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Abstract

Plus-stranded RNA viruses replicate in infected cells by assembling viral replicase complexes consisting of viral- and host-
coded proteins. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed
the involvement of seven ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. In this
paper, we show that the expression of dominant negative Vps23p, Vps24p, Snf7p, and Vps4p ESCRT factors inhibited virus
replication in the plant host, suggesting that tombusviruses co-opt selected ESCRT proteins for the assembly of the viral
replicase complex. We also show that TBSV p33 replication protein interacts with Vps23p ESCRT-I and Bro1p accessory
ESCRT factors. The interaction with p33 leads to the recruitment of Vps23p to the peroxisomes, the sites of TBSV replication.
The viral replicase showed reduced activity and the minus-stranded viral RNA in the replicase became more accessible to
ribonuclease when derived from vps23D or vps24D yeast, suggesting that the protection of the viral RNA is compromised
within the replicase complex assembled in the absence of ESCRT proteins. The recruitment of ESCRT proteins is needed for
the precise assembly of the replicase complex, which might help the virus evade recognition by the host defense
surveillance system and/or prevent viral RNA destruction by the gene silencing machinery.
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Introduction

Plus-stranded (+)RNA viruses replicate in the infected cells by

assembling viral replicase complexes consisting of viral- and host-

coded proteins in combination with the viral RNA template.

Although major progress has recently been made in understanding

the functions of the viral replication proteins, including the viral

RNA-dependent RNA polymerase (RdRp) and auxiliary replica-

tion proteins, the contribution of host proteins is poorly

documented [1,2,3,4]. Genome-wide screens to identify host

factors affecting (+)RNA virus infections, such as Brome mosaic virus

(BMV), Tomato bushy stunt virus (TBSV), West Nile virus and

Droshophila virus C, in yeast and animal model hosts led to the

identification of host proteins including ribosomal proteins,

translation factors, RNA-modifying enzymes, proteins of lipid

biosynthesis and others [2,3,5,6,7,8,9]. The functions of the

majority of the identified host proteins in (+)RNA virus replication

have not been fully revealed.

TBSV is a small (+)RNA virus that infects a wide range of host

plants. TBSV has recently emerged as a model virus to study virus

replication, recombination, and virus - host interactions due to the

development of yeast (Saccharomyces cerevisiae) as a model host

[10,11,12,13]. Systematic genome-wide screens covering 95% of

yeast genes have led to the identification of over 100 host genes

that affected either TBSV replication or recombination

[5,7,14,15]. Moreover, proteomics analysis of the highly purified

tombusvirus replicase complex revealed the presence of the two

viral replication proteins (i.e., p33 and p92pol) and 6–10 host

proteins in the replicase complex [16,17,18]. These host proteins

have been shown to bind to the viral RNA and the viral replication

proteins [1,17,19]. The auxiliary p33 replication protein has been

shown to recruit the TBSV (+)RNA to the site of replication,

which is the cytosolic surface of peroxisomal membranes

[20,21,22]. The RdRp protein p92pol binds to the essential p33

replication protein that is required for assembling the functional

replicase complex [12,22,23,24].

Genome-wide screens for host factors affecting TBSV replica-

tion in yeast [5,7] has led to the identification of seven ESCRT

proteins involved in multivesicular body (MVB)/endosome

pathway [25,26]. The identified host proteins included Vps23p

and Vps28p (ESCRT-I complex), Snf7p and Vps24p (ESCRT-III

complex); Doa4p ubiquitin isopeptidase, Did2p having Doa4p-

related function; and Vps4p AAA-type ATPase [5]. The

identification of ESCRT proteins supports the idea that tombus-

virus replication could depend on hijacking of ESCRT proteins,

thus promoting efforts to test their roles in TBSV replication in this

paper. Recruitment of ESCRT proteins for TBSV replication

might facilitate the assembly of the replicase complex, including

the formation of TBSV-induced spherules and vesicles in infected

cells [27]. Induction of membranous spherule-like replication

structures in infected cells might be common for many plus-

stranded RNA viruses [28].

The endosome pathway is a major protein-sorting pathway in

eukaryotic cells, which down- regulates plasma membrane

proteins via endocytosis; and sorts newly synthesized membrane

proteins from trans-Golgi vesicles to the endosome, lysosome or
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the plasma membrane [29,30,31]. The ESCRT proteins in

particular have a major role in sorting of cargo proteins from

the endosomal limiting membrane to the lumen via membrane

invagination and vesicle formation. Defects in the MVB pathway

can cause serious diseases, including cancer, defect in growth

control and early embryonic lethality [29,30,31,32]. In addition,

various viruses, such as enveloped retroviruses (HIV), (+) and

(2)RNA viruses (such as filo-, arena-, rhabdo and paramyxovi-

ruses) usurp the MVB pathway by redirecting ESCRT proteins to

the plasma membrane, leading to budding and fission of the viral

particles from infected cells [25,26].

The first step in the endosome pathway is the monoubiquitina-

tion of cargo proteins, which serves as a signal for proteins to be

sorted into membrane microdomains of late endosomes

[30,31,32]. The ubiquitinated cargo protein is bound by Vps27p

(Hrs protein in mammals), which in turn recruits Vps23-

containing ESCRT-I complex. Then, the ESCRT-I-complex

recruits ESCRT-II complex, which in turn recruits the large

ESCRT-III complex. The proposed role of the ESCRT-III

complex is grouping the cargo proteins together in the limiting

membranes of late endosomes and deforming the membranes that

leads to membrane invagination into the lumen [33,34]. Then,

Vps4p recycles the ESCRT proteins, whereas Doa4p recycles the

ubiquitin, leading to budding of multiple small vesicles into the

lumen of endosome and to MVB formation. Fusion of the limiting

membrane of MVB with the lysosome/vacuole will release the

lipid/protein content of MVB into the lysosome, or alternatively,

by fusing to the plasma membrane (exocytosis), it releases its

content outside the cell [30,31,32].

