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Abstract

The emergence of viral respiratory pathogens with pandemic potential, such as severe acute respiratory syndrome
coronavirus (SARS-CoV) and influenza A H5N1, urges the need for deciphering their pathogenesis to develop new
intervention strategies. SARS-CoV infection causes acute lung injury (ALI) that may develop into life-threatening acute
respiratory distress syndrome (ARDS) with advanced age correlating positively with adverse disease outcome. The molecular
pathways, however, that cause virus-induced ALI/ARDS in aged individuals are ill-defined. Here, we show that SARS-CoV-
infected aged macaques develop more severe pathology than young adult animals, even though viral replication levels are
similar. Comprehensive genomic analyses indicate that aged macaques have a stronger host response to virus infection
than young adult macaques, with an increase in differential expression of genes associated with inflammation, with NF-kB
as central player, whereas expression of type I interferon (IFN)-b is reduced. Therapeutic treatment of SARS-CoV-infected
aged macaques with type I IFN reduces pathology and diminishes pro-inflammatory gene expression, including interleukin-
8 (IL-8) levels, without affecting virus replication in the lungs. Thus, ALI in SARS-CoV-infected aged macaques developed as a
result of an exacerbated innate host response. The anti-inflammatory action of type I IFN reveals a potential intervention
strategy for virus-induced ALI.
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Introduction

The zoonotic transmission of severe acute respiratory syndrome

coronavirus (SARS-CoV) caused pneumonic disease in humans

with an overall mortality rate of ,10%. The exact reasons why

some individuals succumbed to the infection while others

remained relatively unaffected have not been clarified. Aging, an

important risk factor in SARS-CoV-associated disease, is associ-

ated with changes in immunity [1,2,3]. Consequently, elderly

individuals are at greater risk of contracting more severe and

longer lasting infections with increased morbidity and mortality,

exemplified by respiratory tract infections caused by influenza A

virus and severe acute respiratory syndrome (SARS) coronavirus

[4,5,6]. The clinical course of SARS-CoV-induced disease follows

a triphasic pattern [5]. The first phase is characterized by fever,

myalgia and other systemic symptoms that are likely caused by the

increase in viral replication and cytolysis. The second phase of the

disease is characterized by a decrease in viral replication that

correlates with the onset of IgG conversion. Interestingly, it is also

in this phase that severe clinical worsening is seen, which can not

be explained by uncontrolled viral replication. It has been

hypothesized that the diffuse alveolar lung damage in this phase

is caused by an over exuberant host response [5,7,8]. The majority

of patients recovers after 1–2 weeks, but up to one-third of the

patients progress to the third phase and develop severe

inflammation of the lung, characterized by acute respiratory

distress syndrome (ARDS) [9]. The clinical course and outcome of

SARS-CoV disease are more favorable in children younger than

12 years of age as compared to adolescents and adults [10,11,12];

elderly patients have a poor prognosis, with mortality rates of up to

,50% [5,6].

For SARS-CoV-associated disease in humans, it has been

hypothesized that seemingly excessive pro-inflammatory respons-

es, illustrated by elevated levels of inflammatory cytokines and

chemokines, mediate immune-pathology resulting in acute lung

injury (ALI) and ARDS [5,13,14,15,16]. Direct support for this

concept, however, is scarce. ALI and ARDS are typified by

inflammation, with increased permeability of the alveolar-capillary

barrier, resulting in pulmonary edema, hypoxia, and accumulation

of polymorphonuclear leukocytes and macrophages. Inflammatory

cytokines, among which IL-1b and IL-8, play a major role in

mediating and amplifying ALI/ARDS [9] and are elevated in

SARS-CoV-infected patients as well [13,14]. In vitro experiments

confirm that SARS-CoV infection induces expression of cyto-

kines/chemokines in a range of cell types [15,17,18]. Moreover,

infection of cynomolgus macaques with SARS-CoV leads to a
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strong immune response, with expression of various cytokines/

chemokines, resembling the host response seen in human SARS

patients [19]. Nevertheless, the determinants that lead to severe

virus-associated ALI/ARDS and that cause people to succumb to

infection remain largely obscure, restraining development of

appropriate treatments.

As advanced age is a predictor of adverse clinical outcome in

both ARDS and SARS-CoV infections [5,20], we used age as

predisposing factor to study the pathogenesis of SARS-CoV in a

macaque model. By performing comparative analyses of young

adult and aged SARS-CoV-infected macaques regarding pathol-

ogy, virus replication and host response, insight into the

pathogenesis of SARS-CoV is obtained and a potential therapeutic

intervention strategy for virus-induced ALI is revealed.

Results

SARS-CoV causes more severe pathology in aged than in
young adult macaques

To obtain further insights in the pathogenesis of SARS-CoV, six

aged (10–19 years old) and six young adult (3–5 years old)

cynomolgus macaques were infected with SARS-CoV HKU39849

and euthanized four days after infection. Four young adult and

four aged PBS-infected cynomolgus macaques were used as

negative controls. During the 4-day experiment, some of the

SARS-CoV-infected aged animals displayed decreased activity

and mildly labored breathing. All aged infected macaques showed

an increase in body temperature either during the night or during

the day one to two days after infection (Figure 1A). The lungs of

aged macaques showed large (multi)focal pulmonary consolidation

that was severe (,40–60% of affected lung tissue) in two macaques

(Figure 1B and Figure S1). Microscopic examination revealed

typical ALI-associated lesions, similar to what has been seen in

SARS-CoV-infected humans that progress to ARDS [6]. Lesions

involved the alveoli and terminal bronchioli, showing areas with

acute or more advanced phases of diffuse alveolar damage

(Figure 2). Lumina of alveoli were variably filled with protein rich

edema fluid, cellular debris, alveolar macrophages and neutro-

phils, eosinophils, and lymphocytes (Figure 2 and Figure S2A–B).

Moderately thickened alveolar walls were lined by cuboidal

epithelial cells (type 2 pneumocyte hyperplasia; Figure 2 and

Figure S2C). The epithelial origin of these enlarged type 2

pneumocytes with large vacuolated nuclei, prominent nucleoli and

abundant vesicular cytoplasm was confirmed by keratin staining

(Figure S2D). Hyaline membranes and multinucleated giant cells

were occasionally observed in the alveoli (Figure S2E–F). In

contrast, all young adult animals remained free of clinical

symptoms and had no or less extensive pulmonary consolidation

(Figure 1A–C). Hyaline membranes were not observed in SARS-

CoV-infected young adult macaques. A multifocal mild chronic

lymphoplasmacytic tracheo-bronchoadenitis, characterized by

moderate numbers of lymphocytes, plasma cells, macrophages,

less neutrophils and occasional eosinophils in the lamina propria of

the bronchi, focally surrounding and infiltrating the submucosal

glands, was observed in all young adult macaques, but not in aged

macaques (Figure 2). Our data were confirmed by retrospective

analysis of earlier experiments in which aged animals were used

[19,21,22,23]. Overall, aged macaques develop more severe

SARS-CoV-associated ALI than young adults.

