type curve is identical in both graphs. Symbols represent mean titers from three
independent experiments and error bars represent SE. Some bars are approximately the same size as the symbols.
doi:10.1371/journal.ppat.1000984.g003

Figure 4. A VACV DF4L strain exhibits impaired growth and
DNA replication kinetics in BSC-40 cells. (A) Growth curve analysis
of wild-type and DF4L strains in BSC-40 cells infected at a MOI of 2.
Symbols represent mean titers from three independent experiments
and error bars represent SE, although some bars are approximately the
same size as the symbols. (B) Viral DNA accumulation during infection
with the indicated strains. Parallel samples from (A) were analyzed for
viral DNA content expressed in arbitrary units (AU). Symbols represent
mean DNA content from two independent experiments and error bars
represent error of the mean. Some bars are approximately the same size
as the symbols. ‘‘HU’’ indicates where 0.5 mM hydroxyurea was added
to the culture media.
doi:10.1371/journal.ppat.1000984.g004
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this, RR mutant VACV strains were not hypersensitive to PAA

when compared to wild-type virus (Table 2). These mutant strains

were also not hypersensitive to isatin-b-thiosemicarbazone (IBT),

which causes aberrant late viral mRNA biogenesis [53] (data not

shown). Collectively, these data all point to a deficiency in dNTP

pools as being the cause of the DF4L strain growth deficiency

(Figure 3) and suggest that F4, and not I4, is the critical

determinant of growth efficiency and drug sensitivity.

Viral and human RR subunits interact in VACV-infected
cells

Our data suggested that F4 may form functional complexes with

host R1 proteins to support viral replication. This hypothesis was

strengthened by previous studies that found purified mouse and

VACV RR subunits to form functional chimeric RR complexes in

vitro [33]. To determine if virus-host RR interactions could occur in

vivo, co-immunoprecipitation experiments were performed with

VACV-infected HeLa cell lysates using antibodies against HR1,

Human R2 (HR2) or Hp53R2 RR subunits. F4 co-immunoprecip-

itated with each of the host RR subunits (Figure 5A) and the

efficiency of ‘‘pull-down’’ was the same in extracts prepared from

cells infected with wild-type and DI4L strains (Figure 5B), suggesting

that the presence of I4 does not significantly impede F4 interaction

with host RR subunits. Interaction of F4 with cellular R2 subunits,

while unexpected, may not be that surprising given that R2 subunits

interact with one another in addition to interacting with

homodimers of R1 [1]. We thought these interactions may be in

part due to enhanced cellular RR subunit expression after infection.

However, we were unable to observe induction of cellular RR

expression by 24 h post-infection (Figure S2). To further confirm the

immunoprecipitation results, VACV strains expressing either Flag-

tagged HR1 (DJ2RFlagHR1) or Flag-tagged I4 (DI4L/DJ2RFlagI4L)

were constructed and used in new immunoprecipitation experi-

ments. Immunoprecipitation with anti-Flag antibodies confirmed

the interaction of HR1 and I4 with F4 as well as with HR2 and

Hp53R2 (Figure 6A). We typically observed weaker R2 bands in

immunoprecipitations of Flag-tagged HR1 compared to Flag-tagged

I4 despite similar amounts of these two proteins being immunopre-

cipitated (Figure 6A). This result was likely due to competition

between the Flag-tagged HR1 protein and endogenous HR1,

whereas Flag-tagged I4 is expressed in the DI4L background and

thus does not have to compete for binding to R2 proteins with

endogenous I4. We also prepared extracts from cells infected with

DF4L/DJ2RHisY300FF4L or DF4L/DJ2RHisF4L viruses and observed

that these His6-tagged proteins could also be co-immunoprecipitated

with HR1 protein (Figure 6B). Reciprocal co-immunoprecipitation

experiments confirmed an interaction between F4 and HR1

proteins (Figure S3).

Other Chordopoxvirus R2 proteins rescued the replication defect

of VACV DF4L strains (Figure 3B). Therefore, we determined

whether these proteins could also interact with HR1. ECTV,

MYXV, and SFV R2 proteins all co-immunoprecipitated with

HR1 (Figure 6B). Although there appeared to be differences in the

efficiency of HR1 association, western blotting of lysates showed

that this reflected differences in R2 expression levels (Figure 6B).

These results confirm that RR subunits from poxviruses that infect

a diversity of mammalian hosts have conserved the capacity to

interact with HR1.

In uninfected cells, mammalian RR subunits show an

exclusively cytoplasmic distribution [54,55,56]. Confocal micros-

copy studies with antibodies directed against endogenous (Figure

S4A) or epitope-tagged (Figure S4B) RR subunits suggested that

VACV infection did not alter host RR localization and VACV RR

subunits were also found to exhibit a similar cytoplasmic

distribution.

Requirement of C-terminal residues of F4 for interaction
with HR1

The previous studies showed that F4 interacts with HR1 but

did not prove whether such an interaction was essential for viral

replication. Numerous structural and peptide-inhibition studies of

class I RR proteins have identified a C-terminal peptide (boxed in

Figure 1) in R2 subunits as critical for interaction with R1

proteins [11,57,58,59,60,61]. Since this C-terminal peptide is

well conserved in F4 (Figure 1), we speculated that HR1-F4

interactions were also dependent on this peptide. To test this

hypothesis, we generated the VACV strain DF4L/

DJ2RHisF4LDR1BD, encoding a truncation mutant of F4 that

lacks the C-terminal seven residues representing the putative

R1-binding domain (R1BD). We also generated an R1BD

mutant that also encodes the Y300F substitution,

(DF4L/DJ2RHisY300FF4LDR1BD). As shown in Figure 7A, His6-

tagged F4 co-immunoprecipitated with HR1 in HeLa cell

extracts. However, there was a clear reduction (by ,90%) in

co-immunoprecipitation of His6-tagged F4 proteins lacking the

R1BD, despite comparable levels of these two forms of F4 in

lysates and immunoprecipitates. Thus, F4 appears to have

conserved the R1-binding peptide encoded by class I RRs.

Table 2. Susceptibility of VACV RR mutant strains to cidofovir (CDV), hydroxyurea (HU) and phosphonoacetic acid (PAA).