In this paper, we show that ESCRT proteins previously

identified in a genome-wide screen in yeast for affecting TBSV

replication are involved in tombusvirus replication in plants. We

demonstrate that Vps23p, which is a key ESCRT-I adaptor

protein recognizing ubiquitinated cargo proteins, and Bro1p

accessory ESCRT protein bind to the TBSV p33 replication

protein, which could be critical for p33 replication protein to

recruit Vps23p and Bro1p, allowing TBSV to usurp additional

ESCRT proteins for replication. We also show that functional

ESCRT proteins are needed for optimal replicase activity and

protection of the viral RNA template within the tombusvirus

replicase from a ribonuclease in vitro. These data are consistent

with the model that TBSV co-opts ESCRT proteins for its

replication.

Results

Inhibition of tombusvirus replication in N. benthamiana
by expression of dominant negative mutants of ESCRT
factors

To test the roles of ESCRT proteins in tombusvirus replication

in a plant host, we have expressed dominant negative mutants of

selected ESCRT factors in N. benthamiana. This approach has been

facilitated by the availability of dominant negative mutants of

ESCRT genes in mammals and yeast [25,35]. Expression of

dominant negative mutants might inhibit the function of the

endogenous ESCRT proteins in N. benthamiana, albeit the number

of VPS23 and other ESCRT genes are not known in N. benthamiana,

whose genome is not yet sequenced completely.

To this end, we cloned ten ESCRT genes, including AtVPS4,

AtVPS24, AtVPS36, AtBRO1, and two genes for AtVPS23, AtVPS28,

and AtSNF7 from Arabidopsis thaliana, a model plant with known

sequence, which is not infected by TBSV or the closely related

Cucumber necrosis virus (CNV). First, we have made dominant

negative mutants of two AtVPS23 via deletion of the N-terminal

UEV (ubiquitin E2 variant) domain. We have found that co-

expression of CNV genomic (g)RNA with either AtVPS23-1dn or

AtVPS23-2dn in N. benthamiana leaves from the constitutive 35S

promoter via agroinfiltration led to inhibition of CNV gRNA

replication in the infiltrated leaves (down to 25–30%, Fig. 1A,

lanes 5–8). Expression of the wt AtVPS23-1 in N. benthamiana did

not inhibit CNV RNA accumulation when compared with the

samples based on agroinfiltration with the empty vector (Fig. 1A,

lanes 3-4 versus 1-2). Altogether, inhibition of CNV gRNA

replication by the dominant negative Vps23p mutants supports the

idea that Vps23p play a significant role in tombusvirus replication

in a plant host.

To test the effect of additional dominant negative mutants in the

ESCRT pathway, we generated a dominant negative mutant of

AtVPS4 by changing the highly conserved K178 to A, which has

been shown to inhibit the ATPase activity required for disassembly

and release of the ESCRT proteins from the endosomal

membranes, resulting in strong inhibition of ESCRT functions

[25,35]. We have found that co-expression of CNV with

AtVPS4(K178A) in N. benthamiana leaves led to dramatic inhibition

of CNV gRNA replication in the infiltrated leaves (down to 4%,

Fig. 1B, lanes 5–6), whereas expression of the wt AtVPS4 in N.

benthamiana inhibited CNV RNA accumulation only by 21%

(Fig. 1B, lanes 3–4). In addition, expression of one AtVPS24 gene

and two AtSNF7 genes with C-terminal deletions, which are known

to interfere with proper ESCRT-III functions [36], inhibited CNV

gRNA accumulation by 89–95% in the infiltrated leaves (Fig. 1B).

Expression of AtBRO1 mutant inhibited CNV replication to a

lesser extent in N. benthamiana (by ,60% Fig. 1C, lanes 11–14),

whereas AtVPS28 and AtVPS36 mutants did not significantly affect

CNV replication (Fig. 1C, lanes 1–10). Altogether, these data

support the model that several ESCRT components are involved

in tombusvirus replication in plants.

Since the ESCRT proteins are involved in membrane bending/

invagination [33,34], it is possible that they are used by

tombusviruses during the assembly of the membrane-bound

replicase complexes [1]. Accordingly, we observed the formation

Author Summary

Plus-stranded RNA viruses, which are important pathogens
of humans, animals and plants, replicate in infected cells
by assembling viral replicase complexes consisting of viral-
and host-coded proteins. In this paper, we show that a
group of host factors called ESCRT proteins (endosomal
sorting complexes required for transport) play important
roles in tombusvirus replication. The expression of
dominant negative mutants of ESCRT factors inhibited
virus replication in the plant host, suggesting that
tombusviruses co-opt selected ESCRT proteins for the
assembly of the viral replicase complex. In addition, we
show direct interaction between the viral p33 replication
protein and Vps23p ESCRT-I and Bro1p accessory ESCRT
factors. The interaction with p33 leads to the recruitment
of Vps23p to the peroxisomes, the sites of tombusvirus
replication. We also showed that the viral RNA within the
viral replicase complex became more sensitive to ribonu-
clease in the absence of ESCRT factors, suggesting that the
protection of the viral RNA is compromised within the
replicase complex assembled in the absence of ESCRT
proteins. Intriguingly, the host ESCRT factors also affect the
budding of several enveloped viruses, intracellular trans-
port of proteins and cytokinesis. Overall, this work
demonstrates that a plus-stranded RNA virus uses the
endosomal sorting pathway in a unique way.

ESCRT Proteins Affect RNA Virus Replication
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of the characteristic spherule-like structures (which likely serve as

the sites of tombusvirus replication) in reduced number in plants

actively replicating TBSV repRNA and expressing the dominant

negative mutants AtVPS4(K178A) and AtSNF7-1, respectively, in N.

benthamiana leaves when compared with the control samples (Fig.

S1 and Protocol S1).