The level of viral replication in aged and young adult
macaques is similar

Because viral replication is important for disease pathogenesis,

we determined virus titers in aged and young adult animals. Virus

excretion in the throat (Figure 3A) and nose (Figure 3B) of aged

and young adult macaques at days 2 and 4 post infection was not

significantly different. Moreover, no significant difference in

quantity of SARS-CoV mRNA in the lungs of young adult and

aged animals was observed (Figure 3C). Differences in the nature

and percentage of SARS-CoV-infected cells in the lungs of aged

and young adult macaques were not seen either (Figure 3D).

Apparently, augmented pathology in aged macaques cannot be

rationalized by increased viral replication.

The host response to SARS-CoV infection is stronger in
aged than in young adult macaques

To understand why SARS-CoV-infection in aged macaques

results in more severe pathology than in young adult macaques, we

determined global gene expression profiles by analyzing total RNA

isolated from the lungs using microarray analysis. Hierarchical

clustering methods were used to order gene transcripts and

individual aged and young adult animals to identify groups of

animals with similar expression patterns. These data were plotted

as a heat map in which each entry represents a gene expression

value (Figure 4). As expected in an animal experiment with

outbred animals, the inter-animal variation was relatively high

(Figure S3). There were two major roots to the hierarchical

dendogram, with one root containing the PBS-infected control

animals, and the second root containing the SARS-CoV-infected

animals. The root of the PBS-infected control animals was divided

in two minor roots, clustering young adults together and aged

animals as a group. These data suggest that the baseline expression

patterns are different in young adult and aged macaques. The root

of the SARS-CoV-infected animals was also divided in two minor

roots, largely clustering young adult animals together and

grouping aged infected macaques. The hierarchical clustering

heat map suggests that both age and SARS-CoV infection are key

factors involved in determining transcription of cellular genes.

To determine whether aged and young adult animals respond

differently to SARS-CoV-infection, their gene expression profiles

Author Summary

Severe acute respiratory syndrome coronavirus (SARS-CoV)
infection causes acute lung injury that may develop into
the life-threatening acute respiratory distress syndrome
(ARDS) in mostly elderly individuals. Although SARS-CoV
infection can be fatal, most patients recover, suggesting
that protective host responses are operational to combat
the viral infection. Therefore, we used age as predisposing
factor to obtain insight into the pathogenesis of SARS-CoV.
In this study, we show that SARS-CoV-infected aged
macaques developed significantly more pathology than
young adult animals, which could not be contributed to
differences in viral replication. Using comparative micro-
array analyses, it was shown that although the nature of
the host response to SARS-CoV infection was similar in
aged and young adult macaques, the severity was
significantly different, with aged macaques displaying an
increase in differential expression of genes associated with
inflammation. Interestingly, type I IFN-b mRNA levels
correlated negatively with gross pathology. Therapeutic
treatment of aged macaques with type I IFN reduced
pathology without affecting virus replication. However,
pro-inflammatory gene expression was significantly dimin-
ished. Thus, modulation of the host response by type I IFNs
provides a promising outlook for novel intervention
strategies.

Host Response to SARS-CoV
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Figure 1. Aged macaques are more prone to develop SARS-CoV-associated disease than young adults. (A) Fluctuations in body
temperatures in four young adult and four aged SARS-CoV-infected macaques measured by transponders in the peritoneal cavity. Temperatures are
shown from day six prior to infection until four days post infection. The arrow indicates day zero when animals were infected. Grey horizontal lines
mark the average range of temperature fluctuations prior to infection. (B) Macroscopic appearance of (consolidated) lung tissue of young adult and
aged SARS-CoV infected macaques at day 4 post infection. Lesions are arrowed. (C) Gross pathology scores of aged and young adult macaque groups
were determined after necropsy and averaged (6standard error of the mean (s.e.m.)).
doi:10.1371/journal.ppat.1000756.g001

Figure 2. Histology of lungs from SARS-CoV-infected aged macaques. Lesions in lungs of PBS-infected (left panel) and SARS-CoV infected
young adult (middle panel) and aged (right panel) macaques showing diffuse alveolar damage, characterized by disruption of alveolar walls causing
edema and type II pneumocyte hyperplasia with influx of inflammatory cells in the alveoli and bronchioles. In the trachea, a multifocal mild chronic
lymphoplasmacytic tracheobronchoadenitis was observed in young adult macaques.
doi:10.1371/journal.ppat.1000756.g002

Host Response to SARS-CoV
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were compared. In a direct comparison of aged (n = 6) versus

young adult (n = 6) SARS-CoV-infected animals using an

ANOVA-based analysis called LIMMA, 202 gene transcripts

were differentially expressed (fold change $2; p,0.05; Table S1).

Upon analysis of these gene transcripts within the context of

biological processes and pathways using Ingenuity Pathways

Knowledge Base, this subset of genes showed indications for an

innate host response to viral infection. Among the top significantly

differentially regulated (p,0.005) functional categories were

immune response, inflammatory response and hematological

system development and function, which included genes like F3,

IL1RL1, IL1RN, IL6, IL8, S100A8, SERPINA1, SERPINA3, NP,

ACPP, TFPI2, SPP1, IGF1, EDN3, DEFB1, and SOCS3 (Figure 5A)

most of which were upregulated in SARS-CoV-infected aged

animals compared to young adult infected animals. In addition,

three of the most significantly regulated molecular/cellular

functions (p,0.005) were associated with a pro-inflammatory

response and included cell death, cell movement, and cell-to-cell

signalling (Figure 5A). The top gene interaction network, showing

the interplay between genes during the host response to viral

infection, contained NF-kB as central node (Figure 5B). NF-kB is a

redox-sensitive transcription factor implicated to play a major role

in pro-inflammatory host responses and the development of ALI/

ARDS [24,25]. Several of the 202 differentially expressed gene

transcripts, among which IL1RN, SERPINA1, IL8, F3 and TFPI2,

are target genes for NF-kB. Thus, significant differences exist in

the host response to SARS-CoV infection, corresponding with age.

Figure 3. Viral replication levels in SARS-CoV-infected aged
and young adult macaques are similar. (A–B) SARS-CoV replication
in the throat (A) and nose (B) of SARS-CoV infected aged (black bars)
and young adult (white bars) macaques at day 2 and 4 post infection as
determined by real-time RT-PCR. Viral RNA levels are displayed as
TCID50 equivalents (eq.)/ml swab medium (6s.e.m.). (C) Average fold
change in SARS-CoV mRNA levels (6s.e.m.) in the lungs of aged and
young adult macaques compared to PBS-infected animals as deter-
mined by real-time RT-PCR and depicted on a log-scale. (D) Lung
sections of SARS-CoV-infected aged and young adult macaques were
stained with a mouse-anti-SARS-nucleocapsid IgG2a. Sections were
counterstained with hematoxylin. Original magnifications are 620.
doi:10.1371/journal.ppat.1000756.g003

