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Abstract

The role of the pore-forming Staphylococcus aureus toxin Panton-Valentine leukocidin (PVL) in severe necrotizing diseases is
debated due to conflicting data from epidemiological studies of community-associated methicillin-resistant S. aureus (CA-
MRSA) infections and various murine disease-models. In this study, we used neutrophils isolated from different species to
evaluate the cytotoxic effect of PVL in comparison to other staphylococcal cytolytic components. Furthermore, to study the
impact of PVL we expressed it heterologously in a non-virulent staphylococcal species and examined pvl-positive and pvl-
negative clinical isolates as well as the strain USA300 and its pvl-negative mutant. We demonstrate that PVL induces rapid
activation and cell death in human and rabbit neutrophils, but not in murine or simian cells. By contrast, the phenol-soluble
modulins (PSMs), a newly identified group of cytolytic staphylococcal components, lack species-specificity. In general, after
phagocytosis of bacteria different pvl-positive and pvl-negative staphylococcal strains, expressing a variety of other
virulence factors (such as surface proteins), induced cell death in neutrophils, which is most likely associated with the
physiological clearing function of these cells. However, the release of PVL by staphylococcal strains caused rapid and
premature cell death, which is different from the physiological (and programmed) cell death of neutrophils following
phagocytosis and degradation of virulent bacteria. Taken together, our results question the value of infection-models in
mice and non-human primates to elucidate the impact of PVL. Our data clearly demonstrate that PVL acts differentially on
neutrophils of various species and suggests that PVL has an important cytotoxic role in human neutrophils, which has major
implications for the pathogenesis of CA-MRSA infections.

Citation: Löffler B, Hussain M, Grundmeier M, Brück M, Holzinger D, et al. (2010) Staphylococcus aureus Panton-Valentine Leukocidin Is a Very Potent Cytotoxic
Factor for Human Neutrophils. PLoS Pathog 6(1): e1000715. doi:10.1371/journal.ppat.1000715

Editor: Ambrose Cheung, Dartmouth Medical School, United States of America

Received June 18, 2009; Accepted December 3, 2009; Published January 8, 2010
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Introduction

Staphylococcus aureus is an important human pathogen that can

cause serious diseases [1]. In the last few years, there was a

dramatic increase in the incidence of community-associated

methicillin-resistant S. aureus (CA-MRSA) infections in otherwise

healthy individuals and resistance to multiple antibiotic classes

largely limits therapeutic options. Especially the MRSA strain

USA300 has widely spread within the United States and has

become the cause of more unusually severe diseases, including

necrotizing pneumonia, skin infections, osteomyelitis and necro-

tizing fasciitis [2,3]. Necrotizing pneumonia seems to be a specific

disease entity and often follows infection with influenza virus [4,5].

To combat these life-threatening infections, there is a need to

better understand the bacteria-host interaction and virulence

factors involved.

Clinical studies propose the exotoxin Panton-Valentine leuko-

cidin (PVL) as a crucial virulence factor in necrotizing diseases

[4,6]. PVL is a two component pore-forming toxin, which mainly

acts on neutrophils [7]. It is expressed by only a small percentage

of S. aureus wild-type isolates (2–3%) [8], but it is highly prevalent

in S. aureus strains isolated from necrotizing infections [4,6].

However, several studies that used a diversity of animal models

have created conflicting results concerning the role of PVL. One

study, applying a mouse acute pneumonia model, suggests PVL as

major virulence factor [9]. By contrast, other groups fail to detect a

pathogenic function of PVL in murine lung and skin infections and

in cell culture experiments, but demonstrate a predominant role of

a-hemolysin (a-toxin) and a possible relevance of the bacterial

surface protein A (Spa) [10–12]. Both factors are expressed at high

prevalence among clinical isolates and are considered to

contribute to various disease entities [1,13,14]. Yet, when a rabbit

bacteremia model was used, a transient effect of PVL in the acute

phase of infection could be demonstrated [15]. Furthermore, a

recent study identified a group of S. aureus peptides, the phenol-

soluble modulins (PSMs), with strong cytolytic activity on human

neutrophils. As PSMs are released at high concentrations by CA-

MRSA strains and contribute to disease development in murine

models, the authors propose that PSMs account for the enhanced

virulence of CA-MRSA [16].

However, there is some evidence that the actions of S. aureus

toxins can be strongly dependent on the animal species used,

which should be analysed in detail to better interpret disease-

models. In particular, the host cell response to PVL may be
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species-specific [17], whereas the effects of other staphylococcal

factors, such as PSMs, might be species-independent. In this study,

we used polymorphonuclear cells (neutrophils) from different

species including humans, mice, rabbits and monkeys to test the

effect of several virulence factors. As neutrophils are the major

defending cells against bacterial invasion, their excessive cell death

most likely largely promotes disease development.

