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Abstract

Cryptococcus gattii causes life-threatening disease in otherwise healthy hosts and to a lesser extent in immunocompromised
hosts. The highest incidence for this disease is on Vancouver Island, Canada, where an outbreak is expanding into
neighboring regions including mainland British Columbia and the United States. This outbreak is caused predominantly by
C. gattii molecular type VGII, specifically VGIIa/major. In addition, a novel genotype, VGIIc, has emerged in Oregon and is
now a major source of illness in the region. Through molecular epidemiology and population analysis of MLST and VNTR
markers, we show that the VGIIc group is clonal and hypothesize it arose recently. The VGIIa/IIc outbreak lineages are
sexually fertile and studies support ongoing recombination in the global VGII population. This illustrates two hallmarks of
emerging outbreaks: high clonality and the emergence of novel genotypes via recombination. In macrophage and murine
infections, the novel VGIIc genotype and VGIIa/major isolates from the United States are highly virulent compared to similar
non-outbreak VGIIa/major-related isolates. Combined MLST-VNTR analysis distinguishes clonal expansion of the VGIIa/major
outbreak genotype from related but distinguishable less-virulent genotypes isolated from other geographic regions. Our
evidence documents emerging hypervirulent genotypes in the United States that may expand further and provides insight
into the possible molecular and geographic origins of the outbreak.
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Introduction

Newly emerging and reemerging diseases have become a major

focus of infectious disease research in the 21st century. Reemerging

diseases are classified as those that have been previously

documented, but are now rapidly increasing in incidence,

geographic range, or both [1]. Emerging disease events have

been occurring at higher than average rates in the United States

due to several factors such as wildlife diversity, environmental

change, international travel, and increases in host susceptibility

[2,3]. An additional factor contributing to increases in morbidity

and mortality for many infectious diseases involves genetic

recombination events or gene/pathogenicity island acquisitions.

These events can occur via either horizontal gene transfer or

conjugation/introgression, leading to novel pathogenic genotypes.

This form of virulence evolution has been well characterized in

bacterial, viral, fungal, and parasitic human diseases [4,5,6,7,8,9].

The ability to cause damage to mammalian hosts is a common

theme among all microbial pathogens, making it a key aspect of

host-pathogen studies [10].

In the genomic era, it is now possible to combine conventional

epidemiological approaches with newly developed molecular

typing techniques to gain insight into the emergence and

molecular epidemiology of pathogens. These approaches can

improve understanding of population dynamics during an

outbreak, and may lead to novel methods for the rapid

identification, treatment, and diagnosis of emerging infections

[11]. In addition, molecular typing serves as an initial approach to

classify isolates into distinct genotypes for analysis. Further

investigations may include the examination of virulence and

phenotypic traits that may be common or distinct between

genotypes [6,12,13]. Gaining insights into the molecular epidemi-

ology and virulence of newly emerging diseases has considerable

potential for the rapid assessment and management of newly

emerging infections.

Over the past decade, Cryptococcus gattii has emerged as a

primary pathogen in northwestern North America, including both

Canada and the United States [6,13,14,15,16,17,18]. In the past,

C. gattii has often been associated with Eucalyptus trees in tropical

and subtropical climates, causing disease in immunocompetent
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hosts at low incidences [19,20,21]. C. gattii is distinct from its

sibling species Cryptococcus neoformans [22], which more commonly

infects immunosuppressed hosts and infects almost one million

people annually with over 620,000 attributable mortalities

[23,24,25]. C. gattii can be classified into four discrete molecular

types (VGI-VGIV), which represent cryptic species as no nuclear

allelic exchange between groups has been observed [6]. This

molecular classification is significant because VGII is responsible

for approximately 95% of the Pacific Northwest infections in

Canada and the United States [12,15]. The appearance of C. gattii

in North America is alarming because this is the first major

emergence in a temperate climate, indicating a possible expansion

in the endemic ecology of this pathogen [26,27].

Several significant questions persist regarding the outbreak and

its expansion within the United States. As the global collection of

C. gattii isolates expands, the molecular epidemiology of the species

has become increasingly informative, particularly through multi-

locus sequence typing (MLST), which allows data to be readily

compared between groups within the research community

[6,15,28,29,30]. The increase in global and regional isolates that

have been typed at the molecular level allows detailed analysis of

C. gattii. The analysis of both conserved coding regions, and

diverse noncoding regions provides insight into the genotypes

responsible for the outbreak. A major finding in this study is a level

of underlying diversity within the VGIIa/major genotype in the

region of expansion and other geographic locales.

Prior studies documented that the C. gattii VGIIa/major

genotype isolates from Vancouver Island are highly virulent in

experimental murine infection assays [6]. Here we expanded this

analysis to examine clinical VGIIa genotype isolates from

Vancouver Island, the United States, and Brazil, in addition to

an environmental VGIIa isolate from California. Our findings are

consistent with recent macrophage intracellular proliferation

studies, demonstrating that United States isolates from the recent

Pacific NW outbreak exhibit high virulence [31]. The enhanced

virulence of isolates from the outbreak region, when compared

with those from other regions, suggests that the genotypes

circulating in the Pacific NW are inherently increased in their

predilection to cause disease in mammalian hosts.

In addition to the detailed examination of the VGIIa/major

genotype clade, we report that the novel VGIIc genotype is highly

virulent in a murine inhalation model. Moreover, the VGIIc

genotype was found to have high intracellular proliferation rates in

macrophages and a significantly increased percentage of mito-

chondria with tubular morphology after macrophage exposure,

and thus VGIIc isolates share virulence attributes with the VGIIa/

major genotype isolates from the Vancouver Island outbreak.

These results extend the molecular and phenotypic understanding

of the recently discovered VGIIc/novel genotype and help shed

light into its possible geographic and molecular origins.

These studies provide insights into both the evolutionary history

and virulence characteristics of this unique and increasingly fatal

fungal outbreak in the temperate climate of the North American

Pacific Northwest and highlight the importance of a collaborative

interdisciplinary approach to the analysis of emerging pathogens.

Application of these approaches may increase awareness of disease

risks in the expansion zone, lead to more rapid diagnoses and, as a

result, accelerate the implementation of appropriate therapy.

Materials and Methods

Isolate Identification
Human and veterinary cases of confirmed or suspected C. gattii

infections in the states of Washington and Oregon were identified

by referring physicians and veterinarians, and subsequently

isolates were purified and examined. Melanin production was

assayed by growth and dark pigmentation on Staib’s niger seed

medium, and urease activity was detected by growth and alkaline

pH change on Christensen’s agar. These tests established that

isolates were Cryptococcus (C. neoformans or C. gattii). Isolates were

concomitantly examined for resistance to canavanine and

utilization of glycine on L-canavanine, glycine, 2-bromothymol

blue (CGB) agar. Growth on CGB agar indicates that isolates are

canavanine resistant, and able to use glycine as a sole carbon

source, triggering a bromothymol blue color reaction indicative of

C. gattii, whereas C. neoformans is sensitive to canavanine, and

cannot use glycine as a sole carbon source, resulting in no growth

or coloration in this selective indicator medium. All CGB positive

isolates were then grown under rich culture conditions prior to

storage at 280uC in 25% glycerol and genomic DNA extraction.

For genomic DNA isolation, a modified protocol of the

MasterPure Yeast DNA purification kit from Epicentre Biotech-

nologies was used. Briefly, 500 ml of glass beads (425–600 nm)

were added into the combination of cells and 300 ml cell lysis

solution. The rest of the method followed the protocol provided by

the manufacturer.