Figure 4. Global gene expression profiles of individual young
adult and aged animals. Global gene expression profiles of normalized
log-2 based hybridization signals of individual young adult and aged
macaques of a set of gene transcripts that were identified as being
differentially regulated (fold change $2; FDR,0.05) in at least one of the
comparisons of gene expression in the lungs of experimentally SARS-CoV-
infected aged and young adult macaques versus gene expression in the
lungs of PBS-infected macaques, and genes were included if they met the
criteria of an absolute fold change of $2-fold (FDR,0.05) in at least one
experiment. The data were plotted as a heat map, where each matrix
entry represents a gene expression value. Normalized log-2 based
hybridization signals ranged from 3 (green) to 14 (red). Dendograms
(trees) of the heat map represent the degree of relatedness between the
samples, with short branches denoting a high degree of similarity and
long branches denoting a low degree of similarity.
doi:10.1371/journal.ppat.1000756.g004

Host Response to SARS-CoV
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To obtain a more in-depth view of the host response to

infection, global gene expression profiles were determined in lungs

of SARS-CoV-infected aged (n = 6) or young adult (n = 6)

macaques in comparison to aged or young adult PBS-infected

macaques (n = 4), respectively. Aged macaques differentially

expressed 1577 gene transcripts (Figure 6A). Gene ontology

analysis revealed that the majority of genes in the aged macaque

group compared to aged PBS-infected animals were associated

with a pro-inflammatory response and included cellular growth

and proliferation, cell death, cell movement, and cell-to-cell

signalling (Figure 6B). Although SARS-CoV-infected young adult

macaques differentially expressed much less gene transcripts

compared to young adult PBS-infected animals (Figure 6A), the

most significantly regulated molecular/cellular functions also

included cellular growth and proliferation, cell death, cell

movement, and cell-to-cell signalling (Figure 6B). This suggested

that the nature of the host response to infection in aged and young

adult animals was strikingly similar, even though the severity was

different.

Because the above described gene ontology molecular/cellular

functions are very broad, genes were further subdivided based on

available annotations to gain insight in differences in the host

response to infection in aged and young adult macaques compared

to aged and young adult PBS-infected animals, respectively. Heat

maps were generated for differentially regulated genes with

pro-inflammatory functions such as cell adhesion (Figure 6C),

apoptosis (Figure 6D), and cytokine/chemokine signalling

(Figure 6E). The greater number of differentially expressed genes,

as well as the brighter intensities (fold changes in transcripts)

included in the heat map for aged macaques, suggested that aged

macaques show a more zealous response to virus infection than

young adult macaques. This assumption was corroborated using

Goeman’s global test [26] on the defined gene subsets cell

adhesion, cytokine/chemokine signalling, and apoptosis. When

macaques were grouped according to severity of pathology instead

of age and compared to their respective PBS-infected controls,

increased numbers of differentially expressed gene transcripts and

increased fold changes for differentially expressed genes in

inflammatory pathways correlated positively with gross pathology

scores as well (Figure S4). Our data show that the innate host

response to SARS-CoV infection changes during aging in

macaques; age, pathology, and pro-inflammatory host response

go hand-in-hand.

In order to understand the host responses in the context of

senescence, we directly compared lung samples from PBS-infected

aged (n = 4) and young adult (n = 4) macaques. LIMMA analysis

revealed that 518 gene transcripts were differentially expressed

(fold change $2; p,0.05), with categories such as immunological

disease, haematological system and development, cell death, cell

movement, and cellular growth and proliferation among the top

significantly differentially regulated functions (p,0.005). Only 14

out of the 518 differentially expressed gene transcripts were also

differentially expressed in the direct contrast of SARS-CoV-

infected aged and young adult macaques. Our data indicate that

significant differences exist in the basal gene expression levels of

aged and young adult macaques, which may partly explain why

differences in pathology were observed after SARS-CoV infection.

NF-kB signalling in SARS-CoV-infected macaques
As NF-kB target genes were differentially regulated in the direct

comparison of SARS-CoV-infected aged and young adult

macaques (Figure 5), we focussed on NF-kB in the indirect

comparison of aged and young adult SARS-CoV-infected

macaques compared to aged and young adult PBS-infected

animals, respectively. A gene interaction network, showing the

interplay between ‘‘immune response’’-type genes with NF-kB as

central node, revealed that aged SARS-CoV-infected macaques

Figure 5. Direct comparison of gene expression profiles in the
lungs of aged and young adult SARS-CoV-infected macaques.
(A) Number of differentially expressed genes in the direct contrast of
aged and young adult SARS-CoV-infected macaques with functions in
immune response, inflammatory response, hematological system
development and function, cell movement, cell death, or cell-to-cell
signaling and interaction obtained from Ingenuity Pathways Knowledge
Base. (B) This diagram shows a gene interaction network from Ingenuity
Pathways Knowledge Base with genes that are differentially expressed
in the contrast of aged and young adult SARS-CoV-infected animals.
The central node is NF-kB, a key transcription factor in inflammation
and ARDS. Genes depicted in green are downregulated and in red
upregulated.
doi:10.1371/journal.ppat.1000756.g005

Host Response to SARS-CoV
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Figure 6. Aged macaques display a stronger host response to SARS-CoV infection than young adults. (A) Number of differentially
expressed gene transcripts in aged and young adult SARS-CoV-infected macaques compared to aged and young adult PBS-infected animals,
respectively ($2-fold change, FDR,0.05, LIMMA analysis). (B) Number of differentially expressed genes in aged and young adult macaque groups
compared to aged and young adult PBS-infected animals, respectively, with functions in cellular growth and proliferation, cell movement, cell death,
or cell-to-cell signaling and interaction obtained from Ingenuity Pathways Knowledge Base. White bars for young adult and black bars for aged
macaques. When SARS-CoV-infected aged and young adult macaques were compared directly, these cellular functions were significantly differentially
expressed as well. (C–E) Gene expression profiles showing differentially expressed genes coding for proteins involved in cell adhesion (C), apopotosis
(D), and cytokine/chemokine signalling (E) of aged and young adult macaques. Gene sets were obtained from Ingenuity Pathways Knowledge Base
and changed $2-fold in at least one of the macaque groups as compared to PBS-infected controls. The data presented are error-weighted fold
change averages for six young adult and aged animals. Genes shown in red were upregulated, in green downregulated, and in grey not significantly
diferentially expressed in infected animals relative to PBS-infected animals (log (base 2) transformed expression values with minimum and maximum
values of the color range being 24 and 4). Global test analysis of the direct contrast of SARS-CoV-infected aged versus young adult animals showed
that these pathways were significantly differentially expressed (P,0.05). See Table S2 and S3 for full gene names and expression values.
doi:10.1371/journal.ppat.1000756.g006

Host Response to SARS-CoV
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showed a much more robust regulation of these genes than young

adult infected animals (Figure 7A) compared to their respective

PBS-infected animals, which was corroborated by an analysis of

differentially expressed target genes of NF-kB (Figure 7B). Several

of these genes, among which VCAM1, F3, PTX3, and IL-8, have

also been implicated in development of ARDS (Figure 7C)

[9,27,28].