Virus Mean EC50 of Compound

CDV (mM)1 Fold Change2 HU (mM)1 Fold Change2 PAA (mg/mL)1 Fold Change2

Wild-type 42.0 (36.2–48.7) 1.0 0.87 (0.72–1.06) 1.0 50.5 (41.9–61.0) 1.0

DI4L 25.1 (22.0–28.7) 1.7 0.19 (0.15–0.24) 4.6 55.6 (44.9–68.9) 1.1

DF4L 6.2 (5.5–7.0) 6.8 0.05 (0.04–0.06) 17.4 56.6 (49.4–64.9) 1.1

DI4L/DF4L 6.8 (5.4–8.5) 6.2 0.05 (0.04–0.06) 17.4 54.7 (48.3–62.1) 1.1

DI4L/DF4L/DJ2R 7.6 (6.7–8.5) 5.5 0.05 (0.05–0.06) 17.4 47.4 (39.7–56.6) 1.1

DF4L/DJ2R 8.1 (6.6–9.9) 5.2 0.07 (0.06–0.08) 12.4 49.0 (40.9–58.6) 1.0

DF4L/DJ2RHisF4L 41.2 (35.9–47.1) 1.0 0.68 (0.50–0.91) 1.3 46.8 (38.3–57.1) 1.1

DF4L/DJ2RHisY300FF4L 3.5 (3.0–4.2) 12 0.03 (0.03–0.03) 29 44.9 (39.0–51.8) 1.1

1Values in parentheses represent 95% confidence intervals.
2Compared to mean EC50 of wild-type virus. Bold values indicate statistically significant (P,0.05) differences from wild-type values.
doi:10.1371/journal.ppat.1000984.t002
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We used plaque area measurements to determine if deleting the

R1BD would alter VACV plating properties (Figure 7B). The

control viruses exhibited the same relative plaque sizes noted

previously (i.e. wild-type =DF4L/DJ2RHisF4L.DF4L.DF4L/

DJ2RHisY300FF4L) and the differences were all significant

(P,0.05). However, the DF4L/DJ2RHisF4LDR1BD and DF4L/

DJ2RHisY300FF4LDR1BD strains produced plaques no different in

size from those produced by DF4L strains (P.0.05). This

suggested that the F4 R1BD was not only required for RR

activity, but that the HR1-F4 interaction was also responsible for

the dominant negative effects observed with strains encoding the

Y300F-substituted F4 protein with an intact R1BD. We also

confirmed in these studies that inactivation of J2R alone had no

significant effect on plaque size (Figure 7B).

Correlation of DF4L strain replication with host RR
subunit expression

Our results suggested that deleting the F4L gene renders VACV

highly dependent upon the host cell for provision of a

complementing RR activity. This leads to the prediction that the

efficiency of growth of a DF4L virus will depend upon the level of

cellular RR activity. To test this hypothesis, we used two

pancreatic cancer cell lines that have been previously reported

to exhibit high (PANC-1) and low (CAPAN-2) levels of RR subunit

expression and activity [45,62]. We prepared cell-free extracts

from wild-type virus-infected (or mock-infected) PANC-1 and

CAPAN-2 cells, and used western blots to measure the levels of

RR proteins. This study confirmed that HR1, HR2, and Hp53R2

are expressed at lower levels in CAPAN-2 cells, relative to PANC-

1 cells, and that this phenotype is unaffected by VACV infection

(Figure 8A). We then seeded approximately equal numbers of

PANC-1 and CAPAN-2 cells into culture dishes and infected them

with wild-type and mutant strains. The total titers for each of these

infections at 48 or 72 h post-infection are plotted in Figure 8B.

Division of the mean titers obtained in PANC-1 cells by those

obtained in CAPAN-2 cultures for each virus gave an estimate of

the fold difference in replication efficiencies for each strain in these

cells (Figure 8C). These data showed that PANC-1 cells support a

relatively normal level of replication of most mutant VACV

strains. For example, the wild-type virus grew only ,3–6-fold

better on PANC-1 cells than did DF4L, and DI4L/DF4L, and

DF4L/DJ2R strains (Figure 8B). One exception to this rule is that

the wild-type virus produced titers ,16-fold higher than the

DI4L/DF4L/DJ2R strain on PANC-1 cells (Figure 8B). This

suggested that in certain cell types and in the absence of J2R and

F4L, I4L may play some role in supporting VAC replication.

A more notable feature of this experiment is that all virus tested

grew better on PANC-1 cells compared to CAPAN-2 cells. The

wild-type, DI4L, and DF4L/DJ2RHisF4L strains produced yields 6–

8-fold higher on PANC-1 cells than CAPAN-2 cells 48 h post-

infection and this difference was greatly exacerbated by deletion or

mutation of F4L (Figure 8C). For example, the DF4L strain grew

Figure 5. VACV F4 co-immunoprecipitates with endogenous
human RR proteins. (A) Immunoprecipitation of HR1 in HeLa cells
infected with wild-type VACV at a MOI of 10. At 6 h post-infection, cells
were lysed and subjected to immunoprecipitation (IP) with antibodies
directed against human R1 (HR1), human R2 (HR2) or human p53R2
(Hp53R2). Normal goat serum was used as a control. (B) Co-
immunoprecipitation of F4 with HR1 in the presence or absence of I4.
HeLa cells were infected with wild-type (WT) or DI4L VACV strains as in
(A) and subjected to IP with HR1 or control antibodies 8 h post-
infection. Western blots (WB) of IP material and total lysates are shown.
LC, light chain; HC, heavy chain.
doi:10.1371/journal.ppat.1000984.g005
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18–30-fold better on PANC-1 cells and the DF4L/DJ2RHisY300FF4L

strain yielded a 113-fold increase in titer on PANC-1 cells

compared to CAPAN-2 cells. In fact, titering of input inocula

indicated that the DF4L/DJ2RHisY300FF4L strain did not produc-

tively replicate in CAPAN-2 cells (data not shown). This suggested

that the reduced RR activity of CAPAN-2 cells imposes a barrier

to replication of this mutant. Collectively, these results suggested

that the replication defects exhibited by DF4L and DF4L/

DJ2RHisY300FF4L strains can be complemented in human cancer

cell lines over-expressing cellular RR subunits. However, direct

evidence for the linkage between cellular RR levels and mutant

rescue requires further studies.