Molecular Epidemiology
For multilocus sequence typing analysis (MLST) [32], each

isolate was analyzed with a minimum of eight and in some cases

sixteen loci. For each isolate, genomic regions were PCR amplified

(Table S1), purified (ExoSAP-IT), and sequenced. All primers used

for the analysis were designed specifically to amplify open reading

frame (ORF) gene sequence regions including those with non-

coding DNA regions to maximize discriminatory power. Sequences

from both forward and reverse strands were assembled, and

manually edited using Sequencher version 4.8 (Gene Codes

Corporations). Based on BLAST analysis of the GenBank database

(NCBI), each allele was assigned a corresponding number.

GenBank accession numbers with corresponding allele numbers

are listed in the supplementary information (Table S2). To

determine that the nine VGIIc/novel isolates are clonally related,

given the level of diversity in the loci and the number of isolates that

have been examined, we applied an equation to measure the

probability of a genotype occurring more than once in the dataset

Author Summary

Emerging and reemerging infectious diseases are increas-
ing worldwide and represent a major public health
concern. One class of emerging human and animal
diseases is caused by fungi. In this study, we examine
the expansion on an outbreak of a fungus, Cryptococcus
gattii, in the Pacific Northwest of the United States. This
fungus has been considered a tropical fungus, but
emerged to cause an outbreak in the temperate climes
of Vancouver Island in 1999 that is now causing disease in
humans and animals in the United States. In this study we
applied a method of sequence bar-coding to determine
how the isolates causing disease are related to those on
Vancouver Island and elsewhere globally. We also expand
on the discovery of a new pathogenic strain recently
identified only in Oregon and show that it is highly virulent
in immune cell and whole animal virulence experiments.
These studies extend our understanding of how diseases
emerge in new climates and how they adapt to these
regions to cause disease. Our findings suggest further
expansion into neighboring regions is likely to occur and
aim to increase disease awareness in the region.
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[33,34]. For the variable number of tandem repeat (VNTR)

analysis, the Tandem Repeat Finder (TRF) version 4.00 software

package was employed for marker development, using the genomic

sequence of C. gattii isolate R265 (http://www.broadinstitute.org/

annotation/genome/cryptococcus_neoformans_b.2/Home.html)

[35]. The identified tandem repeat sequences and 400 bp of the

flanking region were extracted from the genomic sequence and

ranked according to the number of total repeats and the size of

repeat units using an in-house Perl script (available upon request).

Markers were examined for stability and those with high variability

and stability were chosen for the analysis. Sequences were

assembled and edited using Sequencher version 4.8 (Gene Codes

Corporations) and aligned using the Clustal W web based software

package (http://www.ebi.ac.uk/Tools/clustalw2/index.html).

Mating Conditions
Mating analysis was conducted on V8 media (pH 5). Isolates

were incubated at room temperature in the dark for 2–4 weeks in

dry conditions. All strains were crossed with the VGIII mating

type a isolate B4546 and the VGIII mating type a isolate NIH312,

both of which are fertile and commonly used for mating studies

[36]. Fertility was assessed by microscopic examination for

hyphae, fused clamp cells, basidia, and basidiospore formation.

Clustering and Haplotype Analyses
For each VNTR marker, a sequence type was defined as a

sequence exhibiting a unique mutation. Each sequence type was

confirmed to be unique by BLAST analysis of the NCBI GenBank

database [37]. A concatenated VNTR sequence type (CVST) was

defined as unique combinations of sequence types from the VNTR

markers. A multiple alignment of the sequences was carried out

using Clustal W software [38]. Analysis of the sequences was

conducted using the Neighbor-Joining and Maximum Parsimony

methods within the MEGA 3.1 software [39]. In addition, the use

of the maximum likelihood method (PhyML 3.0) with SH-like

approximate likelihood-ratio test and HKY85 substitution model

was applied [40,41]. For this purpose, sequences of the selected

VNTR markers were concatenated. We additionally concatenated

all of the strain-typing markers including the housekeeping genes

used in MLST and VNTR loci for clustering analysis. The

haplotype mapping analysis was carried out using TCS software

version 1.21 (http://darwin.uvigo.es/software/tcs.html) [42].

Intracellular Proliferation Rate (IPR) Determination
A proliferation assay was previously developed to monitor the

intracellular proliferation rate (IPR) of individual strains for a 64-

hour period following phagocytosis [31]. For this assay, J774

macrophage cells were exposed to cryptococcal cells that were

opsonized with 18B7 antibody for 2 hr as described previously

[43]. Each well was washed with phosphate-buffered saline (PBS)

in quadruplicate to remove as many extracellular yeast cells as

possible and 1 ml of fresh serum-free DMEM was then added. For

time point T = 0, the 1 ml of DMEM was discarded and 200 ml of

sterile dH2O was added into wells to lyse macrophage cells. After

30 minutes, the intracellular yeast were released and collected.

Another 200 ml dH2O was added to each well to collect the

remaining yeast cells. The intracellular yeast were then mixed with

Trypan Blue at a 1:1 ratio and the live yeast cells were counted.

For the subsequent five time points (T = 16 hrs, T = 24 hrs,

T = 40 hrs, T = 48 hrs and T = 64 hrs), intracellular cryptococcal

cells were collected and independently counted with a hemocy-

tometer. For each strain tested, the time course was repeated at

least three independent times, using different batches of macro-

phages. The IPR value was calculated by dividing the maximum

intracellular yeast number by the initial intracellular yeast number

at T = 0. We confirmed that Trypan Blue stains 100% of the

cryptococcal cells in a heat-killed culture, but only approximately

5% of cells from a standard overnight culture. Compared to a

conventional colony counting method, this method was shown to

be more sensitive in detecting the clustered yeast population or

yeast cells undergoing budding. IPR values were used to assess

how consistent the different VGII genotype subgroups were. For

this statistical analysis the medians of each population were

compared with the non-parametric Mann-Whitney U-test and

values of p,0.025, after controlling for multiplicity, and were

accepted as statistically significant (http://elegans.swmed.edu/

,leon/stats/utest.cgi).

Mitochondrial Morphology
The mitochondrial morphology assays were conducted in a

similar way to those in previous studies, with modifications [31]. C.

gattii cells, grown overnight at 37uC in DMEM in a 5% CO2

incubator without shaking for 24 hr, or isolated from macrophages

24 hr after infection, were harvested, washed with PBS twice and

re-suspended in PBS containing the Mito-Tracker Red CMXRos

(Invitrogen) at a final concentration of 20 nM. Cells were

incubated for 15 min at 37uC. After staining, cells were washed

in triplicate and re-suspended in PBS. For each condition, more

than 100 yeast cells per replicate for each of the tested strains were

chosen randomly and analyzed. For quantifying different mito-

chondrial morphologies, images were collected using a Zeiss

Axiovert 135 TV microscope with a 1006 oil immersion Plan-

Neofluar objective. Both fluorescence images and phase contrast

images were collected simultaneously. Images were captured with

identical settings on a QIcam Fast 1394 camera using the

QCapture Pro51 version 5.1.1 software. All Images were

processed identically in ImageJ and mitochondrial morphologies

were analyzed and counted blindly.

Three individual experiments were performed for each

condition and the data were tested for normality using the

Shapiro-Wilk test. For homogeneity of variances we used the

Levene statistic. For statistically significant differences among the

mean data we applied a One-Way ANOVA. Multi-comparisons

using Tukey Honestly Significant Differences tests were performed

to identify statistically significant differences between pairs. A p-

value of p,0.05, after controlling for multiplicity, was considered

to be statistically significant. Regression analysis was used to

measure the correlation between tubular mitochondrial morphol-

ogy and IPR values; an F-value of P,0.05 was considered to be a

significant correlation.

Murine Virulence Tests and Histopathology
To examine the virulence potential of global VGII isolates, with a

specific emphasis on the Pacific NW VGII outbreak genotypes, two

independent murine virulence experiments were conducted at two

facilities (Duke University Medical Center and the Wadsworth

Center). The murine virulence assays at Duke University Medical

Center and the Wadsworth Center used a similar protocol to

previous C. gattii and C. neoformans experimental infections [6,44,45].