In order to visualize NF-kB-signalling in the lungs of SARS-

CoV-infected aged and young adult macaques, translocation of

NF-kB was studied using immunohistochemistry with antibodies

Figure 7. NF-kB-signalling in aged and young adult macaques. (A) These diagrams show a gene interaction network from Ingenuity Pathways
Knowledge Base with genes that are differentially expressed in the contrast of aged SARS-CoV-infected animals versus aged PBS-infected macaques.
The central node is NF-kB, a key factor in inflammation and development of ARDS. Genes depicted in green are downregulated and in red
upregulated. As a reference, the same network is shown for young adult animals (left panel) and aged animals (right panel). (B–C) Gene expression
profiles showing differentially expressed NF-kB target genes (B) and genes coding for proteins involved ARDS (C) of aged and young adult macaques.
Gene sets were obtained from Ingenuity Pathways Knowledge Base or literature and changed $2-fold in at least one of the macaque groups as
compared to PBS-infected controls. The data presented are error-weighted fold change averages for six young adult and aged animals. Genes shown
in red were upregulated, in green downregulated, and in grey not significantly diferentially expressed in infected animals relative to PBS-infected
animals (log (base 2) transformed expression values with minimum and maximum values of the color range being 24 and 4). See Table S2 and S3 for
full gene names and expression values. (D) Lung sections of PBS and SARS-CoV-infected aged and young adult macaques were stained with an
antibody against phosphorylated NF-kB (brown) and with a mouse-anti-SARS-nucleocapsid IgG2a (red). Sections were counterstained with
hematoxylin. Original magnifications are 640.
doi:10.1371/journal.ppat.1000756.g007

Host Response to SARS-CoV
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against phosphorylated NF-kB on day 4 after infection. As shown

in Figure 7D, hardly any phosphorylated NF-kB could be detected

in the nuclei of cells of PBS-infected macaques, while in the lungs

of SARS-CoV-infected animals, cells with phosphorylated NF-kB

in their nuclei were abundantly present. Phosphorylated NF-kB

was detected primarily in the nuclei of non-infected cells

(Figure 7D). No obvious differences in the translocation of NF-

kB in the lungs of aged and young adult macaques were observed.

Type I interferon-b mRNA level is negatively correlated
with gross pathology

Overall, our data indicate that SARS-CoV-infected aged

macaques display a stronger pro-inflammatory host response to

infection than young adult macaques. For example, mRNA levels

for IL8, a key player in ALI/ARDS and a potent chemotactic

factor essential in acute inflammation that is induced by a wide

range of stimuli among which IL1b, viral products, and oxidative

stress, were strongly upregulated in SARS-CoV-infected aged

macaques as compared to young adult animals (Figure 5B, 7B,

8A). Despite the overall stronger activation of innate host gene

responses in SARS-CoV-infected aged animals, microarray

analyses revealed that IFN-b, well-known for its antiviral activities,

was not differentially expressed in aged macaques compared to

PBS-infected animals, in contrast to young adults (Figure 6E). RT-

PCR analysis confirmed differential expression of IFN-b mRNA

between young adult and aged macaques (Figure 8B). As shown in

Figure 3, this difference in IFN-b levels in aged and young adult

macaques did not affect viral replication efficiency. IFN-b mRNA

levels, however, negatively correlated with gross pathology

(Figure 8C).

Anti-inflammatory action of type I interferon mitigates
pathology in SARS-CoV-infected aged macaques

The observation of a reverse correlation of IFN-b and IL-8

mRNA levels with age after SARS-CoV infection may reflect a

physiological cross-regulation in which type I interferon and/or its

respective signalling pathways modulate pro-inflammatory host

responses [29,30]. To corroborate this hypothesis, we treated

uninfected human PBMC with IL-1b, which is known to rapidly

activate NF-kB-signalling [31,32], and observed the induction of

pro-inflammatory cytokines in uninfected human PBMC, such as

IL-1b and IL-8 (Figure 8A–B). An anti-inflammatory effect of

pegylated IFN-a on IL-1b-induced responses was confirmed in

vitro, as a dose-dependent inhibition of IFN-a on recombinant IL-

1b-induced IL-1b and IL-8 mRNA levels in human PBMC was

observed (Figure 9A–B).

Because type I IFNs can inhibit pro-inflammatory signalling

pathways, among which NF-kB signalling pathways [29,30], we

examined whether exogenous administration of type I IFN in

SARS-CoV-infected aged macaques could influence SARS-CoV

pathogenesis. Retrospective analyses of the lungs of SARS-CoV-

infected aged animals treated therapeutically with type I IFN [22]

showed that SARS-CoV-infected IFN-treated aged animals

remained free of clinical symptoms and had no or less exten-

sive pulmonary consolidation than untreated aged macaques

(Figure 10A). Virus titers in the lungs, however, were similar

between IFN-treated and untreated aged macaques (Figure 10B)

and viral antigen expression in the lungs was not significantly

different [22].

In a direct comparison of the host response to infection in aged

(n = 6) versus IFN-treated aged (n = 3) macaques using LIMMA,

961 gene transcripts were differentially expressed (fold change $2;

p,0.05). Upon analysis of these gene transcripts within the context

of genetic pathways, four of the most significantly regulated

molecular/cellular functions (p,0.005) were associated with a

pro-inflammatory response and included cellular growth and

Figure 8. Quantitative RT-PCR confirmation of IFN-b mRNA
levels. (A) Quantitative RT-PCR for IL-8 was performed on two-three
separate lung samples per animal with substantial virus replication. The
data presented are error-weighted (6s.e.m.) averages of the fold-
change as compared to PBS-infected controls for young adult (n = 6)
and aged (n = 6) animals. (B) Quantitative RT-PCR for IFN-b was
performed on two-three separate lung samples per animal with
substantial virus replication. The data presented are error-weighted
(6s.e.m.) averages of the fold-change as compared to PBS-infected
controls for young adult (n = 6) and aged (n = 6) animals. (C) The
expression level of IFN-b (fold change) per animal was plotted against
gross pathology score and the correlation coefficient was determined
using Spearman’s correlation test.
doi:10.1371/journal.ppat.1000756.g008

Host Response to SARS-CoV

PLoS Pathogens | www.plospathogens.org 8 February 2010 | Volume 6 | Issue 2 | e1000756



Figure 9. Anti-inflammatory type I IFN inhibits IL-1b-induced
pro-inflammatory cytokine production in PBMCs. (A–B) Induction
of IL-1b (A) and IL-8 (B) mRNAs after treatment of human PBMC with IL-1b
(5 ng/ml), IFN-a (1000 U/ml, 100U/ml, or 10 U/ml) or both as determined
by quantitative RT-PCR. The data presented are error-weighted (6s.e.m.)
averages of the fold-change as compared to untreated (Mock) PBMC.
Shown are representative data from one out of four donors.
doi:10.1371/journal.ppat.1000756.g009

Figure 10. Anti-inflammatory type I IFN inhibits virus-induced
ALI in aged SARS-CoV-infected macaques. (A) Gross pathology
scores of lungs from macaques were determined during necropsy and
averaged (6s.e.m.). (B) Average fold change (6s.e.m.) in SARS-CoV
mRNA levels in the lungs of pegylated IFN-a-treated (n = 3) and
untreated aged (n = 6) macaques compared to aged PBS-infected (n = 4)
animals as determined by real-time RT-PCR. (C) Number of differentially
expressed gene transcripts compared to aged PBS-infected animals
($2-fold change). (D) Quantitative RT-PCR for IL-8 was performed on
two-three separate lung samples per animal with substantial virus
replication. The data presented are error-weighted (6s.e.m.) averages
of the fold-change as compared to PBS-infected controls for aged
animals (n = 6) and aged animals treated with IFN-a (n = 3).
doi:10.1371/journal.ppat.1000756.g010
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proliferation, cell death, cell movement, and cell-to-cell signalling,

indicating that significant differences exist in the host response to

SARS-CoV infection in animals treated with type I IFN compared

to untreated aged macaques.