Results

The effect of purified S. aureus virulence factors on
neutrophils from different species

First, we challenged human neutrophils with purified S. aureus

components, including PVL, a-toxin, protein A and PSMs. For

PVL, doses$40 ng/ml (0.04 mg/ml) were sufficient to induce cell

damage (Figure 1A). Cell death occurred rapidly, within 1 h, and

most likely due to necrosis, as we could not detect characteristic

apoptotic features (Figure S2) [18]. In contrast to PVL, a-toxin or

protein A did not cause cell death, even when applied at high

concentrations, which have pro-inflammatory or cytotoxic effects

in other cell types [19,20]. As recently published [16], three

different forms of S. aureus PSMs (PSMa1, PSMa2, PSMa3) were

able to provoke cell-lysis. However, cell death induction required

relatively high doses of PSMs ($40 mg/ml) in comparison to PVL

($40 ng/ml) (Figure 1A). In previous studies, the impact of PVL

was mainly tested on human or rabbit neutrophils, as cells from

both species were reported to be susceptible to PVL [17]. In line

with published data, we found similar responses of human and

rabbit neutrophils to low doses of PVL (Figure 1B). The action of

PVL appears to be tightly restricted to these species, as neutrophils

isolated from Java monkeys (Macaca fascicularis, cynomolgus), the most

commonly used non-human primate in biomedical research, were

not killed in response to PVL (Figure 1C). In recent reports,

models of severe staphylococcal infections were mainly performed

in the murine strains BALB/c or C57/BL6 [9,10]. However,

murine neutrophils from both strains were largely resistant to PVL

(Figure 1D, E), irrespective of their maturation and inflammatory

state (Figure S3).

In contrast to PVL, all PSM-types tested (PSMa1–3) lysed

neutrophils from different species at concentrations$40 mg/ml,

indicating that the actions of PSMs apparently lack species-

specificity (Figure 1A–E). Further on, we detected additional

differences between PVL- and PSM-induced cell death. Incuba-

tion with PVL caused changes in cell morphology, including

rounding and swelling of cells and nuclei (Figure 2A, 2B), which

persisted for several hours (data not shown). By contrast, PSM-

stimulated cells were rapidly destroyed without characteristic

changes in morphology (Figure 2A). In PVL-treated neutrophils,

an oxidative burst reaction (Figure 2C) and pro-inflammatory

activation (Figure S4) accompanied cell death induction, whereas

incubation with PSMs did not cause an oxidative burst (Figure 2C).

These results point to completely different mechanisms of action

provoked by the S. aureus cytotoxic components PVL and PSMs.

The effect of live bacteria, which differ in virulence factor
expression, on human neutrophils

To investigate the impact of defined virulence factor expression

we transformed S. carnosus TM300 with a plasmid encoding the

genes for PVL, a-toxin, protein A (Spa) or PSMs, respectively

(Table 1). Using live bacteria with these constructs revealed that

the expression of PVL most efficiently induced neutrophils cell

death (Figure 3A). The effect of TM300+PVL was comparable to

the cytotoxic potential of clonally independent MRSA (ST239)

and MSSA (6850) strains (Figure 3B) and of pvl-positive clinical

isolates, which were recovered from severe invasive (including

necrotizing pneumonia) diseases (Figure 3C). However, cytotox-

icity was not restricted to PVL-expressing strains, as live bacteria

of some pvl-negative isolates compromised cell viability to a similar

extent (Figure 3D). Moreover, we could not detect differences

between strain USA300 and the corresponding mutant

USA300DPVL (Figure 3B), indicating that the presence of the

pvl-gene does not necessarily contribute to neutrophils cell death

following phagocytosis of bacteria. We also failed to block the

cytotoxic effect of USA300 by the use of antibodies against PVL

(Figure S5). These findings indicate that other staphylococcal

factors can also induce cell death, which might mask the cytotoxic

function of PVL. However, the expression of a-toxin and PSMs in

TM300 had no effect on neutrophils. Apparently, PSMs need to

accumulate to lyse neutrophils, as the corresponding bacterial

supernatants, which contained PSMs, were cytolytic (Figure S6)

[16].

Besides PVL, the expression of protein A moderately decreased

the number of intact cells (Figure 3A). This is further demonstrated

by using strain Cowan I, which is a high producer of protein A,

whereas two isogenic mutants (Dspa) were much less cytotoxic

(Figure 3E). Although protein A is known to be a cell wall-

anchored protein with an anti-phagocytic effect [14], we observed

an increased rate of cell death. In our experiments, the action of

protein A was dependent on the expression by bacteria, which

exhibit protein A on the bacterial surface. This phenomenon was

not specific for protein A, as the expression of another wall-

associated protein, namely fibronectin-binding protein A (FnBPA),

also reduced the number of intact neutrophils (Figure 3F). In

general, phagocytosis of pathogens triggers mechanisms to kill

ingested bacteria. Further on, it has been shown that phagocytosis

significantly accelerates neutrophils apoptosis, which appears to

contribute to the resolution of the inflammatory response [21,22].