To exclude the possibility that the above inhibitory effect of the

ESCRT protein mutants on tombusvirus replication is due to

unwanted cytotoxic effect of the expressed ESCRT proteins, we

tested the replication of a distantly related RNA virus, Tobacco rattle

virus (TRV), in similarly treated N. benthamiana leaves. These

experiments revealed the lack of inhibition of TRV RNA

accumulation in leaves expressing the dominant negative ESCRT

proteins (Fig. 1A-B, lower panels), suggesting that the inhibitory

effects of these mutant proteins are specific to CNV RNA

replication.

Inhibition of in vitro tombusvirus replicase activity
derived from plants expressing dominant negative
mutants of ESCRT factors

To test if the above dominant negative ESCRT mutants affect

the activity of the tombusvirus replicase, we isolated the

membrane-bound tombusvirus replicase from N. benthamiana

expressing selected mutated ESCRT proteins. The tombusvirus

replication proteins as well as the plus-stranded (+) DI-72 replicon

(rep)RNA were expressed from separate expression plasmids in the

above plants. The activity of the isolated tombusvirus replicase was

tested in vitro on the co-purified repRNA (Fig. 2). These

experiments revealed that the expression of dominant negative

mutants of AtVPS4, AtVPS24, and AtSNF7-1 factors in plants

inhibited the activity of the isolated replicase by ,70–75% (Fig. 2,

lanes 3–8), whereas AtVPS23-1dn had ,40% inhibitory effect

(lanes 9–10). Expression of the full-length AtVPS24 and AtVPS4 did

not show as much inhibitory effect on the activity of the isolated

replicase as the AtVPS24 and AtVPS4(K178A) dominant negative

mutants (Fig. S2). Western blot analysis revealed that expression of

dominant negative mutants of AtVPS4, AtVPS24, and AtSNF7-1

factors did not affect TBSV p33 level, while inhibited the

accumulation of p92pol replication protein (Fig. 2, bottom panel),

which could be partially responsible for the reduced activity of the

TBSV replicase.

The lesser inhibitory effect of the ESCRT dominant negative

mutants on the tombusvirus replicase activity (Fig. 2) than on viral

RNA accumulation (Fig. 1) is likely due to the uncoupled

expression of the p33 and p92pol viral replication proteins and

the viral replicon RNA from separate plasmids in plants used for

the replicase assay, while expression of the p33/p92pol is coupled

to viral RNA level in the viral RNA accumulation assay.

Figure 1. Inhibition of tombusvirus RNA accumulation in plants by expression of dominant negative ESCRT mutants. (A) Expression
of N-terminal deletion mutants of the two homologous AtVps23p proteins (lanes 5–8) was done in N. benthamiana leaves, which were co-infiltrated
with Agrobacterium carrying a plasmid to launch CNV replication from the 35S promoter. The control samples were obtained from leaves expressing
no proteins (35S, lanes 1-2) or the full-length AtVps23p (lanes 3–4). Total RNA was extracted from leaves 2.5 days after agroinfiltration. The
accumulation of CNV gRNA and subgenomic (sg)RNAs in N. benthamiana leaves was measured by Northern blotting (Top panel). The ribosomal RNA
(rRNA) was used as a loading control and shown in agarose gel stained with ethidium-bromide (Second panel). The bottom two panels show the lack
of inhibition of TRV RNA1 accumulation by the expression of the above proteins. TRV infection was launched by agroinfiltration as described above
for CNV. (B) Blocking tombusvirus RNA replication in plants by expression of the dominant negative mutant of AtVps4p [named AtVps4p(K178A)]
(lanes 5–6), and C-terminal deletion mutants of two homologous AtSnf7p and one AtVps24p ESCRT-III proteins. See further details in panel A. (C) The
expression of the C-terminal deletion mutants of two homologous AtVps28p and the N-terminal deletion mutants of AtVps36p and AtBro1p ESCRT
proteins in plants was done from the constitutive 35S promoter. See further details in panel A.
doi:10.1371/journal.ppat.1000705.g001
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Deletion of VPS23 and other ESCRT factors in yeast
reduces the activity of the tombusvirus replicase in vitro

To further test the possible roles of ESCRT proteins in the

assembly of the tombusvirus replicase complex, we used yeast

model host, since yeast strains with deletion of ESCRT genes are

available. To find out if the activity of the tombusvirus replicase is

inhibited in vps23D yeast, we isolated the pre-assembled tombus-

virus replicase from yeast cells expressing the wt p33 and p92pol

replication proteins and a TBSV repRNA, followed by testing for

the replicase activity in vitro. Under the assay conditions, the pre-

assembled tombusvirus replicase in the membrane-enriched

fraction uses the co-purified repRNA as template for RNA

synthesis, which is measured by denaturing PAGE analysis. We

found that the pre-assembled tombusvirus replicase from vps23D
yeast supported TBSV RNA synthesis at ,40% of the level

obtained with similar amount of replicase from the wt yeast

(Fig. 3A, lanes 3–4 versus 1–2). These results have demonstrated

that the tombusviral replicase was less active when formed in

vps23D yeast, suggesting that Vps23p could be involved in the

assembly of the viral replicase.

In the second assay, we expressed wt p33 and p92pol replication

proteins in yeast lacking vps4, snf7 or vps24, followed by isolation of

the membrane fraction carrying these viral proteins. Although the

viral replication proteins associate with the membranes, they

cannot form active replicase in the absence of the viral template

[12,24,37]. Then, we added the DI-72 (+)RNA to the isolated

membrane fraction to assemble the functional tombusvirus

replicase in vitro [23], followed by replicase activity assay. In this

assay, the tombusvirus replicase supports complete cycle of viral

RNA synthesis in vitro [23]. These experiments revealed that the

yeast extract prepared from vps4D, snf7D or vps24D yeast

supported TBSV replication only at ,20% level when compared

to the wt yeast (Fig. 3B). Overall, these data demonstrated that the

effect of ESCRT proteins on the tombusvirus replicase is similar in

yeast and plant extracts, supporting an important role for ESCRT

proteins in tombusvirus replication.