To obtain a broader view of the host response to infection,

global gene expression profiles were determined in lungs of SARS-

CoV-infected aged (n = 6) or IFN-treated aged macaques (n = 3) in

comparison to aged PBS-infected macaques (n = 4). IFN-treated

macaques differentially expressed (fold change $2; p,0.05)

approximately four-fold less gene transcripts than untreated aged

macaques (Figure 10C) as compared to PBS-infected animals. The

most significantly regulated molecular/cellular functions in the

IFN-treated macaque group compared to PBS-infected animals

were associated with a pro-inflammatory response and included

cellular growth and proliferation, cell death, cell movement, and

cell-to-cell signalling, similar to what was observed for the aged

macaque group, although less genes per function were differen-

tially expressed (Figure S5A). These data suggested a common

nature of the host response to infection in aged and IFN-treated

aged animals, although the severity seemed different.

To gain more insight in differences in the host response to

infection in aged and IFN-treated macaques compared to PBS-

infected animals, heat maps were generated for differentially

regulated genes involved in pro-inflammatory pathways apoptosis

(Figure S5B) and cell adhesion (Figure S5C). Using Goeman’s

global test [26] on the defined gene subsets cell adhesion and

apoptosis, significant differences between aged and IFN-treated

animals in these pro-inflammatory pathways were obtained,

providing statistical evidence for a difference in host response of

aged and IFN-treated animals to SARS-CoV infection. Moreover,

a decrease in differentially expressed target genes of NF-kB was

observed (Figure S5D). Most notably, a dramatic decrease in the

expression of cytokine/chemokine mRNA levels was observed,

among which IL-8 (Figure 10D, Figure S5B–C). These data show

that therapeutic treatment of SARS-CoV-infected aged macaques

with type I IFN primarily results in downregulation of pro-

inflammatory host responses.

Discussion

Age, pathology and pro-inflammatory host response go
hand-in-hand

The present study aimed at gaining insight into the pathogenesis

of SARS-CoV by studying the relationship between age,

pathology, virus replication, and host response in a macaque

model. In humans, SARS-CoV infection progresses from an

atypical pneumonia to acute diffuse alveolar damage and ARDS

[5]. The overall human fatality rate reached ,10% and up to 50%

in elderly [5,6]. The acute lung injury observed after SARS-CoV

infection in aged macaques is similar to what has been seen in

humans that progress to ARDS [6]. This disease process includes

an acute exudative phase, consisting of severe leukocyte infiltra-

tion, edema, the formation of hyaline membranes, and prolifer-

ation characterized by type II pneumocyte hyperplasia [33].

SARS-CoV-infected aged macaques develop more severe pathol-

ogy than young adult animals, even though viral replication levels

are similar. The chronic phase, which is characterized by

persistent intra-alveolar and interstitial fibrosis and mortality was

not observed because animals were sacrificed early after infection.

Comparative analyses of gene expression in aged and young

adult SARS-CoV-infected macaques revealed that the host

response to SARS-CoV infection is similar in nature, but differs

significantly in severity in pro-inflammatory responses. Aged

macaques had a stronger host response to virus infection than

young adult macaques, with an increase in differential expression

of genes associated with inflammation that center around the

transcription factor NF-kB. Comparative analysis of PBS-infected

aged and young adult macaques revealed significant differences in

gene expression as a result of aging only. These observations are in

line with earlier hypotheses that age-related accumulated oxidative

damage and a weakened antioxidative defense system cause a

disturbance in the redox balance, resulting in increased reactive

oxygen species. Subsequently, the oxidative stress-induced redox

imbalance activates redox-sensitive transcription factors, such as

NF-kB, followed by the induction of pro-inflammatory genes

including IL1b, IL6, TNFa and adhesion molecules, key players in

the inflammatory process [34]. Oxidative stress may also

potentiate the cellular responses to IL-1b [35], an early mediator

of inflammation [36]. Thus, aging is associated not only with

alterations in the adaptive immune responses, but also with a pro-

inflammatory state in the host [34,37,38,39]. Oxidative stress and

toll-like receptor-4 signaling via NF-kB triggered by viral lung

pathogens, such as SARS-CoV, may further amplify the host

response ultimately resulting in ALI [25]. Taking the host gene

expression profiles of PBS-infected aged and young adult

macaques into account, we also observed a stronger activation of

the pro-inflammatory pathways in SARS-CoV-infected aged

macaques than in young adults. The finding that genes activated

by NF-kB are significantly differentially upregulated in aged

macaques infected with SARS-CoV is in line with the role of NF-

kB as a redox-sensitive transcription factor in pro-inflammatory

host responses and the development of ALI/ARDS [24,25]. Given

the fact that several SARS-CoV proteins block NF-kB signaling

[40,41,42], we hypothesize that NF-kB-signaling in non-infected

cells is largely responsible for the upregulated expression of NF-kB

target genes, such as IL8, in aged compared to young adult

macaques.

These observations are largely in line with transcriptome

analyses in mice and SARS patients. In severe SARS patients,

cytokines/chemokine involvement as the illness progresses may

lead to widespread immune dysregulation and serious pathogenic

events [13]. Aged mice show more pathology than young adult

mice and the transcriptional profile in aged mice generally

indicates a more robust pro-inflammatory response to virus

infection than in young mice [43,44].

Type I IFN signalling
Previously, we demonstrated IFN induction and signalling in

SARS-CoV-infected macaques early after infection [19]. Based on

the observation that plasmacytoid dendritic cells are able to

produce type I IFNs after SARS-CoV infection in vitro [45], it was

speculated that these cells are the IFN-producing cells in lungs of

SARS-CoV-infected macaques. In addition, phosphorylated

STAT-1 was observed in the nuclei of numerous cells in the

lungs of SARS-CoV-infected macaques, indicating that these cells

had been activated by IFNs or other agonists produced in the lung

[19]. In SARS-CoV-infected cells, however, STAT-1 signalling

was blocked [19], consistent with the fact that a range of SARS-

CoV proteins can function as interferon antagonists that inhibit

IFN production and signalling [41,42]. Therefore, a large part of

the genes activated downstream of STAT-1, observed in genomics

analyses, is likely due to signalling in non-infected cells [19]. In the

current study, we observed that aged macaques expressed

significantly lower levels of IFN-b mRNA than young adult

macaques and that IFN-b mRNA levels correlated negatively with

severity of pathology. Interestingly, aged and young adult SARS-

CoV-infected macaques showed opposite expression patterns for

type I IFN-b and certain pro-inflammatory cytokines, such as
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IL-8. These data are corroborated by previous observations

showing that higher amounts of pro-inflammatory cytokines, such

as IL-1b and IL-8, are produced upon stimulation of leukocytes of

the elderly, whereas induction of type I IFNs is decreased

compared to young adults [46,47,48].