At the Duke University Medical Center Animal Facility,

virulence was assessed using female A/Jcr mice (NCI, 18–24 g).

Strains were cultured in YPD broth for 18–20 h at 30uC,

harvested, washed three times with sterile PBS and counted using

a hemocytometer to determine cell concentrations. Inocula for

both murine experiments were confirmed by plating on YPD and

counting colony-forming units (c.f.u.). Nine to ten A/Jcr mice per

strain were anesthetized with pentobarbital and infected via

intranasal instillation with 56104 c.f.u. in 50 ml of sterile 16PBS.

C. gattii US Emergence
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Animals that displayed severe morbidity, based on twice-daily

examinations, were euthanized. Time to mortality was evaluated

for statistical significance using Kaplan–Meier survival curves

within the Prism software package (GraphPad Software), and P

values were obtained from a log-rank test. Survival data was

plotted for graphical analysis using the Prism software package.

At the Wadsworth center animal facility, all assays were

conducted using male BALB/c mice (approximately 6 weeks old,

15–20 g, Charles River Laboratories, Inc.). Strains were grown

overnight in YPD broth at 30uC with shaking. The cells were

harvested, washed in PBS, and counted using a hemocytometer.

Five mice per strain were anesthetized with a mixture of xylazine–

ketamine, and allowed to inhale 105 (30 ml) cryptococcal cells per

mouse, via intranasal instillation. Mice were given food and water

ad libitum and monitored twice daily. At the first sign of poor health

or discomfort, infected animals were euthanized. Brain and lung

tissues from the dead animals were cultured on Niger seed agar for

C. gattii recovery to confirm infections were due to this pathogen.

Time to mortality was evaluated for statistical significance as

described above.

Two animals from each strain assayed in the study conducted at

Duke University were selected for histopathology analysis either at

the time of sacrifice or at the conclusion of the experiment for the

more attenuated isolates. For each animal, lung samples were

collected and stored in 10% neutral buffered formalin. Samples

were paraffin embedded and hematoxylin and eosin (H&E) stained

at the Duke University Research Histology Laboratory. After

staining and slide preparation, each sample was examined

microscopically for analysis of cryptococcal cell burden and

immune responses. Images were captured using an Olympus

Vanox microscope (Duke PhotoPath, Duke University Medical

Center).

Ethics Statement
The animal studies conducted at the Wadsworth Center were in

full compliance with all of the guidelines set forth by the

Wadsworth Center Institutional Animal Care and Use Committee

(IACUC) and in full compliance with the United States Animal

Welfare Act (Public Law 98–198). The Wadsworth Center

IACUC approved all of the vertebrate studies. The studies were

conducted in facilities accredited by the Association for Assessment

and Accreditation of Laboratory Animal Care (AAALAC).

The animal studies at Duke University Medical Center were in

full compliance with all of the guidelines of the Duke University

Medical Center Institutional Animal Care and Use Committee

(IACUC) and in full compliance with the United States Animal

Welfare Act (Public Law 98–198). The Duke University Medical

Center IACUC approved all of the vertebrate studies. The studies

were conducted in Division of Laboratory Animal Resources

(DLAR) facilities that are accredited by the Association for

Assessment and Accreditation of Laboratory Animal Care

(AAALAC).

Results

Molecular Analysis of C. gattii VGII Outbreak vs. Global
Isolates

To examine the C. gattii outbreak isolates collected from 2005 to

2009 (Figure 1), an in-depth stepwise molecular analysis was

applied to each isolate, and the genotypes were compared with

other global genotypes. In total, 20 markers were selected for

analysis. These markers include both coding and noncoding

genomic regions and range in size and allelic diversity (Table 1).

Additionally, all of the markers are randomly distributed among

the chromosomes in the most recent assembly of the reference C.

gattii VGI genome, WM276 (Figure 2). Initially, all isolates were

sequenced at a total of eight MLST markers, and four variable

number of tandem repeats (VNTR) markers (Figure 3, Table 2).

Next, global isolates were selected for diversity, and several isolates

from each of the primary genotypes in the expansion region were

chosen for sequence analysis at eight additional MLST loci,

bringing the total number of genetic markers analyzed for these

isolates to 20 (Figure 4A). As expected, the MLST markers were

less variable and more conserved, while the VNTR markers

allowed for higher-resolution differentiation between isolates that

appeared identical by MLST analysis. The generated datasets

were then concatenated both without and with VNTR data

(Figure 4B, Figure 4C).

The combined analysis of the results presented here, and a 30

marker MLST analysis conducted previously [6,18], reveal several

findings of interest in relation to VGII genotypes in the region.

From the analysis of 34 markers (30 MLST/4 VNTR), we show

that the Vancouver Island VGIIa/major isolates are fully identical

at all loci to several recent isolates from Washington and Oregon, as

well as a historical clinical isolate (1970’s), NIH444, from Seattle.

Additionally, the VGIIb/minor isolates from Australia and

Vancouver Island are identical at 34 total loci, and also identical

to VGIIb/minor isolates from Oregon at 20 loci (16 MLST/4

VNTR). Furthermore, all VGIIc isolates to date are identical across

all 20 loci examined (Figure 4A). However, we also are able to

discriminate the outbreak VGIIa genotype from an environmental

VGIIa isolate from California, CBS7750, and clinical VGIIa

isolates CA1014 and ICB107 from California and Brazil,

respectively, at one or more MLST/VNTR loci. It is clear from

prior studies that the VGIIa/major and VGIIb/minor isolates are

clonal lineages [6,12,15,46], and here we confirmed that this is the

case for the nine VGIIc/novel isolates, based on 7-loci MLST

analysis of the global VGII population (Figure S1) (p,0.0001).

The largest and most comprehensive dataset arose from the

combined analysis of seven MLST and four VNTR loci, resulting

in a total of 41 sequence types (STs). This dataset was generated

from clinical, veterinary, and environmental C. gattii isolates

(Figure 3, Figure S1, Table S3). From the analysis, it is clear that

the VGIIa/b/c clusters are all related to each other, but also

distinct. In addition, the data show that the VGIIa/major clade is

closely clustered to VGIIc, further validating prior reports that

examined a more limited number of loci [13,47]. In addition,

VGIIc (ST21) shares high sequence identity to ST34, represented

by a mating type a clinical isolate from Colombia, suggesting that

the VGIIc genotype may have resulted from a-a mating, even

though all isolates related to the Pacific NW outbreak are

exclusively a mating type. Additionally, Vancouver Island isolates

from our collection that had not been fully typed by MLST were

sequenced at two loci to determine if any were unrecognized

VGIIc isolates (n = 56) (Figure S2). Of these, 51 were found to be

VGIIa, five were VGIIb, and none were VGIIc, consistent with

previous data from the region. Thus, VGIIc appears to remain

exclusive to the United States, specifically Oregon, and has never

been reported from Vancouver Island, the mainland of Canada,

Washington State, or elsewhere globally.

Within the VGIIa/major cluster, based on the initial MLST

analysis of 30 loci, only a single isolate (ICB107) could be

distinguished from the other VGIIa isolates, and this was at only

one locus [18]. To further investigate this homogeneous

population causing the vast majority of the outbreak-related

morbidity and mortality, we expanded the molecular analysis to

include highly variable regions of the genome. The application of

these VNTR markers, in combination with the MLST markers,

C. gattii US Emergence
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allowed us to generate five independent STs from within the

VGIIa/major genotype and related isolates (Figure 3).