VACV RR subunits are differentially required for
pathogenesis in mice

We used an animal model to determine if the apparent

differential requirement for VACV RR subunits for replication in

culture would be recapitulated in vivo. We infected groups of five

NMRI mice with equal doses of wild-type, DI4L, DF4L, or DI4L/

DF4L strains and tracked changes in animal body weight over 24

days. The wild-type and DI4L strains exhibited a similar degree of

virulence, causing the death of 5/5 and 4/5 animals, respectively,

within seven days of infection. In contrast, both DF4L and DI4L/

DF4L strains were highly attenuated, with all animals displaying

little to no signs of disease and surviving the infections (Figure 9A).

There were small, transient drops in body weight for animals

infected with the DF4L strain around days 5 and 7, otherwise these

animals, and those infected with the DI4L/DF4L strain, showed no

obvious signs of morbidity when compared to the mock-infected

control group (Figure 9A). To obtain a more quantitative

measurement of the pathogenic nature of these infections, we

isolated lung tissues from mice infected with the aforementioned

strains on day 5 post-infection. Wild-type and DI4L strains clearly

had a replication advantage over DF4L and DI4L/DF4L strains

with lung titers approximately 4 logs higher than the latter two

strains (Figure 9B). These results indicate that VACV RR subunits

are differentially required for virulence in mice.

Discussion

Acquisition of a suitable supply of dNTPs to support replication

is a challenging feat for mammalian DNA viruses because most

host cells exist predominantly in a terminally-differentiated and

quiescent state [63]. The S-phase-specific nature of host R2

expression leaves quiescent cells with only p53R2-R1 complexes to

maintain a low (,2–3% the level of cycling cells [64]) level of RR

activity to meet the demands of DNA repair and mitochondrial

genome synthesis [16,19,65]. Since ribonucleotide reduction is the

rate-limiting step in mammalian dNTP biogenesis [26], low RR

activity may pose a barrier to productive infection. Therefore,

DNA viruses must replicate only in cycling cells, induce host RR

activity upon infection, and/or encode their own RR enzymes

[63]. Many large DNA viruses, including herpes-, irido-, asfra- and

poxviruses have evolved the later strategy.

It is clear that herpesvirus-encoded RR proteins are important

because inactivation of viral RR genes leads to replication defects

in vitro and in animals [66,67,68,69]. Furthermore, inhibiting

complex formation by herpes simplex virus (HSV) R1 and R2

proteins with a C-terminal R2 peptide mimic has been shown to

prevent HSV replication in culture [70,71,72]. Interestingly, b-

herpesviruses, only encode an R1 gene, although it is still required

for virulence [63]. However, it is unlikely to play a catalytic role in

dNTP biogenesis as it encodes mutations at key catalytic residues

that would render this subunit inactive in RR complexes

[73,74,75]. Recent evidence suggests that b-herpesviruses may

induce host RR protein expression, possibly explaining why viral

RR function was not conserved [75,76]. What biological purpose

is served by b-herpesvirus R1 proteins is unclear, although it has

been suggested that these proteins might play some role in

inhibiting apoptosis [77].

The increasing availability of virus genome sequences has

revealed that differential conservation of viral RR genes is actually

a widespread phenomenon among eukaryotic DNA viruses.

However, in contrast to the case of b-herpesviruses, most DNA

viruses that encode a single RR subunit encode R2 proteins while

R1 is frequently absent. For example, iridoviruses in the

Megalocytivirus genus only encode an R2 subunit while all other

iridoviruses encode both RR subunits [78]. Furthermore, certain

members of the Phycodnaviridae and Ascoviridae viral families also

only encode R2 subunits [79]. This R2 bias is also seen in

bacteriophage belonging to the Siphoviridae and Myoviridae families,

suggesting that even prokaryotic viruses have biased conservation

of RR genes [79].

Perhaps the most biased conservation of RR genes is found in

poxviruses, with a clear favoring of R2 over R1 (Table S1). Even

Orthopoxviruses, which typically encode both R1 and R2 genes,

contain a member (horsepox virus) that encodes a fragmented R1

gene [80]. Many other Chordopoxviruses show no evidence of

ever having encoded an R1 activity, including the Leporipox-

viruses MYXV and SFV which we sequenced ten years ago

[81,82]. At that time, the close similarity of MYXV and SFV R2

subunits to mammalian R2 proteins, and absence of a viral R1

homolog, led us to suggest that Leporipoxvirus R2 subunits were

likely forming chimeric complexes with host R1 proteins [82].

Subsequent biochemical studies of VACV F4 and I4 by Chimploy

and Mathews [33] found that mixing purified F4 and I4 with MR1

and MR2 proteins, respectively, resulted in functional, chimeric

RR enzymes. However, the two kinds of chimeric RRs did not

display identical properties. Whereas the native complexes (i.e.

I42F42 and MR12MR22) were about equally active, the I42MR22

enzyme exhibited ,5-fold less activity and the MR12F42 enzyme

showed up to 2-fold more activity than either native complex [33].

These observations may explain why Child et al. reported their

DI4L strain to exhibit no observable replication defect in culture

and only a small (,10-fold) increase in LD50 for mice compared to

wild-type VACV [34]. However, in an attempt to develop new

vaccine strains, Lee et al. generated a F4L insertional inactivation

mutant and reported significant increases of ,1000-fold in the

LD50 of this mutant in a similar mouse model used by Child et al.