Increased ribonuclease sensitivity of the tombusvirus
replicase from vps23D or vps24D yeast

Replication of the TBSV RNA, including (2)- and (+)-strand

synthesis, takes place in a membrane-bound replicase complex

that provides protection against ribonucleases [23]. Since our

model proposes a role of Vps23p/ESCRT proteins in facilitating

the precise assembly of the tombusvirus replicase, we predicted

that the tombusvirus replicase might become more sensitive to a

ribonuclease if assembled in the absence of an ESCRT factor. To

test this model, we isolated the membrane-bound replicase from

vps23D or vps24D yeast strains expressing wt p33/p92pol/repRNA,

which was followed by RNase A nuclease treatment that should

destroy the unprotected viral RNA. Then, we used strand-specific

Northern blot analysis to estimate the amount of protected

(2)repRNA, which is associated with the replicase [22,23] in the

samples. These experiments revealed that only ,20% of the

(2)repRNA survived the treatment when the membrane was

derived from vps23D yeast in contrast with 46% in the wt control

samples (Fig. 3C). In addition, we have tested the repRNA in the

Figure 2. The isolated tombusvirus replicase preparations from N. benthamiana plants expressing dominant negative ESCRT factors
show low activity in vitro. Top panel: Denaturing PAGE of in vitro replicase activity in the membrane-enriched fraction from co-infiltrated leaves
expressing p33, p92pol, DI-72 repRNA, p19 (suppressor of gene silencing) and the shown dominant negative ESCRT factors using the co-purified
repRNA template. The lack of replicase activity in the absence of p33 (lane 11) or p92pol (lane 12) demonstrates that the in vitro replication is
tombusvirus specific. Bottom panel: Western blot analysis of p33 and p92pol levels in the above membrane-enriched fractions was performed with
anti-p33 antibody.
doi:10.1371/journal.ppat.1000705.g002
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membrane-fraction from vps24D yeast for ribonuclease sensitivity,

since Vps24p is an important ESCRT-III factor affecting TBSV

replication [5]. The protected (2)repRNA was only 8% in these

samples (Fig. 3C). The simplest interpretation of the enhanced

sensitivity of the (2)repRNA within the viral replicase assembled

in the absence of Vps23p or Vps24p is that the viral replicase

complex (possibly the whole spherule) assembles less precisely in

the absence of recruitment of ESCRT proteins, thus making the

viral RNA within the membrane-bound replicase-complex more

accessible to a ribonuclease.

Increased sensitivity of the minus-strands within the
tombusvirus replicase to cleavage in plants expressing
dominant negative mutants of ESCRT factors

To confirm the increased sensitivity of the tombusvirus replicase

complex to ribonucleases when ESCRT factors are inhibited in N.

benthamiana, we have developed a novel approach for targeted

degradation of minus-stranded RNA replication intermediate via

RNA interference (RNAi). We chose the (2)repRNA as a target,

since it has been shown to be always part of the membrane-bound

replicase complex and it is protected from ribonucleases [22,23].

We introduced two microRNA171 (miR171) sequences to the

repRNA in such a way that the miR171 sequences were active

targets to the RNAi machinery only when present in the

(2)repRNA (Fig. 4).

The repRNA carrying the miR target sequences (called DI-miR,

Fig. 4A) accumulated to ,60% level of the wt repRNA (DI-72) lacking

the miR171 target sequence (Fig. 4B, lanes 1-2 versus 3–4) in the

control plants. On the other hand, DI-miR RNA accumulated only to

10% and 21% in plants expressing the dominant negative ESCRT-III

factors, AtVPS24, and AtSNF7-1, respectively (Fig. 4B, lanes 5–12).

Expression of AtVPS4(K178A) decreased DI-miR accumulation

moderately when compared with the control plants (48% for DI-

miR RNA versus 59% for DI-72 RNA, Fig. 4B).

The greatly reduced accumulation of DI-miR repRNA in

comparison with DI-72 repRNA can be explained with increased

sensitivity of (2)DI-miR RNA to the RNAi machinery when

dominant negative ESCRT-III factors are expressed. This, in turn,

supports the model that the tombusvirus replicase complexes are

assembled less precisely in these plants, making them more

accessible to targeted ribonucleases. Overall, these data support

the role of ESCRT-III proteins in the precision/quality of viral

replicase assembly.

Binding of the p33 replication protein to Vps23p and
Bro1p ESCRT proteins

Since the above experiments demonstrated that ESCRT proteins

affect the activity of the tombusvirus replicase, we wanted to test if

interaction between p33 replication co-factor and the ESCRT

proteins occurs that could facilitate the recruitment of ESCRT

factors for tombusvirus replication. We performed the split-

ubiquitin assay, a variant of the yeast two-hybrid approach [38],

which can detect protein-protein interaction on the surface of

cellular membranes, where p33 is normally localized [22,27] with

selected yeast ESCRT proteins. We found that Vps23p ESCRT-I

and Bro1p accessory ESCRT factors interacted with p33 in the split

ubiquitin assay (Fig. 5A–B), whereas the other ESCRT proteins did

not (not shown). Additionally, we found that the N-terminal UEV

domain of the yeast Vps23p was sufficient for interaction with p33

(Fig. 5C). Also, the UEV domains from two Arabidopsis and two

Nicotiana homologues of Vps23p interacted with the p33 replication

co-factor (Fig. 5C). The interaction between p33 and either Vps23p

or Bro1p was much weaker than the interaction between p33 and

Ssa1p, the yeast heat shock protein 70, which is a resident protein in

the tombusvirus replicase (Fig. 5A–B) [17,37,39]. The weak

interaction with p33 suggests that Vps23p and Bro1p might only

interact with p33 in a temporary fashion or only a small portion of

p33 is involved in these interactions.