These processes promote healthy resolution and could be an

explanation for the enhanced rate of cell death caused by bacteria

holding virulent surface proteins. This assumption is further

Author Summary

Staphylococcus aureus can cause serious diseases, includ-
ing necrotizing pneumonia, which often affects young
immunocompetent patients and has a high lethality rate.
Several clinical studies demonstrated a clear association
between this form of pneumonia and S. aureus strains
carrying the gene for the pore-forming toxin Panton-
Valentine leukocidin (PVL). However, laboratory work,
which mainly used murine disease models, has created
very contrasting results and often fails to show a
pathogenic role for PVL. In this study, we demonstrate
that the expression of PVL by staphylococcal strains
confers strong and rapid cytotoxic activity against
neutrophils. However, this action was basically restricted
to human cells and could not be reproduced in murine or
Java monkeys’ cells. These results indicate that infection-
models in mice and in non-human primates fail to replicate
the pathogenic activity of PVL seen in human cells. Our
data with human neutrophils clearly show that PVL has a
major cytotoxic effect, as the release of PVL by staphylo-
coccal strains caused rapid and premature cell death,
which is different from the physiological (and pro-
grammed) cell death of neutrophils following phagocyto-
sis and degradation of virulent bacteria. These results have
important implications especially for infections with CA-
MRSA strains, which often carry the gene for PVL and have
spread widely in the community.

PVL Kills Human Neutrophils
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Figure 1. The cytolytic effect of purified S.aureus virulence factors on neutrophils from different species. Neutrophils from different
species, including human (A), rabbit (B), Java monkey (C), BALB/c mice (D), C57/BL6 mice (E) were freshly isolated and 16106 0.5 ml21 cells were
incubated with increasing doses of PVL, a-toxin, protein A or PSMs (PSMa1, PSMa2, PSMa3), respectively. PVL: 0.02–0.2 mg/ml (0.5–5 nM); a-toxin: 5,
10 mg/ml (150, 300 nM); protein A: 10, 100 mg/ml (0.238, 2.38 mM); PSMs: 10–60 mg/ml (4–24 mM). Neutrophils were stimulated for 1 h and then cells
were washed, stained with annexin V and propidium iodide (taking another hour) and then cell death was measured by flow cytometry. The values
represent the mean 6 SEM of at least three independent experiments. * P#0.05, ** P#0.01, *** P#0.001 (independent t-test comparing the rate of
intact cells between control and stimulated cells). Taking of blood samples from humans and animals were approved by the local ethics committee.
doi:10.1371/journal.ppat.1000715.g001

PVL Kills Human Neutrophils
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Figure 2. Differences between PVL- and PSMs-induced cell death. Human neutrophils were freshly isolated and stimulated with
staphylococcal components as described in figure 1. Neutrophils were stimulated for 1 h with PVL (80 ng/ml) or PSMs (60 mg/ml) and cells were
analyzed by light microscopy with a live cell imaging system (A). Neutrophils were stimulated for 1 h with PVL (40 ng/ml) and processed for electron
microscopy (B). Cells were stimulated for 10 min and an oxidative burst reaction was determined by a burst-test (Orpegen Pharma). The values
represent the mean 6 SEM of at least three independent experiments. * P#0.05, ** P#0.01, *** P#0.001 (independent t-test comparing the rate of
burst reaction between control and stimulated cells; C).
doi:10.1371/journal.ppat.1000715.g002

PVL Kills Human Neutrophils
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confirmed by apoptotic features detected in neutrophils (Figure S7,

annexin V-positive cells).

However, bacterial toxins, such as PVL and PSMs, could

interfere with the physiological functions of neutrophils, by rapidly

and prematurely killing cells. To investigate this possibility we

analysed neutrophils cell death in a time-dependent manner.

Challenge with PVL ($40 ng/ml) induced cell death within the

first 20 min (Figure 4A), whereas incubation of neutrophils with

live bacteria resulted in a much slower rate of death induction

(within 2–3 h), which is most likely associated with the neutrophils

physiological function [21]. Using PVL-expressing (USA300) or

non PVL-expressing (ST239, 6850) strains did not reveal any

differences (Figure 4B).