with their DI4L strain [34]. Collectively these independent

bioinformatic, biochemical, and molecular genetic studies all

suggested that poxvirus R2 subunits might be more important for

Figure 6. Recombinant poxvirus RR proteins interact with endogenous human RR proteins. (A) Co-immunoprecipitation of Recombinant
Flag-tagged I4 and human R1 (HR1) with cellular and VACV RR proteins. HeLa cells were infected with the indicated strains at a MOI of 10 for 8 h after
which protein extracts were prepared and immunoprecipitated (IP) and/or then western-blotted (WB) with the indicated antibodies. (B) Co-
immunoprecipitation of VACV, ectromelia (ECTV), myxoma (MYX) and Shope fibroma (SFV) His6-tagged R2 proteins with HR1. HeLa cells were
infected with the indicated strains at a MOI of 10 for 8 h and then protein extracts were subjected to immunoprecipitation with anti-HR1 antibodies
or control serum (indicated by ‘‘*’’). LC, light chain.
doi:10.1371/journal.ppat.1000984.g006
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Figure 7. Deletion of F4 C-terminus residues inhibits interaction with HR1 and impairs virus growth. (A) Co-immunoprecipitation of
recombinant F4 proteins with HR1. HeLa cells were infected with the indicated strains at a MOI of 10 for 8 h and then protein extracts were subjected
to immunoprecipitation (IP) with anti-HR1 antibodies or control serum (indicated by ‘‘*’’). Western blots (WB) of IP material and total lysates are
shown. LC, light chain. (B) Plaque area analysis of RR mutant strains. BSC-40 monolayers in 60-mm-diameter plates were infected with ,100 PFU of
the indicated strains and stained 48 h post-infection with crystal violet. The scatter plots illustrate independent (n = 20) as well as mean (horizontal
bar) plaque area measurements in arbitrary units (AU) for each of the indicated strains. Open circles indicate that the mean plaque area was
statistically different (P,0.05) from wild-type virus as determined by a one-way ANOVA.
doi:10.1371/journal.ppat.1000984.g007
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viral replication than R1 subunits. However, the contributions of

poxvirus R1 and R2 subunits to viral replication and pathogenesis

had never been directly compared nor was it clear why R2

subunits may be more important to the poxvirus life cycle.

We examined this issue in detail by generating a panel of VACV

RR mutant strains and analyzing their plaque, growth, and

pathogenic properties. Our studies clearly show that these

properties are far more affected in DF4L strains compared to

DI4L strains (Figures 3 and 9). Combining F4L and I4L

deficiencies caused no further inhibition of virus growth,

suggesting that the phenotype is dominated by the integrity of

the F4L locus. We also showed that inactivating VACV J2R in the

DF4L background did not further impede replication (Figure 3),

suggesting that the salvage pathway for dNTP production is either

not required for replication in culture, or is sufficiently

complemented by host TK enzymes. This result made it possible

to use the J2R locus as a site for introducing ectopic copies of

different recombinant R2 proteins. The DF4L strain’s phenotype

can be completely complemented by a gene encoding His6-tagged

F4 and by genes encoding other Orthopoxvirus or Leporipoxvirus R2

proteins (Figure 3B). Why Hp53R2 failed to rescue this phenotype

is unclear but several possibilities exist. For one, R1-p53R2

complexes exhibit only 40–60% the activity of R1-R2 complexes

[17] and this reduced activity might not meet some activity

threshold required for efficient viral replication. Secondly,

significant fractions of Hp53R2 proteins are bound in inactive

complexes by p53 and p21 proteins, and are only released after

appropriate signaling pathways have been activated [83,84].

Therefore, even if one over-expresses Hp53R2, it may not

produce a sufficient level of ‘‘free’’ Hp53R2 that could complex

with R1 proteins. Finally, Hp53R2 has recently been shown to

inhibit MEK2, a kinase involved in the activation of the Ras-Raf-

MAPK signaling pathway [85]. This inhibition could be

detrimental as activation of the MAPK pathway is required for

VACV replication [86]. These possibilities are currently being

addressed. Attempts to generate a VACV strain over-expressing

HR2 have thus far been unsuccessful and so it is unclear whether

HR2 can complement a DF4L strain.

The hypothesis that F4 protein can compete with (or replace)

cellular small subunits to form chimeric RR complexes in vivo is

strongly supported by the dominant-negative phenotype exhibited

by Y300F-substituted F4 protein (Figure 3). Viruses encoding these

mutant proteins replicate very poorly and produce extremely small

plaques. Furthermore, this phenotype is not altered by the

presence or absence of I4 (Figure 3B). The genetic data are fully

concordant with our immunoprecipitation experiments, which

showed that F4 interacted with cellular RR subunits (Figure 5A)

and that this interaction was unaffected by I4 (Figure 5B). We also

found that other Chordopoxvirus R2 proteins co-immunoprecipitated

with HR1 (Figure 6B), which is consistent with the ability of these

proteins to rescue the replication defect of the DF4L strain. The

Figure 8. Correlation of cellular RR expression and VACV
replication in two human cancer cell lines. (A) Western blot (WB)
analysis of viral and cellular RR subunit expression. Protein extracts were
prepared from mock-infected and wild-type-infected (MOI of 5) PANC-1
and CAPAN-2 cells at the indicated times post-infection. Western blots
were then performed using antibodies with the indicated specificities.
(B) Mean virus yields (+SE) after 48 or 72 h of infection (MOI of 0.03) of
PANC-1 (P) or Capan-2 (C) cells with each of the indicated strains. (C) Re-
plotting of the data in (B) to show the relative difference in mean
replication efficiencies between the two cell lines for each strain.
Relative differences were obtained by dividing yields obtained on
PANC-1 cells by those obtained on CAPAN-2 cells.
doi:10.1371/journal.ppat.1000984.g008
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ability of various poxvirus R2 subunits to interact with HR1 might

be explained by the high degree of sequence conservation amongst

mammalian RR subunits and the fact that Chordopoxvirus R2

subunits are typically .70% identical to mammalian subunits.

The observation that poxvirus RR genes are generally more

similar to cellular RR genes than other virus RR genes has led to

the suggestion that poxviruses have acquired RR genes through

horizontal transfer events with their host [87,88]. Interestingly,

other viral and bacterial pathogens have also likely acquired RR

enzymes through host gene capture [89,90,91]. It would be of

interest to determine if Chordopoxvirus R2 proteins exhibit a

quantitative binding preference for R1 proteins isolated from

their natural hosts (e.g. MR1 with ECTV R2 and rabbit R1 with

MYXV and SFV R2), as that would be an expected consequence

of evolutionary adaption to a particular host. Potential differences

in binding affinities between poxvirus and host subunits may

provide further insight into factors that contribute to poxvirus host

range which remain poorly defined.

During infection, ,8-fold more F4 than I4 subunits are

synthesized [92]. In tissue culture, levels of mammalian R1 are

constant during the cell cycle due to its long half-life [13], while R2

subunits are quickly degraded late in mitosis leading to a much

shorter half-life [15]. Given the relatively reduced activity of R1-

Hp53R2 complexes [17], it is possible that production of F4 in

excess allows these subunits to form needed complexes with both

viral and host R1 subunits. Interestingly, poxvirus R2 subunits,

like Hp53R2, lack much of the N-terminal sequences found in

HR2 including phosphorylation and ubiquitination sites that may

regulate HR2 function and degradation (Figure 1) [15]. This may

explain why F4 protein levels are stable for at least 12 h after

infection [92]. It seems likely that adaptive changes during

evolution has led to conservation of poxvirus R2 enzymatic

function yet has resulted in a loss of regulatory sequences that may

restrict viral subunit levels in the host.