These five sequence types (ST1, ST2, ST3, ST13, ST30)

contained a total of 44 isolates (Figure 3, Table S3). The canonical

VGIIa/major outbreak genotype, ST1, contained the vast

majority of the 44 isolates (n = 38). As expected based on previous

models of the C. gattii outbreak expansion [13], ST1 consisted of

isolates exclusively from the initial outbreak and expansion zones,

including British Columbia, Washington, and Oregon (Table S3).

These results further validate the hypothesis that the epicenter of

the outbreak was on Vancouver Island, beginning in the late

1990’s, with a direct expansion into neighboring mainland British

Columbia and subsequently into the United States [13]. The only

exception in this dataset is isolate NIH444, an older isolate from

the region that was isolated from a patient sputum sample in

Seattle in the early 1970’s [18], which is also identical at all 34

markers examined. This suggests that the VGIIa/major genotype

responsible for most of the outbreak cases may have been

circulating in the region prior to the outbreak. The possible travel

history of this patient is unknown, and could therefore have

involved exposure on Vancouver Island. Overall, this analysis

provides increased evidence that the outbreak genotype is unique

to the region thus far, and molecularly distinct from closely related

isolates from both California and South America.

While the homogeneous nature of the VGIIa/major isolates

based on robust molecular typing validated previous models, an

underlying diversity within this group was also discovered. First, we

further validated that the isolate ICB107 (ST13), from Brazil, was

indeed distinct from the ST1 VGIIa/major clade. This isolate

differs at one MLST marker (LAC1), and three VNTR markers

(VNTR3, VNTR15, VNTR34). Additionally, the high-resolution

sequence analysis was able to discriminate other VGIIa isolates that

were collected from California. These include isolate CBS7750

(ST3), collected from the environment in San Francisco in 1990

[48], and isolate CA1014 (ST2), which was isolated from a patient

with HIV infection in southern California. Each of these two isolates

differs from ST1 due to unique mutations within the VNTR7 and

VNTR34 loci, respectively. This shows that similar VGIIa genotype

isolates have been found elsewhere, but that none are identical to

those circulating as part of the ongoing Vancouver Island outbreak.

Whether these isolates are a result of drift from ST1, or if ST1 arose

from one of these related genotypes is not known.

In addition to discriminating VGIIa isolates that were not from

the outbreak region, we also found a novel ST, ST30, which is

highly similar to ST1, but divergent at a unique region of

VNTR34. Interestingly, all three of the ST30 isolates are

exclusively from Oregon, including two human clinical cases

and one marine mammal case (Figure 1, Figure 3, Table S3).

Figure 1. Geographic dispersal of pathogenic C. gattii genotypes in the United States. Circles represent human cases and squares
represent animal (non-human mammalian) cases. All cases shown have been reported from 2005 to 2009. Isolates are color coded by genotype, in
which yellow and blue correspond to VGIIa/major genotype cases (yellow ST1, blue ST30), red corresponds to VGIIb/minor, green corresponds to the
novel VGIIc genotype, and orange corresponds to two cases determined to be molecular type VGIII. In total, there were 39 cases (18 human, 21
animal) that have been confirmed by phenotypic and genotypic profiling.
doi:10.1371/journal.ppat.1000850.g001

C. gattii US Emergence
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These results are consistent with an expansion followed by genetic

drift in the highly variable VNTR loci. Isolates of ST30 have not

been detected on Vancouver Island, indicating that this divergence

is recent, and likely occurred after the expansion of ST1 into the

United States. Alternatively, both ST1 (VGIIa/major) and ST30

may have been present for a long period, with only ST1 having

been transferred to Vancouver Island.

To gain insights into the potential origins of the VGIIc

genotype, and to assess its position within the overall VGII clade,

clustering analysis was applied. Analysis of the combined dataset

including 41 sequence types generated from 115 C. gattii isolates

shows that the VGIIc genotype is independent, but similar to

VGIIa (Figure 3). The closest relationship determined from the

analysis was to ST34, an isolate from Colombia, which is also of

the opposite a mating type. Moving beyond the direct branch, it

appears that the VGIIc genotype shares sequence similarities to

global isolates from South America, Africa, and also European

isolates with likely African origins based on collected clinical case

histories. Additionally, the VGIIc group also shares the IGS1 allele

with isolates from Australia, further obscuring the possible origins

and necessitating a more thorough analysis (Figure 4A).

When the clustering analysis was expanded to include

additional MLST loci (Figure 4A), both with and without the

VNTR markers, the relationships of VGIIc to other global

genotypes was further elucidated, with close relationships observed

with global isolates from South America, Africa, Europe (Greece),

and Australia (Figure 4B, Figure 4C, Table S4). These results

increase the comprehensiveness of the analysis, and allow

predictions of the relationship of this genotype to global isolates.

Examination of alleles illustrates that, when the analysis is

expanded, the VGIIc group appears to be more diverse from

VGIIa and VGIIb. Each allele represented in green was initially

denoted as an allele that was unique to the VGIIc genotype, with a

total of seven such alleles (Figure 4A). To further elucidate the

possible origins of these alleles, isolates selected based on their

global diversity were sequenced at these loci (Figure 4A). Identical

matches for four of the seven VGIIc-unique alleles were identified

in isolates from Brazil, Australia, Europe, and European isolates

with likely African origins, while three alleles (SXI1a, HOG1, and

CRG1) remain unique to this novel genotype and only seen in

Oregon thus far (Figure 4A).

To further characterize the genetic relationships among the

global isolates in relation to the outbreak isolates, maximum

likelihood (ML) analysis was applied. Initially, the isolates were

characterized at 15 MLST loci, excluding the MAT locus so that

both a and a isolates could be included. This analysis indicates

that VGIIc may be more distantly related to the VGIIa/major

genotype than initially observed. In addition, analysis of the 15

MLST loci shows a possible relation of VGIIc with isolates from

South America, Africa, Europe, and Australia (Figure 4B). When

this analysis was expanded to also include the four VNTR loci,

similar results for the global comparisons of all genotypes and the

relation of VGIIc to global isolates were observed (Figure 4C). For

these reasons, additional sampling and analysis will be necessary to

more precisely elucidate if this novel virulent genotype originated

locally, or originated in an under-sampled region.

In addition to clustering analyses, TCS haplotype-mapping

software was applied to establish the evolutionary histories of the

MLST alleles examined during the analysis (Figure 5, Figure 6,

Figure S3). From the sequence results, all of the VGIIc isolates

were determined to be 100% identical, indicating that there was

likely a recent emergence in which all of the isolates are clonally

derived. To test this hypothesis, the TCS analysis allowed for the

examination of individual loci to determine which alleles are likely

ancestral, intermediate, or recently derived. Of the sixteen loci

examined, eight were consistent with VGIIc possessing the

ancestral allele, six of the alleles were distal nodes at the terminal

end of the respective haplotype networks, and two loci were of

intermediate allele positions.

Alleles with ancestral genotypes are less informative because

these alleles may not have diversified over time in the VGIIc

Table 1. Markers used in this study.