To further demonstrate that the interaction between p33 and

Vps23p as well as Bro1p can take place in yeast cells, we co-

expressed p33 replication protein tagged with FLAG and 6xHis

(termed p33HF) with either the UEV domain of Vps23p or Bro1p.

In this experiment, the HA-tagged UEV domain of Vps23p and

Bro1p were expressed from the original chromosomal locations and

Figure 3. Reduced activity of the tombusvirus replicase assembled in yeast with deletion of selected ESCRT genes. (A) Denaturing
PAGE analysis of in vitro replicase activity in the membrane-enriched fraction from wt and vps23D yeast using the co-purified repRNA. Note that this
image shows the repRNAs made by the replicase in vitro. Asterisk marks a recombinant RNA species formed. Bottom panel shows a Western blot of
p33 in the replicase preparations as seen in the top panel. (B) Decreased replication of TBSV repRNA in yeast extracts prepared from wt, vps4D, snf7D
or vps24D yeast strains expressing p33 and p92pol. The yeast extracts were programmed with DI-72(+)repRNA and the radiolabeled in vitro repRNA
products were detected via denaturing PAGE analysis. (C) Increased RNase sensitivity of TBSV minus-strand (2)repRNA during replication in a
membrane-enriched replicase preparation obtained from WT, vps23D or vps24D yeast. At the end of the assays, the replicase preparations were
treated with RNase A for 5 min, followed by inactivation with phenol-chloroform. The (2)repRNA protected in the replicase complex from the
ribonuclease was detected using a 32P-UTP labeled probe. The untreated preparation was chosen as 100%. Note that the (2)repRNA is protected
from RNase degradation by the membrane-associated viral replicase complex.
doi:10.1371/journal.ppat.1000705.g003
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the native promoters. Purification of p33HF on a FLAG-column,

followed by Western analysis revealed that UEV-HA (Fig. 6A, lane

2) and Bro1-HA (Fig. 6B, lane 2) were co-purified with p33HF.

Similar purification experiments on the FLAG-affinity column with

p33H tagged with 6xHis only resulted in only minor amounts of

nonspecifically-bound UEV-HA or Bro1-HA (Fig. 6A–B, lane 1),

demonstrating that specific interaction between p33 and the UEV

domain as well as Bro1p occurs in yeast.

Redistribution of Vps23p in the presence of the p33
replication protein to the peroxisomes

To test the subcellular compartment where p33 - Vps23p

interaction takes place, we co-expressed the 6xHis-tagged p33 with

Vps23p tagged with green-fluorescent protein (GFP) from its native

promoter and chromosomal location in combination with Pex13p

tagged with red fluorescent protein (RFP), a marker for the

peroxisomal membrane [40]. Laser confocal microscopy analysis

revealed that Vps23p-GFP was present in the cytosol in the absence

of p33 (Fig. 7B). However, 15 min after the induction of p33 from

the CUP1 promoter, we observed the partial re-distribution of

Vps23p-GFP to the peroxisomal membrane (Fig. 7A). The co-

localization of Vps23p-GFP and Pex13p-RFP in cells expressing

p33 is in agreement with the model that p33 is involved in re-

targeting, at least temporarily, Vps23p to the peroxisomes, the sites

of TBSV replication, at the beginning of replication.

Discussion

Host factors likely play key roles during the assembly of viral

replicases in infected cells [1,2]. In this work, we have shown that a

set of ESCRT proteins is critical for optimal tombusvirus

replication and the assembly of the membrane-bound tombusvirus

replicase complex. We found that over-expression of dominant

negative mutants of ESCRT-III and Vps4p in plants reduced the

accumulation of tombusvirus RNA by 10–20-fold (Fig. 1),

inhibited the tombusvirus replicase in vitro (Fig. 2) and reduced

the number of spherules formed in infected cells (Fig. S1). This

inhibition seems to be specific for tombusviruses, since the

distantly related TRV RNA accumulation was not inhibited in

these plants. The inhibitory effect on tombusvirus replication by

the over-expressed dominant negative ESCRT mutants seems to

be direct, since the activity of the tombusvirus replicase was also

reduced when isolated from these plants (Fig. 2). Similarly, the

activity of the tombusvirus replicase assembled in vitro was

inhibited when we used the cellular membrane fraction from

yeast lacking ESCRT-III or Vps4p proteins (Fig. 3B). In addition,

the replicase from vps24D yeast was more sensitive to RNase

treatment than the replicase preparation obtained from wt yeast,

suggesting that Vps24p ESCRT-III protein is important to

assemble RNase-insensitive replicase complexes. Moreover, DI-

miR repRNA carrying the miR171 target sequence in the (-)strand

RNA replicated poorly in N. benthamiana leaves expressing

Figure 4. Increased sensitivity of repRNA replication to targeted degradation by RNAi in plants expressing dominant negative
ESCRT-III mutants. (A) A schematic representation of constructs used as repRNAs. Two copies of the 21 nt long miR171 target sequence were
inserted into DI-72 repRNA to generate DI-miR repRNA as shown. Note that both copies of the miR171 target sequence were present in the (2)strand
RNA generated during repRNA replication only in plants agroinfiltrated with constructs expressing p33/p92/dominant negative ESCRT proteins and
DI-72 or DI-miR repRNAs. (B) Northern blot analysis shows reduced accumulation of DI-miR repRNA in N. benthamiana plants expressing dominant
negative ESCRT-III or Vps4p mutants. DI-72 repRNA is depicted with a black arrowhead, while DI-miR repRNA is marked with an open arrowhead. The
percentage of DI-miR repRNA accumulation was calculated based on DI-72 repRNA levels (taken as 100% for each set). Note that the low level DI-miR
repRNA accumulation suggests that the RNAi machinery destroyed most of the (2)repRNA present in the replicase complex. recRNA represents
recombinant repRNAs, while degRNA is derived from partially degraded repRNA. Note that degRNA can replicate in plants, so it does not represent
the original cleaved repRNA.
doi:10.1371/journal.ppat.1000705.g004
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dominant negative ESCRT-III mutants (Fig. 4B). These data

suggest that the (-)strand repRNA in the replication intermediate

within the viral replicase complex became more accessible to

ribonuclease cleavage when the replicase was assembled in the

presence of dominant negative ESCRT-III mutants. Altogether,

the presented data support a role for ESCRT-III and Vps4p

proteins in the formation of active tombusvirus replicase in plants

and in yeast as well. Intriguingly, the role of ESCRT proteins

seems to control the quality of the replicase complex assembly,

making the viral RNAs within replicase complex more protected

from ribonucleases. Based on these observations, we propose that

ESCRT proteins help tombusviruses hide from host defense

recognition and/or avoid the attack by the host defense during

viral replication.