We hypothesized that the ability of Chordopoxvirus R2 proteins to

interact with HR1 was due to the high degree of conservation of

the C-terminal seven residues between poxvirus and mammalian

R2 subunits (Figure 1). This C-terminal motif has been well-

characterized in R1-R2 interaction studies of various class I RR

enzymes [11,57,58,59,60,61] and an oligopeptide mimic

(7FTLDADF1) of mammalian R2 C-termini has been shown to

inhibit RR activity [57]. Positions 1, 5, and 7 in this mimic are the

most critical determinants of RR inhibition [57], and the residues

at these positions are conserved in the C-terminus of F4

(FSLDVDF) suggesting that VACV and mammalian RR share a

common R1-R2 subunit interaction mechanism. The large

differences between C-terminal sequences of HSV (YA-

GAVVNDL) and mammalian R2 subunits likely explains why

no evidence could be found for interaction of HSV RR proteins

with host subunits [23] and why peptide mimics of the HSV R2 C-

terminus are highly selective antivirals [71]. Previous studies have

used the F4 heptapeptide to generate an affinity column for I4

purification [93]. Therefore, we thought it was likely that F4

interacted with R1 proteins in a similar manner as found with

cellular R2 subunits. Indeed, interaction of F4 proteins lacking the

putative R1BD with HR1 was clearly impaired (Figure 7A) and

strains expressing these truncated proteins were unable to rescue

the small plaque phenotype of the DF4L mutant (Figure 7B).

However, deleting the R1BD from Y300F F4 did suppress the

dominant negative phenotype (Figure 7B), which further implied

that F4 functionally interacts with HR1 through the C-terminus of

F4.

Collectively our data show that VACV F4 proteins (and likely

other poxvirus R2 proteins) are required for efficient viral

replication in culture as well as for pathogenesis (Figure 9). While

our studies of CDV and HU sensitivities (Table 2) suggest a defect

in RR activity and subsequent dNTP pool biogenesis as the

underlying cause for the defect of DF4L strains, it is possible that

these are only indirect consequences of inactivation of F4L and

other functions of F4 are required for replication. However, the

dominant negative phenotype of the Y300F-encoding strains in

the presence or absence of I4 (Figure 3B), the requirement of the

Figure 9. Differential requirement of VACV RR subunits for
pathogenesis. (A) Analysis of animal body weight after infection with
RR mutant strains. Groups of 5 NMRI mice were inoculated by an
intranasal route with 40,000 PFU of the indicated VACV strains or were
mock-infected with sterile buffer. Symbols represent mean body weight
of each group of mice (or surviving members) over the indicated times
post-infection. The number of surviving mice in each treatment group is
indicated in parentheses. Error bars represent SD. (B) Lung titers after
infection with RR mutant strains. The scatter plot shows lung virus titers
from individual mice with means (horizontal bars) for each group. Mice
were infected in parallel with studies in (A) and were euthanized 5 days
post-infection. Lung virus titers were determined as described in
Materials and Methods.
doi:10.1371/journal.ppat.1000984.g009
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R1BD to produce this phenotype and interact with HR1, and the

similar localization observed with viral and cellular RR subunits in

infected cells (Figure S4) all support the simple conclusion that F4

must form complexes with host R1 proteins to facilitate dNTP

biogenesis.

The critical importance of this interaction for VACV replication

suggests that DF4L strains may act as selective oncolytic agents. A

wide variety of human cancers exhibit elevated RR expression

patterns and prolonged treatment of patients with RR inhibitors

can lead to drug resistance as result of HR2 gene amplification

[94,95,96]. For example, a recent study of patients with non-small

lung cancer found that elevated host RR expression levels in

patients’ tumors were directly correlated with reduced response to

chemotherapy and poorer prognoses [94]. Interestingly, hrR3, a

HSV mutant strain with an inactivated viral R1 gene, replicates

more efficiently in cancers with elevated host RR expression [97]

and shows promise as an oncolytic agent in mouse models [98].

The enhanced replication of DF4L and DF4L/DJ2RHisY300FF4L

strains in PANC-1 cells relative to CAPAN-2 pancreatic cancer

cell lines (Figure 8C) correlates well with the higher levels of RR

subunits in PANC-1 cells (Figure 8A) and documented differences

in RR activities between these two cell lines [45]. While further

evidence will be needed to prove that host RR proteins

complement the DF4L strain replication defect in PANC-1 cells,

our results build a strong circumstantial case for the dependence of

these F4L mutant strains on host RR activity. Since VACV and

other, non-Orthopoxviruses (e.g. Leporipoxviruses [99,100], and

Yatapoxviruses [101]) that encode R2 subunits have shown

potential for use in cancer virotherapy, we suggest that deletion

of R2 subunit genes from these viruses may create more selective

oncolytic agents.

During our studies we noted that poxviruses that encode R2 and

TK genes tend to have higher A+T base content in their genomes

than poxviruses lacking these genes (Table S1). This strong

correlation suggests that hybrid virus-host RR complexes and/or

poxvirus TK proteins have contributed to the establishment of

unique dNTP pools that have influenced viral genome composi-

tion during the co-evolution of poxviruses with their hosts.

Recently an APC mimic has been identified in poxviruses that

lack R2 and TK genes including Molluscipoxviruses, Parapox-

viruses, and crocodilepox virus [102]. The APC mimic in orf virus,

termed ‘‘PACR’’ (poxvirus APC/cyclosome regulator) inhibits

APC activity and causes mammalian cells to accumulate in G2/M

phases of the cell cycle [102]. Since APC targets mammalian TK

[103] and R2 [15] proteins for degradation during mitosis,

poxvirus APC mimics may serve to prevent degradation of these

host nucleotide metabolism proteins during viral replication. This

is supported by the finding that PACR inhibits host TK

degradation during the cell cycle [102]. This reliance on host

nucleotide metabolism proteins may explain why poxviruses

encoding APC mimics have low A+T content in their genomes

(Table S1). Strict reliance on host nucleotide metabolism

machinery may also explain why GC-rich Mollusci- and

Parapoxviruses have a rather limited host range when compared

to AT-rich Orthopoxviruses which encode their own RR and TK

[104] (Table S1). Therefore, poxviruses appear to have acquired

different mechanisms to obtain dNTPs for replication, which may

ultimately influence their genomic composition and host tropism.