Marker Length (bp) Chromosome (WM276) Alleles

SXI1a 1,354 9 10

SXI2a 2,529 N/A* 2

IGS 740 2 15

TEF1 700 13 5

GPD1 547 6 10

LAC1 554 7 5

CAP10 568 11 4

PLB1 600 13 9

MPD1 677 7 1

HOG1 564 3 11

BWC1 587 4 7

CNB1 571 10 6

TOR1 574 6 5

CRG1 575 2 9

FHB1 535 3 5

FTR1 545 3 7

CAP59 557 1 9

VNTR3 334 1 13

VNTR7 270 4 21

VNTR15 364 6 19

VNTR34 526 2 32

* SXI2a is an idiomorphic allele, and therefore not present in the a mating type
isolate WM276.
doi:10.1371/journal.ppat.1000850.t001

Figure 2. Markers used in the study are dispersed in the
genome. A map of each chromosome is represented, illustrating the
locations of each marker based on the genomic sequence of the C.
gattii isolate WM276. MLST markers (n = 16) are indicated on the map by
hexagons, with pink denoting the standard set used, blue the expanded
set of loci, and red the MAT linked locus that is specific to a isolates.
Green triangles represent the four VNTR loci that were examined.
doi:10.1371/journal.ppat.1000850.g002
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lineage for various reasons, including selection pressures and

overall lack of diversity at the allele. When only non-ancestral

alleles were examined, 75% lay at the distal ends of their haplotype

maps. Intriguingly, the three VGIIc alleles unique to the genotype

(SXI1a, HOG1, and CRG1) all have distal placements (Figure 5A–

C). Additionally, the most recent ancestor to VGIIc in all three

cases can be shown to derive from isolates that are from South

America and Australia, indicating that VGIIc may have emerged

out of one of these regions (Figure 5). While other regions

including Europe and North America can be seen, no other

regions are observed for all three of these alleles. These distal

placements are consistent with a recent divergence of the unique

VGIIc lineage. The haplotype analysis, in combination with the

lack of any underlying diversity within the nine VGIIc isolates

analyzed, indicates a recent emergence of this novel virulent

genotype in Oregon.

To examine the role that recombination may have played in the

population structure of the VGII molecular type, we conducted

paired allele analysis for 25 representative global isolates (Figure 6,

Figure S4). The discovery of all four possible allele combinations

between two unlinked loci (AB, ab, Ab, aB) serves as evidence for

likely recombination [49]. From this analysis, we show that isolates

collected from South America, Africa, and Australia appear to be

involved in recombination events. Representative VGIIa/major,

VGIIb/minor, and VGIIc/novel isolates were found among

groups of recombinant isolates. A group of ten isolates, all a, from

South America and Africa (Figure S4) appeared most commonly

as recombinant partners, although several a mating type isolates

were also less frequently involved. In further support, when we

examined the number of genotypes present by region and

compared this data to the total number of genotypes represented

(Figure S1), it is clear that South America and Africa populations

are more diverse when compared with isolates from North

America, which are more clonal. Additionally, while the observed

diversity in Australia was lower than South America and Africa,

this may be attributable to sampling bias of clonal regions as prior

studies have shown that this continent is a region with high levels

of recombination due to both same-sex and opposite-sex mating

Figure 3. Clustering analysis of global VGII isolates shows high global diversity. This dendrogram, based on seven MLST loci and four
VNTR loci, illustrates the global divergence seen in this molecular type. Major clusters are highlighted accordingly to illustrate the placements of the
VGIIa/b/c super clusters as well as a unique NT cluster that has been found only in Australia thus far. Sequence types 1, 30, 19, and 20 are enlarged
and represent the primary genotypes responsible for the Pacific NW outbreak. Boxed isolates represent those of the a mating type and all other
sequence types represent the genotypes observed for mating type a isolates. Several genotypes are also combined with geographic information to
illustrate the diversity surrounding several sequence types. Isolates from the VGI, VGIII, and VGIV molecular types serve as out-group sequence types.
doi:10.1371/journal.ppat.1000850.g003
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events [50]. In addition to the paired allele analysis, allele

diagrams were constructed to observe possible recombination

within individual MLST loci (Figure S5). The most parsimonious

explanation for allelic diversity in 11 of the MLST loci analyzed is

as a result of consecutive and/or independent mutations within the

population. Within the four remaining loci, there exists at least one

hybrid allele that may be the result of a recombination event

between two hypothesized parental alleles in the global VGII

population (Table 3, Figure S5). Phenotypic mating results were

conducted and illustrate that the VGIIa/major (a), VGIIc/novel

(a), VGII mating type a genotypes, as well as several of the

proposed parental contributors from the allelic and genotypic

recombination analysis show fertility with the production of spores

when mated with fertile VGIII isolates (Table S5). Taken together,

this suggests that both a-a and a-a mating events may be

contributing to the formation of recombinant genotypes as well as

the production of infectious spores. There were no examples of

alleles introgressed into VGII from VGI, VGIII, or VGIV, in

accord with findings that the four VG molecular types likely

represent cryptic species [6,29]. In summary, these results suggest

that recombination events may be critical driving forces in the

evolution of C. gattii VGII diversity, which may in part contribute

to the generation of genotypes displaying increased virulence.

VGIIc/novel and VGIIa/major Outbreak Isolates Are
Hypervirulent

It has recently been shown that intracellular proliferation rate

(IPR) values for cryptococcal cells within macrophages are

positively correlated with virulence in the murine model for

cryptococcosis [31]. To further elucidate the potential virulence of

outbreak isolates collected from the United States, proliferation

rates of selected isolates were tested and compared to other isolates

for which proliferation data had been previously obtained. In total,

IPR values for eight of the nine VGIIc isolates were measured

(Figure 7A). In addition, the type strains for VGIIa/major (R265)

and VGIIb/minor (R272) were included as controls, and

previously published data for other VGIIa and VGIIb isolates

were included for comparisons [31]. On the basis of individual

strains, seven of the eight VGIIc/novel isolates showed high IPR

levels, with only a single outlier (EJB52) that had a low IPR value

(0.97). Taken together, the median IPR value for VGIIc is

significantly closer to that of VGIIa/major than to VGIIb/minor

(Figure 7A). These results indicate that the VGIIc genotype has a

similar intracellular phenotype, and thus virulence profile to the

VGIIa/major genotype. This is noteworthy because previous

analysis showed that the VGIIa/major genotype isolates from the

outbreak had unusually high IPR values, and the VGIIc isolates

from the same outbreak are here shown to have similarly high IPR

values.

Another unique feature of the outbreak VGIIa/major isolates is

the ability to form highly tubular mitochondria after intracellular

parasitism, a characteristic that correlates with both IPR and

murine virulence [31]. To explore the morphology of VGIIc

isolates, we examined selected isolates in DMEM media and after

exposure to macrophages. This analysis included two VGII

environmental isolates (CBS8684, CBS7750) and four of the

VGIIc/novel isolates. As expected, the vast majority of the

mitochondria for all six isolates were non-tubular after exposure to

DMEM media alone (Figure 7B). However, after exposure to

macrophages, three of the four VGIIc isolates tested showed

significantly higher percentages of tubular morphology (Figure 7C).

The lone VGIIc isolate that did not exhibit this morphology

(EJB52) was the same isolate that also had a low IPR value, and is

thus an overall outlier for the VGIIc genotype.

When the results of IPR versus percentage of cells exhibiting

tubular morphology were plotted, the graph showed a statistically

significant correlation of the two measures with an R2 value of

0.85 (Figure 7D). These results further indicate that the VGIIc

genotype is phenotypically similar to the Vancouver Island

VGIIa/major outbreak strains. Our results also support evidence

for similar mechanisms regulating the increased virulence seen in

the novel VGIIc genotype. The exact roles that the mitochondrial

Table 2. Isolates collected from cases within the United
States, 2005–2009 (n = 40).