The cytotoxic effect of bacterial culture supernatants is
dependent on PVL expression

PVL is a bacterial exotoxin, which is rapidly released and could

act on cells at the infection sites. To mimic this situation, we

stimulated neutrophils with sterile-filtered bacterial supernatants

from overnight cultures. Culture media from strain TM300+PVL

induced rapid cell death within 20 min, whereas supernatants

from the control strain TM300 did not affect cell integrity. Further

on, comparing supernatants from the wild-type strain USA300

with supernatants from the corresponding knock-out mutant

USA300DPVL revealed that culture media from the PVL-deletion

strain had a much reduced ability to induce cell death, as the

majority of cells remained intact (Figure 5A). The impact of PVL

release was further strengthened by testing clinical isolates.

Supernatants from four out of six pvl-positive strains, recovered

from severe (including necrotizing) diseases, had a much higher

cytotoxic activity than supernatants from pvl-negative strains (also

recovered from severe invasive diseases). It is of particular

importance, that PVL secretion of the strains (measured by

Western blot in the bacterial supernatants; Figure S1C) clearly

corresponded to the cytotoxic activity in all cases (Figure 5B).

Discussion

The role of PVL in severe CA-MRSA infections is debated due

to conflicting data from epidemiological studies, in vitro cell culture

experiments, and different animal disease models [9,10,12,23]. As

PVL was found in almost all MRSA strains that cause CA-MRSA

infections, such as necrotizing pneumonia, skin- and soft tissue

infections, it was assumed to be a crucial virulence factor [4,6].

These disease entities are characterized by massive tissue necrosis

and leukopenia, which has been linked to the ability of PVL to kill

neutrophils, the primary defending cells against invading bacteria.

However, different disease models in mice, in which USA300 and

the corresponding knock-out mutant were used, failed to detect a

pathogenic function for PVL [10,12]. In line with these data, we

found that murine neutrophils, isolated from different commonly

used mice strains, were quite insensitive to PVL. Neutrophils from

Java monkeys, a species much more closely related to humans,

were not affected by PVL. The reason for the differential

sensitivity of cells from various species is completely unknown,

but receptors/signal transduction pathways, which are confined to

certain species, might be involved. By contrast, all PSM-types

tested lysed neutrophils from different species equally efficient and

induced membrane damaging effects [16]. Since murine and

simian cells are largely resistant to PVL, PSMs might play a more

dominant role in S. aureus infections in mice or non-human

primates than in humans, especially when high S. aureus inocula

are needed to cause diseases. Our data strongly suggest that

animal models using mice or non-human primates do not correctly
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Figure 3. The impact of PVL expression on human neutrophil survival. Human neutrophils were freshly isolated and 16106 0.5 ml21 cells
were incubated with live bacteria, which were grown in overnight cultures and used for stimulating cells at an multiplicity of infection (MOI 10–200)
as indicated. In these experiments we used heterologous expression strains of TM300 and Cowan I (A, E, F), the wild-type strain USA300 and its
knock-out mutant USA300DPVL (B) and pvl-positive (C) and pvl-negative (D) clinical isolates from invasive diseases. After 1 h of incubation with
bacteria the cells were washed, stained with annexin V and propidium iodide (taking another hour) and then cell death was measured by flow
cytometry. The values represent the mean 6 SEM of at least three independent experiments.
doi:10.1371/journal.ppat.1000715.g003
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replicate S. aureus diseases in humans, at least if the role of PVL is

elucidated. As neutrophils from rabbits are much more susceptible

to PVL, this species is most likely more appropriate to study the

function of PVL in necrotizing diseases.

Very recently, a rabbit bacteremia model has been published,

which describes a modest and transient effect of PVL in the acute

phase of infection [15]. However, this type of infection might

not show the full pathogenicity of PVL expression, as during

bacteremia staphylococci are directly exposed to cells of the

immune system. In our experiments, we could not detect

differences in virulence between PVL-expressing and pvl-negative

(knock-out mutants or wild-type isolates) strains, when live bacteria

were directly phagocytized by neutrophils. This is in line with

other published data, demonstrating that disruption or absence of

the pvl-gene in S. aureus wild-type isolates (including USA300) did

not alter their capacity to induce neutrophils cell death [12,24].

Nevertheless, as cell death of neutrophils is part of the

physiological immune response following phagocytosis of bacteria

[21,22] and as S. aureus wild-type isolates express a wide variety of

factors promoting this process (e.g. diverse surface proteins) [1],

the effect of secreted PVL on human neutrophils might be masked

in this model. Furthermore, it is reasonable to suspect that PVL is

not (highly) expressed, when staphylococci are instantly phagocy-

tized by neutrophils, as toxic virulence factors were found to be

down-regulated after internalization of bacteria [25]. Like other

toxins, PVL is mainly expressed in the post-exponential bacterial

growth phase [26], which is most likely reached in encapsulated

infection foci, e.g. folliculitis, abscesses, tissue necrosis. Only

recently, high expression of PVL was found directly in clinical

samples from cutaneous abscesses of invasive CA-MRSA infec-

tions [27]. Here, PVL most likely accumulates and can also exert

systemic pathogenic actions upon entering the bloodstream. In

human neutrophils, low doses of PVL were sufficient to cause cell

death, which correspond to amounts produced by clinical CA-

MRSA strains [28]. Granted that the action of PVL involves yet

unknown host receptors/signal transduction pathways, PVL might

interfere with various functions of susceptible cells. Furthermore, it

is reasonable to speculate that host organisms can become even

more vulnerable against PVL, e.g. following an infection with

influenza virus. Additional studies on human cells and in

susceptible animal models (rabbits) will be necessary to clarify

these possibilities and to better define the functions of PVL in

staphylococcal infections.