Cross-regulation between type I IFN and NF-kB signalling
cascades

The observation of a reverse correlation of IFN-b and IL-8

mRNA levels with age after SARS-CoV infection may reflect a

physiological cross-regulation between antiviral STAT-1 and

proinflammatory NF-kB pathways. Evidence for such a cross-

regulation between type I IFN/STAT-1 and pro-inflammatory/

NF-kB signaling pathways exists. Type I interferons exert sig-

nificant anti-inflammatory effects and provide at least partial

protection from disease in collagen-induced arthritis, auto-

immune encephalitis, and multiple sclerosis [49,50,51,52,53].

Not only inhibits IFN-beta expression of the IL8 gene at the

transcriptional level [54], type I IFNs can also activate TAM

receptor tyrosine kinases that inhibit toll-like receptor-induced

cytokine-receptor cascades [55,56] and induce the immunosup-

presive cytokine IL-10 [57]. Direct NF-kB/STAT-1 protein-

protein interactions [58] and modification of STAT-1 by

acetylation, may be involved in this process [30]. A loss of type I

IFN/STAT-1 signaling in aged macaques may negatively regulate

interferon-induced gene expression and type I IFN signaling,

which may lead to enhanced inflammatory responses. On the

other hand, increased activation of NF-kB signaling pathways in

aged macaques may negatively regulate interferon-induced gene

expression and type I IFN signaling [29,59,60], which may

enhance pro-inflammatory responses even further.

We have integrated our data and other findings on cross-

regulation in a model (Figure 11). The model depicts the innate

immune response to SARS-CoV infection as a coordinated series of

signaling pathways aimed at clearing the virus while not harming

host cells. Upon SARS-CoV infection, infected cells, depicted in the

model as pneumocytes, produce inflammatory mediators that

activate NF-kB, resulting in the production of pro-inflammatory

cytokines and chemokines, such as IL-8. IL-1 is one of the cytokines

highly upregulated on day 1 after infection upon SARS-CoV

infection of macaques [19] and capable of activating NF-kB. At the

same time, the virus is recognized by sentinel cells, such as pDCs,

that produce type I IFNs to signal that a foreign invader has entered

the host. The production of IFN induces neighboring non-infected

cells to remodel the intracellular environment by producing a range

of antiviral proteins, aiding in a block of viral replication. A cross-

regulation between the ‘‘antiviral’’ and ‘‘pro-inflammatory’’

pathways occurs, which is a critical requirement to allow fine-

tuning of the host response to infection and return to homeostasis.

Disease outcome may be determined by the relative contribution of

‘‘antiviral’’ and ‘‘pro-inflammatory’’ pathways and apparently aging

influences this intricate balance significantly.

Causal relationships between ‘‘antiviral’’ and ‘‘pro-inflammato-

ry’’ pathways in macaques are difficult to prove and future studies

in specific gene knock-out mice should therefore further clarify the

complex interactions in the response to SARS-CoV. Our own in

vitro experiments and the type I IFN intervention in SARS-CoV-

infected aged macaques indicate that type I IFNs can play a role in

mitigating pro-inflammatory host responses and severity of

pathology. Therapeutic treatment of SARS-CoV-infected aged

macaques with type I IFN reduces pathology and diminishes pro-

inflammatory gene expression, including IL-8 levels, without

affecting virus replication in the lungs. Antiviral effects of type I

IFNs were not obvious, probably due to the fact that SARS-CoV

infected cells inhibit STAT-1 signalling and viral replication peaks

early after infection when treatment with pegylated IFN-a started.

Given the fact that phosphorylated NF-kB was present mainly in

the nuclei of non-infected cells in the lungs of SARS-CoV-infected

macaques, these cells are potential targets for the action of IFN

and subsequent STAT-1 signalling. It remains uncertain whether

endogenously produced IFNs in young adult macaques are

essential in the control of inflammatory responses or that enhanced

activation of inflammatory pathways simply does not occur. Our

data are in line with the observation that treatment of SARS-CoV-

infected aged mice with type II IFN-c, which like type I IFN also

signals via STAT-1, protected against lethal respiratory illness,

seemingly without an effect on viral replication [61]. Moreover, in

humans with SARS, use of type I IFNs was associated with

reduced disease-associated hypoxia and a more rapid resolution of

radiographic lung abnormalities [62]. Whether the anti-inflam-

matory action of type I/II IFNs in macaques, mice and humans

occurs via common pathways and is interchangeable between host

species remains to be determined. Assuming that there is a

conserved pathway in ALI/ARDS induced by multiple pathogens,

including pandemic viruses that may emerge from avian influenza,

modulation of the host response by type I IFNs provides a

promising outlook for novel intervention strategies.

Figure 11. Model for cross-talk between ‘‘pro-inflammatory’’
and ‘‘antiviral’’ pathways during SARS-CoV infection. SARS-CoV
infection results in activation of both ‘‘antiviral’’ and ‘‘pro-inflammatory’’
pathways. Subsets of uninfected cells, depicted by pDCs, start
producing type I IFN (IFN-a), which results in STAT-1 activation in
neighbouring cells, which in turn may produce other mediators (e.g.
IFN-b). The SARS-CoV-infected cells produce inflammatory mediators,
supposedly IL-1, which results in NF-kB activation in neighbouring
uninfected cells and subsequent production of inflammatory mediators,
such as IL-8. Cross-regulation between ‘‘antiviral’’ and ‘‘pro-inflamma-
tory’’ pathways allows polarisation of antiviral or pro-inflammatory
responses thereby modulating pathology. Modulation of transcription
factors in the uninfected cells, e.g. by aging, may affect the overall
outcome of the infection.
doi:10.1371/journal.ppat.1000756.g011
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Materials and Methods

Macaque studies
Six young adult cynomolgus macaques (Macaca fascicularis), 3–5

years old, four of which carried active temperature transponders in

the peritoneal cavity, and four aged cynomolgus macaques, 10–18

years old, which all carried active temperature transponders, were

inoculated with SARS-CoV strain HKU39849, as described

previously [19,21,22,23]. Two additional aged animals (17 and

19 years old), previously infected with SARS-CoV strain

HKU39849 [22], were enrolled in this study as well. Four young

adult mock (PBS) infected animals from a previous study [19] and

four aged macaques were taken as controls. Lung tissues stored

in RNA-later from three cynomolgus macaques, 13 years old,

previously inoculated with SARS-CoV strain HKU39849 and

treated with pegylated IFN-a at a dose of 3 mg/kg intramuscularly

on days 1 and 3 after infection, were taken along for molecular

analyses [22]. All animals were infected with the same dose of

virus, using the same inoculation procedure, by the same person to

minimize inter-experiment variation. All animals were checked

daily for clinical signs and anaesthetised with ketamine on days 0,

2 and 4 after infection to collect oral, nasal, and rectal swabs [22].