Isolate Host Residence Molecular Type*

T67707 Human Washington VGIIa/major

W15209 Human Washington VGIIa/major

EJB4 Human Washington VGIIa/major

EJB5 Human Washington VGIIa/major

EJB6 Human Washington VGIIa/major

EJB7 Human Washington VGIIa/major

EJB8 Human Washington VGIIa/major

EJB9 Human Washington VGIIa/major

EJB13 Human Washington VGIIa/major

KB11632 Human Oregon VGIIa/major

EJB3 Human Oregon VGIIa/major

EJB19 Human Oregon VGIIa/major

MMC08-1042 Human Oregon VGIIa/major

EJB16 Alpaca Oregon VGIIa/major

EJB17 Dog Oregon VGIIa/major

3700 (1) Porpoise Washington VGIIa/major

3700 (2) Porpoise Washington VGIIa/major

3635 Porpoise Washington VGIIa/major

3059 Porpoise Washington VGIIa/major

EJB21 Porpoise Oregon VGIIa/major

EJB22 Dog Oregon VGIIa/major

EJB51 Alpaca Oregon VGIIa/major

EJB54 Cat Oregon VGIIa/major

EJB77 Dog Oregon VGIIa/major

EJB79 Alpaca Oregon VGIIa/major

A6MR38 Human Oregon VGIIc/novel

EJB12 Human Oregon VGIIc/novel

EJB18 Human Oregon VGIIc/novel

EJB14 Cat Oregon VGIIc/novel

EJB15 Alpaca Oregon VGIIc/novel

EJB52 Cat Oregon VGIIc/novel

EJB55 Ovine Oregon VGIIc/novel

EJB74 Cat Oregon VGIIc/novel

EJB75 Dog Oregon VGIIc/novel

EJB10 Human Oregon VGIIb/minor

MMC08-896 Dog Oregon VGIIb/minor

EJB53 Elk Oregon VGIIb/minor

EJB76 Cat Oregon VGIIb/minor

EJB11 Human Washington VGIII

MMC08-897 Cat Oregon VGIII

* The Molecular type designation is based on 8-loci MLST analysis.
doi:10.1371/journal.ppat.1000850.t002

C. gattii US Emergence

PLoS Pathogens | www.plospathogens.org 8 April 2010 | Volume 6 | Issue 4 | e1000850



tubular morphology might play in virulence are not yet known.

However, the distinct phenotype is clearly unique to the outbreak

isolates and is correlated with an increased ability to grow and

divide within host innate immune cells.

The VGIIc isolates were found to be highly virulent in the

murine inhalation model of infection. Two studies were conducted

to examine virulence. In the first murine experiment a total of six

isolates (n = 5 animals/isolate), were examined including two

VGIIc isolates (Figure 8A). The VGIIa/major isolate R265 served

as a positive control for high virulence, based on prior studies [6],

and the VGIIc isolates EJB15 and EJB18 showed similar virulence

with this well characterized virulent isolate. Additionally, two

VGIIa isolates that are not hypothesized to be from the current

Vancouver Island outbreak, including NIH444, which is fully

identical across 34 markers, and isolate CA1014, which differs

from R265 at VNTR34, show a significant reduction in virulence

compared to the high virulence isolates (P,0.05). Finally, in

accordance with previous studies, the VGIIb/minor type strain

R272 from Vancouver Island was avirulent in this model.

The analysis of virulence within the VGII genotype was

extended in a second experiment, in which 12 isolates (n = 9–10

animals/isolate) were examined. This study included two VGIIa/

major isolates from the outbreak zone, two VGIIb/minor isolates

from the outbreak zone, five of the novel VGIIc isolates, two

VGIIa-related isolates that are not part of the outbreak, and the C.

neoformans var. grubii type strain, H99. The H99 isolate used (H99S)

has been shown to be highly virulent in the murine model of

infection [44,51].

As expected, all five of the VGIIc isolates from Oregon as well

as the VGIIa/major isolates from Vancouver Island and Oregon,

and the highly virulent H99 isolate exhibited a high level of

virulence (median survival = 20.6 days). The VGIIb/minor isolates

tested were significantly decreased in virulence compared to the

more virulent VGIIa and VGIIc genotypes (P,0.005). The VGIIb

isolate R272 was avirulent whereas the VGIIb isolate EJB53 from

Oregon exhibited significantly less virulence compared to the

VGIIa/major and VGIIc isolates (P,0.005, median survival = 46

days). Similar to the first animal study, two VGIIa isolates that

differ at one or more molecular markers from the major VGIIa

outbreak genotypes were also tested. The environmental isolate

CBS7750 and a clinical isolate from South America ICB107 were

significantly attenuated (P,0.005) (Figure 8B). These results

Figure 4. Expanded molecular analysis reveals increased divergence in VGIIc. A) Multilocus sequence typing analysis of 16 loci. Selected
isolates from the outbreak in addition to global genotypes were selected for the expanded MLST analysis, including all nine of the VGIIc isolates
available. Each unique allele is colored for each marker for visual discrimination, and each number represents a GenBank accession number (Table S2).
B) A representation (ML) of the sequence data from panel A, with the exclusion of MAT locus linked markers (SXI1a/SXI2a). C) A combination of the
sequence data from panel B, with the addition of the four highly variable VNTR markers.
doi:10.1371/journal.ppat.1000850.g004
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provide further evidence that these are related to but distinguish-

able from isolates that are specific to the Vancouver Island

outbreak, and subsequent United States expansion, and are

decreased in ability to mount fatal infections in a mouse intranasal

instillation model of infection.

The cause of infection was further evaluated by histopatholog-

ical analysis of lung sections recovered from two infected animals

per isolate at sacrifice. Harvested organs were processed and

sectioned for slides with H&E staining. The lungs from the virulent

isolates showed significant inflammation and numerous crypto-

Figure 5. Haplotype networks define allele ancestry. Allele placements are indicated numerically, with the VGIIa/major genotype also
represented by blue coloration, the VGIIb/minor genotype by purple coloration, and the VGIIc/novel genotype by green coloration. Large circles
represent alleles extant in the population, and the small circles represent alleles that have not been recovered, or which may no longer be extant in
the population. Each connecting line represents one postulated evolutionary event, with the squared allele representing the posited ancestral allele
(two possible ancestral alleles depicted for SXI1a). A–C) Haplotype networks of the unique VGIIc alleles, SXI1a, HOG1, and CRG1, respectively, with
geographic origins indicated.
doi:10.1371/journal.ppat.1000850.g005
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coccal cells dispersed throughout the alveoli, in accordance with

severe pulmonary infection. Our findings show that there are no

major clinical differences between pulmonary infections with the

infectious genotypes VGIIa/major (Figure 8C), and the novel

VGIIc genotype (Figure 8D). These results further support similar

disease progression caused by these two highly virulent outbreak

genotypes.

Discussion

The findings presented here document that the outbreak of C.

gattii in Western North America is continuing to expand

throughout this temperate region, and that the outbreak isolates

in the United States of both the VGIIa/major genotype and the

novel VGIIc genotype are clonally derived and highly virulent in

host models of infection. These conclusions are based on an

extensive molecular analysis of isolates collected from the United

States (Table 2) and a comprehensive global collection of VGII

isolates of diverse geographic origin (Figure S1), examining both

conserved and divergent regions of the genome. The virulence

analysis is based on assays in both murine derived macrophages

and mice. These findings demonstrate that this emerging and fatal

outbreak is continuing to expand, and that the virulence of these

isolates is unusually high when compared to isolates of closely

related but distinguishable genotypes found in other non-outbreak

regions.

The continued expansion of C. gattii in the United States is

ongoing, and the diversity of hosts increasing. Cases have been

observed in urban and rural areas, and have occurred in a range of

mammals [16,52]. On Vancouver Island and the mainland of

British Columbia, cases have been documented in marine and

terrestrial mammals including cats, dogs, porpoises, ferrets, and

llamas [15,52,53]. This trend has continued in the United States,

with several cases in agrarian, domestic, and wild terrestrial

mammals, as well as marine mammals, adding elk, alpacas, and

sheep to the aforementioned list (Table S1) [13,14,17]. The co-

expansion of the outbreak among mammals and humans is

significant for several reasons. Non-migratory mammals serve as

sentinels for disease expansion, particularly given that isolation of

C. gattii from the environment is difficult, and not yet successful at

all in Oregon. Additionally, the threat to agricultural and domestic

animals is significant and thus the need for cooperation among

Figure 6. Evidence for recombination within the VGII molecular type. Informative paired allele graphs from VGII global isolates. An hourglass
shape indicates the presence of all four possible pairs of alleles and serves as evidence for recombination. A total of 56 graphs with at least one
possible recombining allele pair were generated from a set of 25 representative genotypes within the VGII molecular type, including isolates of both
mating type a and a (see also Figure S4).
doi:10.1371/journal.ppat.1000850.g006
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health officials is critical. Finally, the widespread spectrum of

disease illustrates that the organism is likely to be pervasive in the

environment, and that physicians and veterinarians should be well

informed of symptoms to facilitate early diagnoses, and successful

isolate collection and tracking.