Taken together, our results clearly demonstrate that PVL is a

strong cytotoxic factor for human neutrophils, which can play an

important role in CA-MRSA infections. Our results do not

contradict previously published work, as we could not find an

effect of PVL on murine neutrophils or when bacteria were

Figure 4. Time-dependent effect of purified PVL vs. live bacteria on neutrophil cell death induction. Human neutrophils were freshly
isolated and 16106 0.5 ml21 cells were stimulated with purified PVL (A) or with live bacteria of wild-type strains at an MOI of 100 (B). Cell death was
determined every 15 min. For this, cells were washed, rapidly (for 5 min) stained with PI and cell death was instantly determined by flow cytometry.
The values represent the mean 6 SEM of at least three independent experiments.
doi:10.1371/journal.ppat.1000715.g004
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directly phagocytised by neutrophils. However, under certain

pathogenic conditions, such as necrosis and abscesses, which are

characteristic for severe invasive S. aureus diseases, PVL could exert

its function as a cytotoxic exotoxin in susceptible organisms. The

premature cell death of neutrophils may be extremely relevant in

the virulence of CA-MRSA. As neutrophils are the major defense

against invading bacteria, their excessive cell death most likely

largely compromises the host’s immune system. Furthermore,

uncontrolled neutrophils cell damage discharges many pro-

inflammatory components within the host tissue, which could

also essentially promote disease development. These results are

important for ongoing efforts to find therapeutics against S. aureus

infections. Due to the rapid spread of CA-MRSA strains and

situations, which favour S. aureus infections at a large scale, e.g.

epidemic of influenza, there is an urgent need for efficient

preventive and therapeutic strategies.

Materials and Methods

Ethics statement
Taking of blood samples from humans and animals and

cell isolation were conducted with approval of the local ethics

Figure 5. The cytotoxic effect of bacterial culture supernatants is dependent on PVL expression. Human neutrophils were freshly
isolated and 16106 0.5 ml21 cells were incubated with bacterial supernatants, which were prepared from overnight cultures of different strains and
used for stimulating cells (10%). In these experiments we used bacterial supernatants of the heterologous expression strain TM300+PVL and of the
wild-type strain USA300 and its knock-out mutant USA300DPVL (A); furthermore we used bacterial supernatants of pvl-positive and pvl-negative
clinical isolates from invasive diseases (B). The presence of the pvl-gene in the indicated strains and the amount of PVL production in the bacterial
supernatants is given semi-quantitatively as listed in table 1 and demonstrated in Figure S1C. After 30 min of incubation of the cells with bacterial
supernatants, cells were washed, rapidly (for 5 min) stained with PI and cell death was instantly determined by flow cytometry. The values represent
the mean 6 SEM of at least three independent experiments. *** P#0.001 (independent t-test comparing the rate of intact cells after stimulation with
supernatants of USA300 and USA300DPVL).
doi:10.1371/journal.ppat.1000715.g005
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committee (Ethik-Komission der Ärztekammer Westfalen-Lippe

und der Medizinischen Fakultät der Westfälischen Wilhelms-

Universität Münster). Human blood samples were taken from

healthy blood donors, who provided written informed consent for

the collection of samples and subsequent neutrophil isolation and

analysis. All animals were handled in strict accordance with good

animal practice and animal keeping and taking of blood samples

were supervised by the veterinary office of Münster (Veterinäramt

der Stadt Münster).

Bacterial strains and cultures
Bacterial strains used in this study are listed in table 1. They

were all characterized for presence of genes encoding PVL and

a-toxin by PCR. Gene expression was investigated by Western

blots for PVL (Figure S1B+C) or by hemolysis on sheep blood agar

plates (sign for a-toxin production). For cell culture and animal

experiments with live staphylococci, bacteria were grown over-

night at 37uC in Müller-Hinton medium (MH, containing

antibiotics/xylose, if mutants are used) without shaking. Bacteria

were washed in PBS and resuspended in PBS with 1% HSA.