All animals were euthanized on day 4 post infection. Necropsies

and sampling for histology/immunohistochemistry were per-

formed as described [22]. The percentage of affected lung tissue

from each lung lobe was determined at necropsy, recorded on a

schematic diagram of the lung and the area of affected lung tissue

was subsequently calculated (gross pathology score).

Ethics
Approval for animal experiments was obtained from the

Institutional Animal Welfare Committee and performed according

to Dutch guidelines for animal experimentation.

Immunohistochemistry
Serial 3 mm lung sections were stained using mouse-anti-SARS-

nucleocapsid IgG2a (clone Ncap4; Imgenex) 1:1600, mouse-anti-

human neutrophil elastase (clone NP-57; DAKO) 1:10, mouse-

anti-human CD68 (clone KP1; DAKO) 1:200, mouse-anti-human

pankeratin (clone AE1/AE3; Neomarkers) 1:100, rabbit anti p-

NF-kB p65 (Santa Cruz) or rabbit control and isotype antibodies

(clones 11711 and 20102; R&D), according to standard protocols

[22,23]. Quantitative assessment of SARS-CoV infection in the

lungs was performed as described previously [22].

RNA-extraction and quantitative RT-PCR
RNA from 200 ml of swabs was isolated with the Magnapure

LC total nucleic acid isolation kit (Roche) external lysis protocol

and eluted in 100 ml. SARS-CoV RNA was quantified on the ABI

prism 7700, with use of the Taqman Reverse Transcription

Reagents and Taqman PCR Core Reagent kit (Applied

Biosystems), using 20 ml isolated RNA, 16 Taqman buffer,

5.5 mM MgCl2, 1.2 mM dNTPs, 0.25 U Amplitaq gold DNA

polymerase, 0.25 U Multiscribe reverse transcriptase, 0.4 U

RNAse-inhibitor, 200 nM primers, and 100 nM probe [23].

Amplification parameters were 30 min at 48uC, 10 min at 95uC,

and 40 cycles of 15 s at 95uC, and 1 min at 60uC. RNA dilutions

isolated from a SARS-CoV stock were used as a standard. Average

results (6s.e.m.) for young adult (n = 6) and aged macaque (n = 4)

groups were expressed as SARS-CoV equivalents per ml swab

medium.

Lung tissue samples (0.3–0.5 gram) were taken for RT-PCR and

microarray analysis in RNA-later (Ambion, Inc.). RNA was

isolated from homogenized post mortem tissue samples using

Trizol Reagent (Invitrogen) and the RNeasy mini kit (Qiagen).

cDNA synthesis was performed with 1 mg total RNA and

Superscript III RT (Invitrogen) with oligo(dT), according to the

manufacturer’s instructions. Semi-quantitative RT-PCR was

performed to detect SARS-CoV mRNA and to validate cellular

gene expression changes as detected with microarrays [19].

Differences in gene expression are represented as the fold change

in gene expression relative to a calibrator and normalized to a

reference, using the 22DDCt method [63]. GAPDH (glyceralde-

hydes-3-phosphate dehydrogenase) was used as endogenous

control to normalize quantification of the target gene. The

samples from the young adult PBS-infected macaques were used as

a calibrator. Average results (6s.e.m.) for young adult (n = 6), aged

(n = 6), and IFN-a-treated aged (n = 3) macaque groups were

expressed as fold change compared to young adult PBS-infected

animals, respectively [63]. In addition, groups were based on

severity of pathology: young adult macaques (n = 6), aged

macaques with pathology (n = 4), and aged macaques with severe

pathology with .40% of lungs affected (n = 2) (Supplementary

Figure 4). As titration of lung homogenates gave inconsistent

results in our hands and because the effects of endogenous and

exogenous IFN may influence titration outcomes, we chose

taqman and immunohistochemistry to determine viral replication

levels in the lung.

Isolation and activation of PBMC
PBMC from healthy blood donors were isolated from

heparinized venous blood using Lymphoprep (Axis-Shield).

PBMC were resuspended at 26106/ml in RPMI 1640 medium

(Biowhittaker) supplemented with L-glutamine (2 mM), penicillin

(100 U/ml), streptomycin (100 mg/ml), and 10% fetal calf serum.

Freshly isolated PBMC were incubated with IL-1b (5 ng/ml;

eBioscience), IFN-a 2a (1000 U/ml, 100U/ml, or 10U/ml;

Roferon-A; Roche) or both for 24 hours in duplo or triplo per

donor. Total RNA from stimulated PBMC was isolated using

Trizol Reagent (Invitrogen) and the RNeasy mini kit (Qiagen).

cDNA synthesis was performed with 100 ng total RNA and

Superscript III RT (Invitrogen) with oligo(dT), according to the

manufacturer’s instructions. Semi-quantitative RT-PCR was

performed for IL-8 [19] and IL-1b (Taqman gene expression

assays; Applied Biosystems) as described previously using the

22DDCt method [63]. Average results (6s.e.m.) were expressed as

fold change compared to untreated (mock) cells [63].

Statistical analysis
Data (RT-PCR and gross pathology scores for SARS-CoV-

infected young adult versus aged and aged versus aged animals

treated with IFN) were compared using Student’s t-test with

Welch’s correction. Differences were considered significant at

P,0.05. One-way ANOVA and Bonferroni’s multiple comparison

test were used for the comparison of data in groups based on

severity of pathology (low, medium, high) and in vitro IFN

inhibition experiments. Correlation coefficients were determined

using Spearman’s correlation test.

RNA labeling, microarray hybridization, scanning and
data preprocessing

Pooled total RNA (2.4 mg) from one-three separate lung pieces of

all animals (including previously infected animals), with substantial

SARS-CoV replication (.105 fold change), was labeled using the

One-Cycle Target Labeling Assay (Affymetrix) and hybridized onto

Affymetrix GeneChip Rhesus Macaque Genome Arrays (Affyme-

trix), according to the manufacturer’s recommendations. Image
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analysis was performed using Gene Chip Operating Software

(Affymetrix). Microarray Suite version 5.0 software (Affymetrix) was

used to generate .dat and .cel files for each experiment. All data

were normalized using a variance stabilization algorithm (VSN)

[64]. Transformed probe values were summarized into one value

per probe set by the median polish method [65]. Primary data is

available at http://www.virgo.nl in accordance with proposed

MIAME standards.

Microarray data analysis
Probe set (gene) wise comparisons between the experimental

conditions (aged, young adult and IFN-treated animals versus

young adult or aged PBS-infected animals and directly compared to

each other) were performed by LIMMA (version 2.12.0) [66].

Correction for multiple testing was achieved by requiring a false

discovery rate (FDR) of 0.05, calculated with the Benjamini-

Hochberg procedure [67]. To understand the gene functions and

the biological processes represented in the data and obtain

differentially expressed molecular and cellular functions, Ingenuity

Pathways Knowledge Base (http://www.ingenuity.com/) was used.