We also show that the recruitment of the ESCRT factors for

virus replication is likely driven by interaction between the

auxiliary p33 replication cofactor and Vps23p ESCRT-I protein

and Bro1p accessory ESCRT protein. These interactions seem to

be important for tombusvirus replication in yeast (Fig. S3) as well

as in plant cells (Fig. 1). The interaction between p33 and Vps23p

Figure 5. Interaction between p33 replication protein and Vps23p ESCRT-I and Bro1p accessory ESCRT proteins. The split ubiquitin
assay was used to test binding between p33 and (A) Vps23p; (B) Bro1p, or (C) the N-terminal UEV domain of the yeast Sc-Vps23p or two Arabidopsis
and two Nicotiana homologs in wt (NMY51) or vps4D yeast. The bait p33 was co-expressed with the shown prey proteins. SSA1 (HSP70 chaperone),
and the empty prey vector (NubG) were used as positive and negative controls, respectively.
doi:10.1371/journal.ppat.1000705.g005

Figure 6. Co-purification of the p33 replication protein with the UEV domain of Vps23p ESCRT-I or Bro1p accessory ESCRT proteins.
Top panels: Western blot analysis of co-purified p33 and either (A) the UEV domain or (B) Bro1p protein. The FLAG/6xHis-tagged p33HF was purified
from yeast extracts using a FLAG-affinity column. UEV and Bro1p, both tagged with 6xHA, were detected with anti-HA antibody. Middle panels:
Western blot of purified p33HF detected with anti-FLAG antibody. Bottom panels: Western blot of HA-tagged UEV and Bro1p in the total yeast extract
using anti-HA antibody.
doi:10.1371/journal.ppat.1000705.g006
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depends on the N-terminal UEV domain in Vps23p and p33,

which is monoubiquitinated [18]. The ubiquitination of p33 may

play a role in interaction with Vps23p since it has been shown that

Vps23p binds to monoubiquitinated proteins [30,41]. By binding

directly to Vps23p or Bro1p, p33 might be able to recruit

additional ESCRT factors for tombusvirus replication as discussed

below.

Interestingly, Human immunodeficiency virus (HIV) and other

enveloped retroviruses co-opt ESCRT components through direct

interaction with Tsg101, the human homologue of Vps23p, and with

Alix, a homologue of Bro1p [41,42]. Tsg101 and Alix play redundant

roles in this process [25]. HIV gag protein also interacts with Nedd4

E3 ubiquitin ligase protein that could complement Tsg101 or Alix

during HIV budding [42]. We have shown previously that p33 can

bind to Rsp5p, the yeast homologue of Nedd4 [18,43]. This indicates

that different viruses seem to exploit the ESCRT proteins through co-

opting Vps23p (Tsg101), Bro1p (Alix) and/or Rsp5p (Nedd4) via

direct protein-protein interactions. In addition, the ESCRT machin-

ery is also recruited for cell division to separate the daughter cells from

the mother cells through the process of cytokinesis. It has ben shown

that the midbody resident protein Cep55 interacts with Tsg101 and

Alix to recruit additional ESCRT proteins [41]. Interestingly, these

cellular processes, such as MVB biogenesis, cytokinesis and HIV

virion budding as well as the spherule formation during the assembly

of the tombusvirus replicase, are based on topologically similar

membrane invaginations (membrane deformation occurring away

from the cytosol). Co-opting ESCRT proteins for these processes

could be critical, since Snf7p and other ESCRT-III proteins have

been shown to be involved in membrane deformation in vivo and in

vitro as well [33,34]. Thus, the interaction of HIV gag protein, Cep55

midbody protein and the tombusvirus p33 replication protein with

members of the endosomal pathway shows close parallel and

mechanistic similarities, albeit the ESCRT proteins would be used

for different processes, such as either virus budding, cytokenesis or

viral RNA replication.

Another novel feature is that Vps23p, in the presence of p33

replication co-factor, is shown to re-localize temporarily to the

peroxisomal membrane, which represents the place of tombusvirus

replicase assembly [20,22,27] (Fig. 7). After brief recruitment,

Vps23p seems to be released from the replicase, because we did

not find Vps23p in the highly-purified functional replicase

complex [17] and it was not co-localized with a peroxisomal

marker at latter time points after induction of p33 expression (not

shown). The relatively weak interaction between Vps23p and p33

as well as the low percentage of ubiquitinated p33 [18] could be

useful during virus replication to optimize the number of Vps23p

recruited into each replicase complex. Indeed, based on replicases

of other plus-strand RNA viruses [28], it is predicted that 100-to-

200 p33 molecules are likely needed for the formation of a single

replicase complex, whereas only a few Vps23p molecules should

be recruited temporarily for each replicase complex. In addition, it

is likely that Vsp23p and Bro1p and possibly Rsp5p could play

complementary roles in recruiting additional ESCRT factors as

shown in case of HIV gag for virion budding [33,34]. Weak

interactions between Vps23p - p33 and Bro1p - p33 could help

recycling these host proteins that should not be present in the fully

assembled replicase complex [17]. On the contrary, host factors

that are permanent residents in the replicase, such as heat shock

protein 70 (the yeast Ssa1p protein) [17], bind more efficiently to

p33 as shown in Fig. 5.