Neutrophils were incubated with bacterial suspensions, resulting in

a multiplicity of infection (MOI) as indicated. Bacterial superna-

tants were prepared by growing bacteria in 5 ml of brain-heart

infusion (BHI) broth (Merck) in a rotary shaker (160 rpm) at 37uC
for 12–14 h and pelleted for 10 min at 3350 g. Supernatants were

sterile-filtered through a Millex-GP filter unit (0.22 mm; Millipore)

and used for the experiments. For PVL isolation, E. coli TG1

strains containing expression vectors for lukF-PV and lukS-PV

were grown in Luria Bertani (LB)-media with IPTG (1 mM) and

ampicillin (100 mg/ml) and cell lysates were used to purify PVL

(Figure S1A).

Plasmid construction and transformation
Different genes were amplified by PCR using chromosomal

DNA from different strains (Table S1) as template. To create S.

carnosus strains, which express virulence factors of S. aureus, we used

two basic vectors, the xylose inducible pXR100 and the

pNXR100, which is a non-inducible derivate of the pXR100.

For the expression of lukF-PV and lukS-PV in E. coli TG1 the

commercial IPTG inducible pQE30UA was used. For creation of

the expression vectors the respective genes were amplified by

PCR, purified and digested. The basic vectors were also digested

corresponding to the genes. After ligation S. carnosus TM300

and E. coli were transformed by protoplast transformation or

CaCl–method.

Generation of purified staphylococcal virulence factors
and antibodies

The Six-histagged lukF-PV and lukS-PV proteins from E. coli

were purified by nickel-nitrilotriacetic acid affinity resin (Qiagen,

Germany). a-toxin and Protein A (P3838) were obtained from

Sigma-Aldrich Chemie GmbH (Germany). PSMa1 – PSMa3

were synthesized by Genosphere Biotechnology (France). Poly-

clonal antibodies against lukF-PV and lukS-PV were raised

separately and together in rabbits by standard procedures and

this was performed by Genosphere-Biotechnology (France).

Preparation and culture of neutrophils
Human, rabbit and Java monkey polymorphonuclear cells

(neutrophils) were freshly isolated from Na citrate-treated blood of

healthy donors. Neutrophils from BALB/c and C57/BL6 mice

were prepared from bone marrow. For neutrophil-isolation,

dextran-sedimentation and density gradient centrifugation using

Ficoll-Paque Plus (Amersham Bioscience) was used according to

the manufacturer’s instruction. Cell purity was determined by

Giemsa staining and was always above 99%. For murine cells,

sedimented cells were used as neutrophils and, in addition, were

further deprived of CD3+ (T cells), CD19+ (B cells), and CD11c+

(dendritic cells) cells using MACS technology (Miltenyi Biotech,

Bergisch- Gladbach) according to the manufacturer’s instruction.

Resulting cells were ,0.1% CD3+, CD19+, or CD11c+ and ,95%

CD11b+ and Gr1+. Neutrophils were resuspended at a final

density of 16106 cells/0.5 ml in RPMI 1640 culture medium

(PAA Laboratories GmbH) supplemented with 10% heat-inacti-

vated FCS (PAA Laboratories GmbH) and immediately used for

the experiments. All incubations were performed at 37uC in

humidified air with 5% CO2.

Cell culture experiments and measurements of oxidative
burst activity and cell death

All experiments were performed in 24-well plates and

neutrophils were incubated with PVL, a-toxin, PSMs, live bacteria

or bacterial supernatants at the indicated concentrations. Oxida-

tive burst activity was determined after 10 min of incubation using

a phagoburst test (Orpegen Pharma) according to the manufac-

turer’s instruction. Measurement of cell death was performed after

1 h of incubation followed by washing and double staining of cells

with annexin V-FITC and propidium iodide (PI) (taking 1 hour)

and then cells were analyzed in a FACScalibur flow cytometer

using an annexin V-FITC apoptosis detection kit (Becton

Dickinson). For analysis of time-dependent cell death inductions,

cells were incubated for the indicated time periods, followed by

washing and single staining with PI (taking 10 min) and then cells

were immediately analysed by flow cytometry.

Light and transmission electron microscopy
A live cell imaging system (Zeiss) was used to obtain light

micrographs. For transmission electron microscopy, 56106/2.5 ml

neutrophils were incubated with PVL at the indicated concentra-

tions for 1 h. Then the cells were washed three times with PBS, fixed

in 3% glutaraldehyde, stained in 1% osmium tetroxide and

embedded in epoxy resin in the culture dish in situ. Electron

micrographs were obtained using imaging plate technology.

Statistical analysis
Unpaired Student’s t-test was performed to compare cell

survival. A value of P#0.05 was considered significant in all cases.