Heat maps of pro-inflammatory pathways were produced using

complete linkage and Euclidian distance in Spotfire DecisionSite for

Functional Genomics version 9.1 (http://www.spotfire.com/) and

Ingenuity Pathways Knowledge Base (http://www.ingenuity.com/),

using log (base 2) transformed expression values with minimum and

maximum values of the color range being 24 and 4, respectively.

Differences between conditions in expression of specific pro-

inflammatory pathways, e.g. direct comparison of defined gene sets

(aged versus young adult and aged versus aged IFN-treated animals),

were tested by Goeman’s global test procedure [26]. Hierarchical

clustering analysis of normalized log-2 based hybridization signals of

individual young adult and aged macaques of a set of gene transcripts

that were identified as being differentially regulated (fold change $2;

FDR,0.05) in at least one of the comparisons of young adult versus

young adult PBS or aged versus aged PBS animals were created using

Spotfire DecisionSite for Functional Genomics version 9.1 (http://

www.spotfire.com/) with complete linkage and Eucledian distance

parameters.

Supporting Information

Table S1 Annotated differentially expressed genes in aged versus

young adult SARS-CoV infected macaques.

Found at: doi:10.1371/journal.ppat.1000756.s001 (0.15 MB

DOC)

Table S2 Description of genes

Found at: doi:10.1371/journal.ppat.1000756.s002 (0.04 MB

DOC)

Table S3 Log (base 2)-transformed expression values of genes in

the heat maps in Fig 6, Fig. 7, and Fig. S5.

Found at: doi:10.1371/journal.ppat.1000756.s003 (0.03 MB

DOC)

Table S4 Log (base 2)-transformed expression values of genes in

heat maps in Fig. S4

Found at: doi:10.1371/journal.ppat.1000756.s004 (0.03 MB

DOC)

Figure S1 Gross lesions in aged macaque. (A) SARS-CoV-

induced lesions (white arrows) in the lung are still visible after

inflation with 10% neutral-buffered formalin. (B–C) Schematic

diagrams of the lungs showing gross pathology lesions of SARS-

CoV-infected young adult (B) and aged (C) macaques.

Found at: doi:10.1371/journal.ppat.1000756.s005 (0.31 MB PDF)

Figure S2 Histology and immunohistochemical detection of cells

in lungs from SARS-CoV-infected macaques. (A–B) Lesion in the

lung of a SARS-CoV-infected aged macaque, characterized by

thickened alveolar walls lined by type II pneumocytes (type II

pneumocyte hyperplasia) with influx of inflammatory cells.

Consecutive sections were stained with a mouse monoclonal

anti-human CD68 antibody for macrophages (A) and a mouse

monoclonal anti-human neutrophil elastase antibody for neutro-

phils (B). Sections were counterstained with hematoxylin. (C)

Lesions in the lung of a SARS-CoV infected aged macaque

showing diffuse alveolar damage, characterized by type II

pneumocyte hyperplasia with influx of inflammatory cells. (D)

Lesion in the lung of a SARS-CoV-infected aged macaque,

characterized by thickened alveolar walls lined by type II

pneumocytes stained with a mouse monoclonal anti-human

pankeratin antibody for epithelial cells. (E–F) Hyaline membranes

(E) and syncytia (F) were occasionally observed in the lungs of aged

macaques. Original magnifications are 620 and 640.

Found at: doi:10.1371/journal.ppat.1000756.s006 (0.11 MB PDF)

Figure S3 Global gene expression profiles of individual young

adult and aged animals. For a subset of gene transcripts, cytokines

and chemokines, normalized log-2 based hybridization values for

individual aged and young adult macaques are shown.

Found at: doi:10.1371/journal.ppat.1000756.s007 (0.01 MB PDF)

Figure S4 Microarray analyses of the lower respiratory tract of

SARS-CoV-infected macaques displaying different levels of

severity of pathology. (A) Gross pathology scores of the lungs

from aged and young adult macaques were determined. Based on

the severity of pathology, macaques were divided in three groups

(low (young adult; n = 6), medium (aged; n = 4), and high (aged;

n = 2) pathology score), and average pathology scores (6s.e.m.) are

shown. (B) Number of differentially expressed gene transcripts

compared to uninfected animals ($2-fold change) in macaque

groups. (C) Number of differentially expressed genes in macaque

groups compared to PBS-infected animals with functions in

cellular growth and proliferation, cell movement, cell death, or

cell-to-cell signaling and interaction obtained from Ingenuity

Pathways Knowledge Base. (D) Average fold change (6s.e.m.) in

SARS-CoV mRNA levels in the lungs of macaques with low,

medium and high pathology scores as compared to PBS-infected

animals as determined by real-time RT-PCR. (E–G) Gene

expression profiles showing differentially expressed genes coding

for proteins involved in cell adhesion (E), proteins involved in

apoptosis (F), and cytokines and chemokines (G) of macaque

groups with low, medium and high pathology scores as compared

to PBS-infected animals. Genes displayed were obtained from

Ingenuity Pathways Knowledge Base and changed $2-fold in at

least one of the macaque groups as compared to PBS-infected

controls. The data presented are error-weighted averages. Genes

shown in red were upregulated and in green downregulated in

infected animals relative to PBS-infected animals (log (base 2)

transformed expression values with minimim and maximum

values of the color range being 24 and 4). Genes shown in grey

were not significantly differentially regulated. See Table S2 and S4

for full gene names and expression values.

Found at: doi:10.1371/journal.ppat.1000756.s008 (0.05 MB PDF)

Figure S5 Microarray analyses of the lower respiratory tract of

SARS-CoV-infected aged and aged macaques treated with

pegylated IFN-a. (A) Number of differentially expressed genes in

macaque groups compared to PBS-infected animals with functions

in cell growth and proliferation, cell movement, cell death, or cell-

to-cell signaling and interaction obtained from Ingenuity Pathways

Knowledge Base. When SARS-CoV-infected aged macaques were

Host Response to SARS-CoV

PLoS Pathogens | www.plospathogens.org 13 February 2010 | Volume 6 | Issue 2 | e1000756



compared directly to IFN-treated aged macaques, these gene sets

were significantly differentially expressed. (B–D) Gene expression

profiles showing differentially expressed genes coding for proteins

involved in apoptosis (B), cell adhesion (C), or NF-kB-signaling (D)

of IFN-a-treated and untreated aged macaques. Genes displayed

were obtained from Ingenuity Pathways Knowledge Base or

literature and changed $2-fold in at least one of the groups as

compared to PBS-infected controls. The data presented are error-

weighted averages. Genes shown in red were upregulated, in green

downregulated, and in grey not significantly differentially

expressed in infected animals relative to PBS-infected animals

(log (base 2) transformed expression values with minimum and

maximum values of the color range being 24 and 4). Global test

analysis of the direct contrast of SARS-CoV-infected aged versus

IFN-treated aged animals showed that the cell adhesion and

apoptosis pathways were significantly differentially expressed

(p,0.05). See Table S2 and S3 for full gene names and expression

values.

Found at: doi:10.1371/journal.ppat.1000756.s009 (0.03 MB PDF)
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