A major question in the study of this outbreak is whether sexual

recombination, either within or between mating types, is occurring

or has occurred in the region. The possibility of meiosis is

important for two reasons. The first is that sexual recombination is

postulated to be a driving force for the increased virulence of the

VGIIa/major genotype, supported by the discovery of a diploid

VGIIa/major isolate, an intermediate in unisexual mating (all nine

VGIIc/novel isolates are haploid) [6,36]. C. gattii has also been

shown to undergo opposite sex mating in the laboratory, although

this has not yet been observed to occur between two isolates of the

VGII molecular type [36,54,55]. Studies in C. neoformans have

shown that this related pathogen completes a full a-a sexual cycle

in association with plants [56]. Additionally, a recent study of

environmentally sampled Australian VGI isolates demonstrated

evidence for recombination via both opposite and same-sex

mating [50]. Taken together, available evidence indicates that

both opposite and same-sex mating are naturally occurring in

populations. This evidence lends support to the hypothesis that

meiosis might be a factor in the forces that are driving high

virulence in the outbreak region.

The second major event that results from sexual processes in the

pathogenic Cryptococcus species is the formation of spores. Small

spores ranging from 1–2 mm in diameter have been observed to be

produced in large numbers as the result of opposite sex mating in

both C. neoformans and C. gattii [57,58]. Studies by Lin and

colleagues showed that sexual spores can be produced as the result

of a meiotic process occurring between cells of the same mating

type, a process referred to as unisexual or same-sex mating [59].

Several studies have shown spores to be pathogenic in animal

models of infection. Two previous studies both showed evidence

for virulence of Cryptococcus spores, and in one case provided

evidence for enhanced virulence compared to yeast cells [60,61].

More recently, studies have shown that Cryptococcus neoformans

spores are indeed virulent in the murine intranasal instillation

model of infection [44,62], providing evidence that spores should

be considered as infectious propagules in models examining

infections, expansion, and emergence of both C. neoformans and C.

gattii. Given that all of the Pacific NW isolates are a mating type,

and particles small enough to be spores are present in the air

[26,63], the most parsimonious model is that if these are spores,

they are produced via a-a unisexual reproduction.

Our findings further indicate that mitochondria may play a

significant role in the increased virulence seen in the outbreak

isolates [31]. Tubular morphology and the increased ability to

proliferate within immune cells indicate that the ability to

proliferate and survive within host cells is fundamental to

virulence. The possible role of mitochondrial involvement is

intriguing and also increasingly relevant based on studies that have

shown mitochondrial inheritance and recombination may impact

C. gattii evolution, with the inheritance of the mitochondrial

genome from the a mating type parent in opposite-sex mating

[64,65]. Future studies in this area should address the roles that

mitochondrial genes, or nuclear genes that regulate mitochondria

Table 3. Proposed recombinant alleles and hypothesized parental contributors.

Hypothesized
recombinant alleles Isolate/genotype

Hypothesized
Parental alleles Hypothesized parental isolates/genotypes*

IGS1- 4 VGIIa IGS1-15 VGIIc, WA861, ICB184

IGS1-16 ICB179, WM178

IGS1- 30 ICB183 IGS1-22 2004/335

IGS1-26 CBS8684, 2003/125, 98/1037-2

HOG1-2 NT-8 HOG1-1 VGIIa, VGIIb, 99/473-1, La499, La567, La584 CBS1930, ICB179, WM178

HOG1-3 VGIIc

HOG1-7 96/1120-1, 2001/571

HOG1-4 ICB184, 2003/125, 98/1037-2

HOG1-11 ICB97 HOG1-1 VGIIa, VGIIb, 99/473-1, La499, La567, La584 CBS1930, ICB179, WM178

HOG1-3 VGIIc

HOG1-7 96/1120-1, 2001/571

HOG1-9 97/170

CRG1-5 WA861 CRG1-1 VGIIa, VGIIb, 99/473-1, La499, La567, La584 CBS1930, 2004/335, ICB183, ICB182, CBS8684,
2003/125, 98/1037-2, 96/1120-1, WM178

CRG1-6 93/980

CRG1-8 ICB179

CRG1-9 2001/571

CAP59-5 2001/571 CAP59-3 WA861, NT-8

CAP59-6 ICB179

CAP59-9 97/170 CAP59-2 VGIIb, 99/473-1, La55, La499, La567, La584, CBS1930, CBS10090, ICB184, 2003/125, 98/1037-2

CAP59-7 CBS8684

CAP59-3 WA861, NT-8

* Bold indicates MATa, Italics indicates fertile representative.
doi:10.1371/journal.ppat.1000850.t003
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may play in the hypervirulence observed in the outbreak isolates.

Furthermore, it may be that cell-cell fusion events via mating and

mitochondrial exchange without meiosis or nuclear genetic

exchange have played roles in recombination and virulence

acquisition in naturally occurring C. gattii populations [64,65].

A central question in the field lies in the possible origins of the

virulent genotypes. For the VGIIa and VGIIc lineages, it is clear

that those are unique to the Pacific NW, and either arose there

locally, or were transferred from an under-sampled region

(Australia, South America, Africa). Isolates that are related to,

but distinct at one or more molecular marker from VGIIa have

been identified in San Francisco (CBS7750), southern California

(CA1014), and South America (ICB107). However, in each of

these cases, the isolates are not identical with the VGIIa/major

isolates from the Pacific NW. Whether the outbreak isolates are

derived from these isolates, or alternatively that these isolates are

derived from the outbreak lineage is at present unclear. In the

VGIIb/minor outbreak lineage, isolates from Australia are

identical at all 30 MLST loci and four VNTRs analyzed, and

the most parsimonious model is that the two are directly related.

While it is conceivable that both the Australian and the Vancouver

Island VGIIb/minor genotype isolates were dispersed indepen-

dently from another geographic locale, until isolates are identified

conclusively from another locale the most parsimonious model is

transfer from Australia to the Pacific NW. We note that a single

isolate with a related but distinct genotype (isolate 99/473) from

the Caribbean has been identified; and other isolates have been

reported to share the VGIIb genotype but have been analyzed at a

limited number of MLST markers (n = 7) which is insufficient to

establish how closely related these isolates are to the outbreak

VGIIb/minor genotype strains [29]. The origins of VGIIc are

unclear, with the genotype possibly arriving in the Pacific NW

from South America, Africa, Europe, or Australia. Alternatively,

this novel unique genotype may have arisen locally.