We propose that p33 - Vps23p interaction is important for the

optimal assembly of the tombusvirus replicase, because the

membrane-bound tombusvirus replicase preparation obtained

from vps23D yeast supported low TBSV repRNA replication

(Fig. 3A). Further support on the role of p33 - Vps23p interaction

in replicase assembly comes from data obtained using a

membrane-enriched fraction containing the viral replicase pre-

pared from vps23D yeast (Fig. 3C). The protection of the

Figure 7. Partial re-distribution of Vps23p to the yeast
peroxisomal membranes in the presence of p33. (A) Confocal
laser microscopy images show the subcellular localization of Vps23p-
GFP in the presence of p33 expressed from CUP1 promoter for 15–45
minutes in yeast strain DKY79 (VPS23:GFP, vps4D; vps27D). The
peroxisomes were visualized with Pex13p-RFP marker. The merged
images show the co-localization of Vps23p-GFP and Pex13p-RFP
marker. DIC (differential interference contrast) images are shown on
the right. Each row represents a separate yeast cell. (B) Cytosolic
localization of Vps23p-GFP in the absence of p33. Yeast was grown
under similar conditions and images were taken as in panel A.
doi:10.1371/journal.ppat.1000705.g007
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(-)repRNA associated with the replicase complex is likely due to

the repRNA becoming inaccessible as part of the assembled

replicase complex [23]. We found that the viral (2)repRNA within

the replicase complex obtained from vps23D yeast was more

sensitive to RNase treatment than the replicase preparation

obtained from wt yeast. Thus, similar to vps24D yeast discussed

above, the viral replicase, which is located inside the spherules,

assembles less precisely in vps23D than in wt yeast. Overall, these

data are compatible with the model that p33 - Vps23p interaction

could be important during the replicase assembly process and/or

affect the structure of the replicase complexes, which could

determine the accessibility of the repRNA to RNases during

replication. However, the effect of VPS23 deletion (Fig. 3) or over-

expression of a dominant negative mutant of Vps23 homologue in

N. benthamiana plants (Fig. 1) was not as detrimental to virus

replication as deletion of ESCRT-III or VPS4 in yeast or over-

expression of dominant negative mutants of ESCRT-III or Vps4p

homologues in plants. This could be due to the redundant roles

likely played by Vps23p, Bro1p and possibly Rsp5p in recruitment

of ESCRT-III/Vps4p factors, based on the similar redundancy

documented for subversion of ESCRT-III/Vps4p by HIV gag’s

interaction with Tsg101/Alix/Nedd4 [42]. Also, we do not know

if the dominant negative mutants were able to block completely

the function of every VPS23 gene, since the number of VPS23

genes is yet not known in N. benthamiana.

It is likely that the most important aspect of recruitment of

Vps23p and Bro1p for tombusvirus replication is the possibility to

co-opt additional ESCRT proteins, including the ESCRT-III

factors and Vps4p. Accordingly, the in vitro activity of the

tombusvirus replicase is 3-5-fold lower when obtained from plants

expressing dominant negative ESCRT-III/Vps4p (Fig. 2) or from

vps24D, snf7D, or vps4D yeast strains (Fig. 3B). Since the ESCRT-

III factors are involved in grouping the cargo proteins together in

the membrane and they have been shown to deform the

membrane [33,34], we propose that these proteins could be useful

to affect the formation/structures of the spherules for virus RNA

replication. Indeed, TBSV replication induces the formation of

spherules (Fig. S1) [27], which are topologically related to

multivesicular bodies (MVB), since both require membrane

invagination into the lumen, away from the cytosol. This is

opposite to the regular intracellular vesicle formation, which buds

into the cytosol. Collectively, usurping a partial set of ESCRT

factors by tombusvirus replication proteins might facilitate the

optimal formation of active viral replicase complexes within the

membranous spherules. Moreover, recruitment of Vps4p AAA

ATPase [25,35], could help re-cycling of the ESCRT factors from

the replicase after the assembly. Thus, it is possible that the

expression of dominant negative mutants of Vps24p and Snf7p

ESCRT-III or Vps4p factors inhibit tombusvirus replication in

plants by interfering with the proper assembly of the replicase

complex. Accordingly, the (2)repRNA located within the viral

replicase complex became more accessible to targeted ribonucle-

ase cleavage when the replicase was assembled in the presence of

dominant negative ESCRT-III mutants in plant leaves (Fig. 4B).

Based on the data presented here, we propose that the ESCRT

machinery is recruited for tombusvirus replication in a unique

way. The first step in recruitment of Vps23p is the ubiquitination

of small percentage of p33 (Ub-p33) (Fig. 8, step 1) [18]. Then, the

ubiquitinated p33 (Ub-p33) binds to the adaptor protein Vps23p

(step 2) or to Bro1p accessory ESCRT protein, followed by the

recruitment of ESCRT-III proteins, Snf7p and Vps24p. The

ESCRT-III proteins could then help the optimal assembly of the

replicase complex, facilitate the grouping of p33 molecules

together in the membrane and/or promote the formation of viral

spherules by deforming the membrane (membrane invagination)

(step 3). Then, Doa4p deubiquitination enzyme is predicted to

remove ubiquitin from Ub-p33, whereas Vps4p AAA ATPase

could recycle the ESCRT proteins (step 4). Altogether, we suggest

that these events could promote the optimal and precise assembly

of the TBSV replicase complex, resulting in TBSV RNA

replication, including (2) and (+)RNA syntheses, in a protected

microenvironment and then the regulated release of the progeny

(+)RNAs into the cytosol. Importantly, the precisely assembled

replicase complex provides protection from recognition by the host

defense surveillance system and/or viral RNA destruction by the

gene silencing/RNAi machinery. Similar events might also take

place in case of other (+)RNA viruses, which are also known to

deform membranes and/or form spherules during replication.