Supporting Information

Table S1 Vector construction

Found at: doi:10.1371/journal.ppat.1000715.s001 (0.08 MB PDF)

Figure S1 Western-blot and SDS-PAGE analysis of S. aureus

USA300 lukF-PV and lukS-PV and of PVL in bacterial

supernatants of indicated strains. His-Tag lukF and lukS proteins

were expressed in E. coli using pQE30UA and proteins were

purified on NI-NTA resin. After separation by SDS-PAGE,

proteins were visualized by Coomassie blue. For Western-blot

analysis, proteins separated on SDS-page were blotted onto a

nitrocellulose membrane. Detection of PVL (lukF and lukS) was

done with anti-PVL antibodies raised in rabbits followed by

incubation with anti-rabbit alkaline phosphatase conjugated

antibodies and bands were visualized in a color reaction using

avidin alkaline phosphatase. Molecular weight standards are

in kDa (Figure S1A). To detect PVL released in bacterial culture

supernatants, staphylococcal strains were grown in 5 ml of

PVL Kills Human Neutrophils
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brain-heart infusion (BHI), supernatants were sterile-filtered as

described and were used for Western-blot analysis (Figures S1B,

S1C). The amount of PVL was determined semi-quantitatively in

five categories: -, no PVL production; +/-, borderline; +, low; ++,

+++, high and very high PVL production. The results are also

listed in Table 1 and Figure 5.

Found at: doi:10.1371/journal.ppat.1000715.s002 (1.27 MB TIF)

Figure S2 Cell death induced by PVL in neutrophils lacks

apoptotic features. Human neutrophils were freshly isolated and

16106 0.5 ml21 cells were incubated with increasing doses of

purified PVL with or without zVAD-fmk (50 mM) as indicated.

zVAD is a pan-caspase inhibitor (Enzyme Systems), which

inhibited apoptotic cell death induced by a-toxin in mononuclear

cells [33]. After 1 h cells were double-stained with propidium

iodide to detect necrosis-like membrane damage and with annexin

V-fluorescein isothiocyanate to detect apoptotic phosphatidylser-

ine exposure to the cell surface by flow cytometry. Figure S2A

shows the percentage of intact cells and the values represent the

mean 6 SEM of four different experiments. No significant

differences were detected in cells treated with zVAD compared to

cells treated without zVAD. Figure S2B shows one representative

flow cytometric measurement. We could not detect annexin V

positive cells at any dose of PVL tested. These results indicate that

rapid cell death induced by PVL lacks apoptotic features and is

most likely due to necrosis.

Found at: doi:10.1371/journal.ppat.1000715.s003 (2.01 MB TIF)

Figure S3 Murine neutrophils are largely resistant to PVL

irrespective of their maturation and inflammatory state. In Figure

S3A neutrophils from BALB/c mice were isolated from bone

marrow or were analysed by flow cytometry (gating) in whole

peripheral blood, as indicated. Cells were stimulated with lukS-PV

or with lukF-PV or with both components (PVL: 4 mg/ml) for

90 min. After stimulation cells were stained with annexin V and

propidium iodide and then the rate of cell death was measured by

flow cytometry. In Figure S3B neutrophils from BALB/c mice

(control mice, stess-induced mice or S. aureus-infected mice) were

isolated from bone marrow. For stress-induction mice were fixed

(immobilized) for 30 min/day on 4 consecutive days. It has been

shown that fixation leads to stress induction that can be measured

by increased levels of glucocorticoids in the serum [34]. For S.

aureus infection mice were infected with S. aureus SH1000 (26107

bacteria) into the footpad 7 days before cell isolation. For the

experiments, 16106 cells were stimulated with PVL (4 mg/ml) for

90 min. After stimulation cells were stained with annexin V and

propidium iodide and then the rate of cell death was measured by

flow cytometry.

Found at: doi:10.1371/journal.ppat.1000715.s004 (1.19 MB

TIF)

Figure S4 Low doses of PVL induce proinflammatory activation

of human neutrophils. Human neutrophils were freshly isolated

and 16106cells were stimulated with different doses of PVL (4 -

400 ng/ml) for 60 min. After stimulation RNA was isolated from

the cells and expression of selected genes was confirmed by real-

time reverse transcription-polymerase chain reaction (RT-PCR).