As for the geographic origins of VGII diversity, this also remains

to be established and may involve populations in Australia, South

America, and Africa. It is clear that there is considerable diversity

among isolates from South America. As we originally proposed as

an alternative model [6], and has been independently presented by

other investigators (W. Meyer, T. Boekhout, JP Xu, pers. comm.),

South America may represent a source of diversity and ongoing

generation of novel isolates. Analysis of 8 MLST loci in this study

indicates that in South America and the Caribbean there are 14

genotypes seen in 21 isolates, while in North America only 3

genotypes have been observed through the analysis of 64 isolates

(Figure S1). Additionally, there is accumulating evidence that

fertile isolates of both a and a mating type are present in South

America [29], and thus ongoing a-a opposite sex mating may be

occurring there. It is also clear that a unique set of VGII isolates

are circulating in Australia, and there is evidence for ongoing

Figure 7. In vitro analyses of intracellular proliferation and mitochondrial morphology provide evidence the VGIIc genotype is
hypervirulent. A) IPR rates of VGIIc isolates are similar to those from the VGIIa/major genotype and higher than those seen in the less-virulent
VGIIb/minor genotype. Eight VGIIc isolates were tested individually, with the overall averages for the three primary outbreak genotypes presented. B)
Percentage of cells with tubular mitochondrial morphology in DMEM. C) Percentage of cells with tubular mitochondrial morphology in macrophages.
D) Linear correlation of IPR and percentage of tubular mitochondria after macrophage exposure.
doi:10.1371/journal.ppat.1000850.g007
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recombination in a only and a-a populations, suggesting that

mating contributes to the generation of diversity in Australia

[36,49,54,55,66,67]. Finally, the analysis of global VGII isolates

reveals genetic diversity in Africa, and given the recent findings

that C. neoformans likely originated in sub-Saharan Africa (A.

Litvintseva and T. Mitchell, pers. Comm.), further analysis of

African C. gattii isolates is clearly warranted.

It remains possible that South America, Africa, or both

represent the ancestral populations of C. gattii, and that more

recent dispersal events from other established populations (for

example, from Australia to the Pacific Northwest) have occurred to

contribute to the outbreak. As yet, all of the isolates found in the

Pacific Northwest are a mating type. Thus, if sexual reproduction

is occurring in the Pacific Northwest, it would appear to involve

same-sex mating occurring under environmental conditions.

Recent studies have documented that C. neoformans and C. gattii

are stimulated to undergo opposite-sex mating in laboratory

conditions that simulate environmental niches (pigeon guano

medium, co-culture with plants) and thus similar conditions may

be necessary in nature [56,68]. Overall, both the VGIIa/major

and the VGIIc/novel genotypes contain a number of MLST loci

that are thus far restricted to these lineages, and their origins

remain to be identified.

Independently of the variables leading up to and influencing this

outbreak, the major concern is and continues to be the inexorable

expansion throughout the region. From 1999 through 2003, the

cases were largely restricted to Vancouver Island. Between 2003

and 2006, the outbreak expanded into neighboring mainland

British Columbia and then into Washington and Oregon from

2005 to 2009. Based on this historical trajectory of expansion, the

outbreak may continue to expand into the neighboring region of

Northern California, and possibly further.

The rising incidence of cryptococcosis cases in humans and

animals highlights the need for enhanced awareness in the region,

and those regions that may potentially become involved. While

rare, little is currently known about how or why specific humans

and animals become infected. Increased vigilance may decrease

the time from infection to diagnosis, and thus lead to more

effective treatment and a reduction in mortality rates. The

potential dangers of travel-associated risks should be noted, as a

growing number of cases attributable to travel within the Pacific

NW region have been documented [69,70]. Northern California

has similar temperate climates to endemic regions within Oregon,

leading to the hypothesis that the emergence may expand there,

while expansion eastward may be limited by winters with average

temperatures often below freezing [17].

Figure 8. Isolates from the United States outbreak are hypervirulent. A) Groups of five animals were each infected with an infectious
inoculum of 1.06105 cells of VGIIa isolates R265, CA1014, or NIH444, VGIIb isolate R272, or VGIIc isolates EJB15 or EJB18. B) Groups of nine or ten
animals were each infected with an infectious inoculum of 5.06104 cells of VGIIa isolates R265, EJB51, CBS7750, or ICB107, VGIIb isolates R272 or
EJB53, VGIIc isolates A6MR38, EJB12, EJB14, EJB15, or EJB18, or C. neoformans var. grubii isolate H99. C–D) Representative H&E stained histopathology
slides from lung sections of severely morbid sacrificed animals from the VGIIa/major (R265) (C) and VGIIc (EJB18) (D) genotypes (sections from animals
in panel B of this Figure).
doi:10.1371/journal.ppat.1000850.g008
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The expansion of the outbreak into California is plausible based

on several studies documenting the presence of C. gattii throughout

the state and in Mexico. C. gattii molecular type VGII was

environmentally isolated in the San Francisco area in 1990 (isolate

CBS7750) [48], and there have also been two confirmed and one

travel-associated case of C. gattii molecular type VGI in California.

Of the VGI cases, one occurred in a male Atlantic bottlenose

dolphin in San Diego, one was isolated from a liver transplant

recipient in San Francisco, and the other from an otherwise

healthy patient in North Carolina with travel history to the San

Francisco region [71,72,73]. In addition C. gattii has been reported

in southern California among a cohort of HIV/AIDS patients

[74]. Recently, studies of clinical isolates from Mexico revealed all

four molecular types of C. gattii to be present [75]. Taken together,

the hypothesis that the virulent isolates from the Pacific NW will

expand into California must be considered by both physicians and

public health officials.

During the coming years, monitoring and researching the

outbreak expansion as a multidisciplinary effort will be critical.

The ability to bring diverse groups of professionals interested in C.

gattii expansion has been greatly facilitated through the formation

of the Cryptococcus gattii working group of the Pacific Northwest

[17]. From a research standpoint, further examination of the

molecular mechanisms underlying the increased virulence in both

VGIIa/major and VGIIc/novel will be useful for the development

of aggressive treatments that may be needed. Furthermore,

increased efforts to determine the ecology and population

dynamics of C. gattii in the region, and elucidating the evolutionary

history of the VGIIc genotype will be critical to gain further

insights into the origins of this unprecedented and frequently fatal

fungal outbreak.
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Figure S1 MLST of all VGII isolates used in the study and the

four out-group isolates used in the phylogenetic analysis.

Found at: doi:10.1371/journal.ppat.1000850.s001 (0.07 MB PDF)

Figure S2 MLST analysis of Vancouver Island isolates at 2 loci.

These were chosen to determine if any of the isolates might have

belonged to the VGIIc group.

Found at: doi:10.1371/journal.ppat.1000850.s002 (0.02 MB

PDF)

Figure S3 TCS haplotype networks for the thirteen alleles not

represented in Figure 5 of the main text.

Found at: doi:10.1371/journal.ppat.1000850.s003 (0.15 MB PDF)

Figure S4 All paired allele graphs from VGII global isolates

generated during the analysis. Isolates of both mating type a and a

were included. In addition, a group of ten isolates, all a, from

South America and Africa appeared most commonly as

recombinant partners and are illustrated.

Found at: doi:10.1371/journal.ppat.1000850.s004 (0.12 MB PDF)

Figure S5 Allelic recombination analysis for 15 loci indicates

that 11 are likely derived from consecutive and/or independent

mutations within the population. The four other loci show at least

one hybrid allele that may be the result of a recombination event

between two proposed parental alleles in the global VGII

population. Squared alleles represent likely recombinants, while

circled alleles indicate proposed parental contributors. Each of the

possible contributors is indicated by a respective color.

Found at: doi:10.1371/journal.ppat.1000850.s005 (1.34 MB PDF)

Table S1 Primers used in the study.

Found at: doi:10.1371/journal.ppat.1000850.s006 (0.03 MB XLS)

Table S2 GenBank accession numbers for all of the MLST and

VNTR alleles represented in the text and figures.

Found at: doi:10.1371/journal.ppat.1000850.s007 (0.05 MB XLS)

Table S3 Detailed sequence type information from Figure 3.

Found at: doi:10.1371/journal.ppat.1000850.s008 (0.03 MB

DOC)

Table S4 Detailed sequence type information from Figure 4B

and Figure 4C.
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Table S5 Mating properties of selected VGII isolates.
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