Materials and Methods

Cell and virus culture
Cell and virus culture methods have been described elsewhere

[105]. Wild-type VACV and its mutant derivatives were derived

from strain Western Reserve (WR) originally acquired from the

American Type Culture Collection. Non-transformed African

Green Monkey kidney cells (BSC-40) were normally cultured in

modified Eagle’s medium (MEM) supplemented with 5% fetal

bovine serum (FBS). HeLa human cervical adenocarcinoma and

human embryonic lung (HEL) cells were cultured in Dulbeccos

MEM (DMEM) supplemented with 10% FBS. PANC-1 and

CAPAN-2 cells are human pancreatic epithelioid carcinoma and

adenocarcinoma lines, respectively and were also cultured in

DMEM supplemented with 10% FBS. All of the above cell lines

were originally obtained from the American Type Culture

Collection. A U20S human osteosarcoma cell line that expresses

Cre recombinase was a kind gift from Dr. J. Bell (University of

Ottawa). These cells were maintained in DMEM supplemented

with 10% FBS. Cells were cultured in Opti-MEM media

(Invitrogen; Carlsbad, CA) for experiments requiring transfections.

Materials
(S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine or cido-

fovir (CDV or HPMPC) was from Dr. K. Hostetler (University of

California, San Diego). Hydroxyurea (HU) was obtained from Alfa

Aesar (Ward Hill, MA). X-gal and X-glu substrates were obtained

from Sigma Chemical Co. (St. Louis, MO) and Clontech (Palo

Alto, CA), respectively. Phosphonoacetic acid (PAA) was from

Sigma Chemical Co. Isatin-b-thiosemicarbazone (IBT) was from

Pfaltz and Bauer (Waterbury, CT). Mycophenolic acid (MPA) and

xanthine were obtained from Sigma Chemical Co. Hypoxanthine

was obtained from ICN Biomedicals, Inc. (Aurora, OH).

Compounds were diluted to their final concentration in MEM

(CDV; HU; PAA; IBT) or in a 1:1 mixture of MEM and 1.7%

noble agar (X-gal; X-glu) immediately prior to use. Taq and

PfuUltra DNA polymerases were obtained from Fermentas

(Burlington, ON) and Stratagene (La Jolla, CA), respectively.

Antibodies, western blotting, and immunoprecipitation
Normal mouse and goat serum and goat polyclonal antibodies

against human R1 (HR1), human R2 (HR2), and human p53R2

(Hp53R2) were from Santa Cruz Biotechnology, Inc. (Santa Cruz,

CA). Mouse monoclonal antibodies against HR1 and HR2 were

from Millipore (Billerica, MA) and Santa Cruz Biotechnology,

Inc., respectively. Mouse monoclonal antibodies against Flag and

His6 (His) epitopes were from Sigma and Roche (Mississauga,

ON), respectively. Rabbit anti-Flag epitope polyclonal antibodies

were obtained from Sigma. A mouse monoclonal antibody was

raised against bacterially-expressed, recombinant ECTV R2

antigen by ProSci (Poway, CA). The resulting antibody also

recognizes VACV F4 and was used for western blotting. In some

cases, a rabbit anti-F4 polyclonal antibody was also used for

western blotting. The plasmid used to express recombinant ECTV

R2 antigen and the rabbit anti-F4 antibody were kindly provided

by Dr. M. Barry (University of Alberta). A rabbit anti-VACV I4

polyclonal antibody was obtained from Dr. C. Mathews (Oregon

State University). Although this antibody recognizes VACV I4, it

also cross-reacts with cellular R1 on western blots [92]. The mouse

monoclonal antibody against VACV I3 has been described [40]

and the mouse monoclonal antibody against cellular actin was

from Sigma.

Protein extracts for western blots and immunoprecipitations

were prepared from cell cultures by lysing cells on ice in a buffer

containing 150 mM NaCl, 20 mM Tris (pH 8.0), 1 mM EDTA,

and 0.5% NP-40 along with freshly-added phenylmethylsulfonyl

fluoride (100 mg/mL) and protease inhibitor tablets (Roche). For

western blots, 20–40 mg of total protein were subjected to SDS-

PAGE and subsequently blotted with appropriate antibodies after
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transfer to nitrocellulose membranes. Membranes were scanned

using an Odyssey scanner (Li-COR Biosciences).

Protein extracts for immunoprecipitations were recovered as

described above 6–8 h post-infection from 107 HeLa cells infected

with indicated strains at a multiplicity of infection (MOI) of 10.

Extracts were then pre-cleared by incubation with normal mouse

or goat serum along with protein G sepharose beads (GE

Healthcare Life Sciences; Piscataway, NJ) for 30 min at 4uC with

constant inversion. The samples were subsequently centrifuged

(2,500 rpm, 1 min, 4uC) and supernatants were transferred to

fresh tubes. These extracts were then incubated with the primary

antibodies overnight at 4uC with constant inversion. Fresh protein

G beads were then added to the extracts and incubated for 2 h at

4uC after which the beads were collected (2,500 rpm, 1 min, 4uC)

and washed four times with lysis buffer. The resulting bead-protein

complexes were resuspended in SDS-PAGE loading buffer, boiled

for 15 min and subjected to SDS-PAGE. Western blotting was

then performed as described above. Whole cell extracts (lysates)

were also blotted with indicated antibodies and represented ,5%

of the input material used for immunoprecipitations.

Plaque morphology and replication analyses
Plaque dimensions were measured on 60-mm-diameter dishes

of confluent BSC-40 cells infected with ,100 plaque-forming units

(PFU) of the indicated strain. After 48 h of infection, triplicate

plates were stained with crystal violet and scanned using an HP

ScanJet 6300C scanner. The resulting image files were analyzed

using ImageJ v1.04g software (National Institutes of Health, USA).

Unpaired t-tests or one-way ANOVA tests were performed on

mean plaque areas between wild-type and each of the various RR

mutant strains using GraphPad Prism (San Diego, CA) software

(version 4.0). In some cases two different RR mutant strains were

also compared for differences in mean plaque areas. A P value of

,0.05 was considered to be statistically significant.