The primers used for PCR analysis were as follows: IL-1b forward,

59-GCGGCCAGGATATAACTGACTTC-39; IL-1b reverse, 59-

GCGGCCAGGATATAACTGACTTC-39-TCCACATTCAG-

CACAGGACTCTC-39-GCGGCCAGGATATAACTGACTTC-

39; IL-8 forward, 59-GCGGCCAGGATATAACTGACTTC-39-

CTTGTTCCACTGTGCCTTGGTT-39-GCGGCCAGGATA-

TAACTGACTTC-39; IL-8 reverse, 59-GCGGCCAGGATATA-

ACTGACTTC-39-GCTTCCACATGTCCTCACAACAT-39-G-

CGGCCAGGATATAACTGACTTC-39; GAPDH forward, 59-G-

CGGCCAGGATATAACTGACTTC-39-TGCACCACCAACTG

CTTAGC-39-GCGGCCAGGATATAACTGACTTC-39 ; GAPDH

reverse, 59-GCGGCCAGGATATAACTGACTTC-39-GGCAT-

GGACTGTGGTCATGAG-39-GCGGCCAGGATATAACTG-

ACTTC-39; RPL forward, 59-GCGGCCAGGATATAACTGA-

CTTC-39-AGGT ATGCTGCCCCACAAAAC-39-GCGGCCA-

GGATATAACTGACTTC-39; RPL reverse, 59-GCGGCCAG-

GATATAACTGACTTC-39-TGTAGGCTTCAGACGCACGAC-

39-GCGGCCAGGATATAACTGACTTC-39. The relative expres-

sion was calculated as 2DCtspecific gene / 2DCtmean (houskeeping gene),

using glyceraldehyde phosphate dehydrogenase (GAPDH) and

ribosomal protein L13a (RPL), as endogenous housekeeping

control genes (A and B). The culture supernatants of the

stimulated cells were collected after 6 h and 16 h and the protein

levels of IL-1b were determined by ELISA (Becton Dickinson)

according to the manufacturer’s instructions (C). The values

represent the means 6SD of three independent experiments.

Similar experiments were performed with murine neutrophils

from BALB/c mice, but here no induction of murine chemokine

KC expression could be detected (data not shown).

Found at: doi:10.1371/journal.ppat.1000715.s005 (0.64 MB

TIF)

Figure S5 Antibodies against PVL cannot prevent the cytotoxic

effect of the PVL-expressing strain USA300. Human neutrophils

were freshly isolated and 16106 0.5 ml21 cells were incubated

with purified PVL (80 ng/ml), with live bacteria (MOI 50) of the

PVL-expressing strain USA300 or of the wild-type isolate ST239,

which lacks the gene for PVL. In bacterial supernatants protein A

was removed to avoid unspecific binding of antibodies to protein

A. Antibodies against PVL (15 mg/ml) were added to the cells

before cells were incubated with PVL, live bacteria. Co-incubation

with antibodies completely prevented the effect of purified PVL,

whereas control antibodies (against extracellular matrix protein

Emp) had no effect. The effect of strain USA300 was not affected

by the addition of antibodies against PVL and was similar to the

action of wild-type strain ST 239. These results suggest that S.

aureus wild-type isolates express a multitude of virulence factors,

which promote cell death induction. However, as cell death of

neutrophils is part of the immediate immune response following

exposure to pathogens and/or phagocytosis of bacteria, the action

of secreted PVL from USA300 might be masked in this model. ***

P#0.001 comparing the rate of intact cells between control and

stimulated cells.

Found at: doi:10.1371/journal.ppat.1000715.s006 (0.08 MB TIF)

Figure S6 Bacterial supernatants from TM300+PSMs induce

neutrophil lysis. Human neutrophils were freshly isolated and

16106 0.5 ml21 cells were incubated with bacterial supernatants of

the strains TM300 and TM300+PSMs. Bacterial supernatants

were prepared from bacteria grown in brain-heart infusion broth

in a rotatory shaker for 40 h and supernatants were sterile filtered

and added to the cell culture medium at a final concentration of

30%. The values represent the mean 6 SEM of three independent

experiments. ** P#0.01 comparing the rate of intact cells between

control and stimulated cells. Supernatants from the parent strain

TM300 did not affect cell viability, whereas supernatants from

strain TM300+PSMs induced cell lysis. As live bacteria from

TM300+PSMs did not induce cell death (Figure 3A), these results

indicate that PSMs have to accumulate in the bacterial

supernatants to reach sufficient high concentrations to induce cell

lysis.

Found at: doi:10.1371/journal.ppat.1000715.s007 (0.07 MB TIF)

Figure S7 S. carnosus TM300, which heterologously expresses

covalently bound surface proteins, induce apoptotic cell death in

PVL Kills Human Neutrophils
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human neutrophils. Human neutrophils were freshly isolated and

16106 0.5 ml21 cells were incubated with live bacteria of S.

carnosus strains expressing protein A or FnBPs at an MOI of 200.

After 1 h of incubation cells were washed, stained with annexin V

and propidium iodide (taking another hour) and then cell death

was measured by flow cytometry. This figure shows one

representative flow cytometric measurement. Here, we could

detect a clear shift towards annexin V positive cells (positive for

annexin V and negative for PI: sign for early apoptosis) resulting in

15–20% apoptotic cells. By contrast, stimulation with PVL did not

cause apoptotic features (see Figure S2). These results indicate that

strains, which express virulent surface proteins, can induce forms

of programmed cell death.

Found at: doi:10.1371/journal.ppat.1000715.s008 (1.79 MB TIF)
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