Growth analyses were conducted in BSC-40, HeLa, PANC-1

and CAPAN-2 cell cultures using the indicated MOI and strains.

Cells were harvested by scraping monolayers into the culture

media at the indicated time points followed by three rounds of

freeze-thawing. Virus stocks were titered on BSC-40 cells.

For viral genome replication analyses, at the indicated times

post-infection, BSC-40 cells were harvested by scraping, collected

by centrifugation (800 rpm, 10 min, 4uC) washed once with PBS,

and resuspended in 500 mL of 106 saline-sodium citrate (SSC)

loading buffer containing 1 M ammonium acetate [106]. The cells

were then disrupted by three cycles of freeze-thaw and 50-mL

aliquots of the lysates were applied to a Zeta probe membrane

using a slot-blot apparatus (Bio-Rad, Richmond, CA). Samples

were denatured with 1.5 M NaCl and 0.5 M NaOH and washed

twice with 106 SSC loading buffer. The membrane was then

hybridized with a 32P-labeled E9L gene probe. After the

membrane was washed with SSC buffer and air dried, it was

exposed to a phosphorimager screen, imaged using a Typhoon

8600 phosphorimager and the data were processed using

ImageQuant software, (version 5.1) [40]. In some cases 0.5 mM

HU was added to the media 1 h post-infection.

Plaque reduction assays
Plaque-reduction assays were performed as previously described

[105]. Briefly, 35-mm-diameter dishes of confluent BSC-40 cells

were inoculated with ,100 PFU of the indicated virus strains, and

1 h after infection either drug-free medium or medium containing

the indicated doses of CDV or HU was added to the cultures and

the plates were incubated at 37uC for 48 h. Plates were then

stained with crystal violet to visualize and count plaques. Mean

50% effective concentration (EC50) values and their 95%

confidence intervals (CIs) were calculated using nonlinear

regression analyses with GraphPad Prism software after three

independent experiments had been performed. In cases where the

95% CIs of two different EC50 values did not overlap, these two

EC50 values were considered to be statistically different (P,0.05).

Confocal microscopy
HeLa cells were grown on coverslips in 24-well plates and

infected with the indicated virus strains at a MOI of 5 for 10 h.

The cells were fixed for 30 min on ice with 4% paraformaldehyde

in PBS. The fixed cells were blocked and permeabilized for 1 h at

RT in PBS containing 0.1% Tween (PBS-T) as well as 10% BSA.

The coverslips were then incubated with the primary antibodies

diluted in PBS-T (1% BSA) for 2 h at RT, washed three times and

then incubated with secondary antibodies conjugated to Alexa 488

or 594 (Invitrogen) for 1 h at RT. The cells were then

counterstained with 10 ng/mL 49,69-diamidino-2-phenylindole

(DAPI) in PBS-T for 15 min. The specimens were examined

using a Zeiss 710 Laser-Scanning confocal microscope equipped

with DAPI, Alexa 488, and Alexa 594 filters. Images were

captured and processed using ZEN 2009 software and Adobe

Photoshop (version 10.0.1).

Recombinant viruses
BSC-40 cells were grown to confluence and then infected for

1 h with the appropriate VACV strain (see below) at a MOI of 2 in

0.5 mL of PBS. The cells were then transfected with 2 mg of

linearized plasmid DNA using Lipofectamine 2000 (Invitrogen).

See Text S1 and Table S2 for details regarding the primers and

transfer vectors used to generate recombinant VACV strains. The

cells were returned to the incubator for another 5 h, the

transfection solution was replaced with 5 mL of fresh growth

medium, and the cells were cultured for 24–48 h at 37uC. Virus

progeny were released by freeze-thawing, and the virus titer was

determined on BSC-40 cells. To identify recombinant virus,

plaques were stained with X-gal or X-glu (both at 0.4 mg/mL) in

solid growth media, or cultured in media containing 25 mg/mL

MPA supplemented with xanthine (250 mg/mL) and hypoxan-

thine (15 mg/mL) for selection of yfp-gpt-encoding strains (see Text

S1; [107]). The PCR was used to confirm insertions/deletions in

the resulting recombinant viruses. The primers: 59-GAT-

GAATGTCCTGGATTGGA-39 & 59-ATTCCAAAGATCC-

GACGGTA-39 were used to PCR amplify ,700 bp of I4L

sequence that should not be present in DI4L strains. The primers:

59-ATGGAACCCATCCTTGCACC-39 & 59-ATCTTCTTGA-

GACATAACTC-39 were used to amplify ,930 bp of F4L

sequence that should not be present in DF4L strains. Disruption

of J2R sequence was detected with primers: 59-

TCCTCTCTAGCTACCACCGCAATAG-39 & 59-GTGC-

GGCTACTATAACTTTTTTCC-39 that bind to regions of

J2R flanking the insertion site of pSC66 vector [108] sequences

(see below). Primers TGGATTCGTACAAATTGGATTCTAT

& AATTGCTATTTCAGAGATGAGGTTC were used to

amplify an ,800 bp fragment from VACV DNA polymerase

(E9L) sequence to serve as a positive control for amplification. In

some cases western blotting was used to confirm the presence or

absence of gene expression in the described VACV strains. Details

of how each VACV strain was constructed are provided in Text

S1 and the marker rescue strategies used in these studies are

depicted in Figure 2A.

PfuUltra DNA polymerase (Stratagene) was used to PCR-

amplify DNA for cloning whereas Taq DNA polymerase

(Fermentas) was used for PCR diagnostic purposes. Plasmid
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constructs were verified by sequencing and all virus strains were

plaque-purified a minimum of three times in BSC-40 cells or Cre

recombinase-expressing U20S cells. All VACV strains were

characterized by PCR (data not shown) and sometimes by western

blotting (Figure 2B), although for brevity only characterization of

the main viral strains discussed throughout this study is shown.

Animal studies
Female NMRI mice, 3 to 4 weeks of age, were obtained from

Charles River Laboratories (Brussels, Belgium). Mice were utilized

at 5 mice per infection or control group for morbidity studies.

Mice were anesthetized using ketamine-xylazine and inoculated

intransally (or mock-inoculated) with 46104 PFU of virus diluted

in 30 mL of saline. Animal body weights were recorded over the

next 24 days or until the animals had to be euthanized because of

more than 30% loss in body weight. To determine viral titers in

lungs, two (wild-type infections) or five animals (DI4L, DF4L, and

DI4L/DF4L infections) were euthanized on day 5. Lung samples

were removed aseptically, weighed, homogenized in MEM, and

frozen at 270uC until assayed by titrations on HEL cells. For

mouse pathogenicity experiments, the DI4L/DF4L strain was

generated with the pDGloxPKODEL vector. This allowed for

removal of the yfp-gpt marker cassette from the I4L locus after

passage in U20S cells expressing Cre recombinase. No differences

were found in replication in culture between strains expressing the

yfp-gpt cassette and those with this cassette deleted by Cre

recombination (Figure S5). See Text S1 for further details.

Ethics statement
All animal work was approved by the K.U. Leuven Animal

Care and Use Committee. All animal guidelines and policies were

in accordance with the Belgian Royal Decree of 14 November

1993 concerning the protection of laboratory animals and the

European Directive 86-609-EEC for the protection of vertebrate

animals used for experimental and other scientific purposes.

Genbank gene ID numbers

1. VACV I4L (VACWR073) (Genbank ID: 3707606)

2. VACV F4L (VACWR043) (Genbank ID: 3707500)

3. VACV J2R (VACWR094) (Genbank ID: 3707550)

Genbank protein accession numbers

1. human R2 (HR2; Genbank accession: NP_001025.1)

2. mouse R2 (MR2; Genbank accession: NP_033130.1)

3. human p53R2 (Hp53R2; Genbank accession: BAD12267.1)

4. mouse p53R2 (Mp53R2; Genbank accession: Q6PEE3.1)

5. VACV F4 (Genbank accession: AAO89322.1),

6. ectromelia EVM028 (Genbank accession: NP_671546.1),

7. myxoma virus m015L (Genbank accession: NP_051729.1),

8. Shope fibroma gp015L (Genbank accession: NP_051904.1)

9. human R1 (HR1; Genbank accession: AAD37491)

10. mouse R1 (mR1; Genbank accession: AAH16450)

11. VACV I4 (Genbank accession: AAO89352)

Supporting Information

Figure S1 The DF4L strain has reduced expression of the late

VACV protein B5. BSC-40 cells were infected (at a MOI of 5)

with wild-type or VACV strains with a deletion of F4L (DF4L) or a

DF4L revertant strain (DF4LREV). (B) BSC-40 cells were infected as

in (A) with wild-type virus or a VACV strain with a deletion of I4L

(DI4L). Cells were harvested at the indicated times post-infection

and protein extracts were prepared for western blotting.

Antibodies against the VACV late protein B5, the early viral

proteins F4 and I4 or cellular actin were used for blotting on

parallel nitrocellulose membranes. Asterisks indicate mock-infect-

ed lysates collected after 24 h.

Found at: doi:10.1371/journal.ppat.1000984.s001 (9.96 MB TIF)

Figure S2 Expression profile of cellular RR proteins after

infection with VACV. HeLa cells were infected with wild-type,

DF4L or DF4LREV (revertant) strains (MOI of 5) or were mock-

infected (MI). Protein extracts were prepared at the indicated

times post-infection and equal amounts of protein were subjected

to SDS-PAGE followed by western blotting (WB) for human R1

(HR1), human R2 (HR2), or human p53R2 (Hp53R2). Blots for

cellular actin and VACV I3 protein served as loading controls.

Found at: doi:10.1371/journal.ppat.1000984.s002 (1.03 MB TIF)

Figure S3 Immunoprecipitation of His6-tagged F4 with human

R1 (HR1). HeLa cells were infected with the indicated strains

(MOI of 10) for 8 h and then protein extracts were subjected to

immunoprecipitation (IP) with anti-His6 antibodies. Western blots

(WB) of IP material and total lysates are shown. HC, heavy chain.

Note that VACV F4 is ,37 kDa while Hp53R2 (positive control

for HR1 interaction) is ,43 kDa.

Found at: doi:10.1371/journal.ppat.1000984.s003 (1.16 MB TIF)

Figure S4 Human and viral RR proteins are localized to the

cytoplasm during infection with VACV. (A) Localization of human

RR subunits in the absence or presence of infection. HeLa cells

were mock-infected (mock) or infected with wild-type VACV

(VAC) at an MOI of 5 for 10 h after which coverslips were fixed

and stained with antibodies against endogenous human R1 (HR1),

R2 (HR2), or p53R2. (B) Localization of recombinant human and

VACV RR subunits during infection. HeLa cells were co-infected

with the indicated strains (MOI of 5 for each virus) for 10 h after

which coverslips were fixed and stained with antibodies recogniz-

ing Flag or His6 epitopes. Arrows indicate positions of cytoplasmic

viral DNA. DIC, differential interference contrast.

Found at: doi:10.1371/journal.ppat.1000984.s004 (7.92 MB TIF)

Figure S5 Growth properties of selected recombinant strains in

BSC-40 cells. Cells were infected at a MOI of 0.03, harvested at

the indicated time points, freeze-thawed three times, and tittered

on BSC-40 cells. Although the experiments in (A) and (B) were

done in parallel, they are separated for clarity purposes and thus

the wild-type curve is the same in both graphs. The superscript

labels above certain virus strains refer to whether the I4L locus was

inactivated using pDGloxPKOINV (INV)- or pDGloxPKODEL

(DEL)- or pZIPPY-NEO/GUS (pZippy)-based vectors. A super-

script ‘‘REV’’ refers to a revertant of the DF4L strain. All

pDGloxPKO-based virsues went through a final, three-round

plaque purification procedure in Cre recombinase-expressing

U20S cells. Symbols represent mean titers determined in triplicate

and error bars represent SD. Some error bars are approximately

the same size of the symbols.

Found at: doi:10.1371/journal.ppat.1000984.s005 (0.31 MB TIF)

Table S1 Differential conservation of Chordopoxirinae RR genes.

Found at: doi:10.1371/journal.ppat.1000984.s006 (0.04 MB

DOC)

Table S2 Primers described in Text S1.

Found at: doi:10.1371/journal.ppat.1000984.s007 (0.04 MB

DOC)
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Text S1 Supporting Information.

Found at: doi:10.1371/journal.ppat.1000984.s008 (0.06 MB

DOC)
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