Materials and Methods

Co-expression of CNV RNA and dominant negative
mutants of selected Arabidopsis ESCRT proteins in N.
benthamiana

A. thaliana VPS4 (At2g27600) [44] was amplified by PCR using

primers #2746 and #2749 (Table S1) and A. thaliana total DNA as

Figure 8. A model for the role ESCRT proteins in tombusvirus
replication. Recruitment of Vps23p and/or Bro1p to the peroxisomal
membrane by a small fraction of p33 is suggested to lead to the
recruitment of additional ESCRT factors. Then, ESCRT-III and Vps4p
factors facilitate the precise assembly of the replicase that is needed to
prevent the recognition of the virus by the host surveillance system and
prevent the destruction of the viral RNAs in the spherule by the host
gene silencing machinery.
doi:10.1371/journal.ppat.1000705.g008
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template. This product was digested with BamHI and XhoI and

ligated into similarly digested pGD [45] to generate plasmid pGD-

35S-AtVPS4. To create the mutant version pGD-35S-

AtVPS4(K178A), two PCR reactions were done using primer

pairs #2746/#2748 and #2747/#2749 and A. thaliana total

DNA as template. These PCR products were digested with NheI,

ligated together and the product was re-amplified with primers

#2746/#2749. The obtained PCR product was digested with

BamHI and XhoI and cloned into pGD. The 39 terminal portion of

the two VPS23 homologues from A. thaliana, namely At3g12400 (aa

181–398, named AtVPS23-1dn in Fig. 1) and At5g13860 (aa 170–

368, named VPS23-2dn in Fig. 1) as well as the full length

At3g12400 (AtVPS23-1) [44], were amplified with primers #2843/

#2671; #2844/#2845; and #2750/#2671, respectively. The

VPS23 PCR products were digested with BamHI and SalI and

cloned into BamHI/SalI-digested pGD-L. To construct pGD-L,

the leader sequence from Tobacco etch virus was PCR-amplified

using plasmid pTEV-7DA [46] with primers #2915/#2916. The

PCR product was digested with BglII and BamHI and cloned into

BamHI-digested pGD to generate pGD-L. The ESCRT-III

homologues from A. thaliana, namely VPS24 [At5g22950 (aa 1–

153, named VPS24dn in Fig. 1), At2g19830 (aa 1–152, named

AtSNF7-1dn) and At4g29160 (aa 1–152, named SNF7-2dn) were

amplified with primers pairs #2846/#2847; #2850/#2851; and

#2852/#2853, respectively, digested with BamHI and SalI and

cloned into pGD. In addition, the 59 terminal portion of two

VPS28 homologues (At4g05000, aa 1–105 and At4g21560, aa 1–

104), and the 39 terminal portion of a VPS36 homologue

(At5g04920, aa 175–440) [44] were amplified with primers

#2867/#2868, #2869/#2870 and #2871/#2872, respectively

and cloned into pGD using BamHI and SalI. The BRO1

homologue from A. thaliana (At1g15130) was identified based on

sequence similarity to yeast BRO1 and RIM20 and human AIP1/

ALIX. A portion of At1g15130 (aa 179–846) was amplified with

primers #2883/#2884 and cloned into pGD using BamHI and

SalI.

Plasmid pGD-35S-20Kstop (expressing a full length CNV

RNA, but not the p20 protein) was created by PCR using primers

#532/#720 and pK2/M5 20K stop [47] as template. The PCR

product was digested with BamHI/XhoI and ligated into BamHI/

XhoI-digested pGD. A. tumefaciens strain C58C1 transformed with

pGD-35S-20Kstop or one of the pGD constructs expressing

various ESCRT genes were co-infiltrated onto N. benthamiana

leaves at OD600 = 0.1 and 0.5, respectively. Agroinfiltrations of N.

benthamiana and analysis of viral RNA accumulation in the

infiltrated leaves 2.5 days after infiltration were done as described

[19,48].

To launch TRV replication in N. benthamiana, we used the TRV

plasmids pTRV1 and pTRV2 [49]. A. tumefaciens transformed with

plasmids expressing TRV1/TRV2 and one of the dominant

negative ESCRT proteins were co-infiltrated into leaves using

bacterial cultures at OD600 = 0.1 for TRV and OD600 = 0.5 for the

ESCRT dominant negatives as described above for CNV.

Uncoupled expression of replicase proteins in plants and
in vitro replicase assays

DI-72 (containing a TRSV ribozyme sequence at the 39 end)

was amplified from pYC/DI72sat [13] using primers #532/

#1069 (Table S1). The PCR product was digested with BamHI

and SacI and cloned into pGD to generate pGD/DI72sat. CNV

p33 and p92 were amplified from plasmids pGBK-His33 or

pGAD-His92 [12] with primers #1794/#1403 and #1794/

#952, respectively. The PCR products were digested with BamHI

and XhoI and cloned into pGD-L (described above) to generate

pGD-L-p33 and pGD-L-p92.

The plasmid pYC/DI72sat/2xmiR171 was designed to express

a modified DI-72 repRNA containing two miR171 target sites

[50], between regions I and II and regions II and III, from a 35S

promoter in N. benthamiana plants. The orientation of both copies

of miR171 sequence was to allow cleavage of the target when

present in the (2)strand of the repRNA. To generate this

expression plasmid, we assembled PCR products in three steps.

First, we PCR-amplified region I of DI- 72 with primers #532 and

#3369 from pYC/DI72sat [12,13] followed by digestion of the

PCR product with XbaI and gel purification of the PCR product.

Second, the 39 portion of DI-72 containing regions III, IV and the

TRSV satellite ribozyme sequence [12,13] was PCR-amplified

with primers #3367 and #1069, followed by digestion with PstI

and gel purification. Third, PCR was performed with primers

#532 and #313 on pYC/DI72sat to obtain region II of DI-72,

followed by digestion of the PCR product with XbaI and PstI and

gel purification. The three different PCR products were ligated

and used as template for a final PCR with primers #532 and

#1069. The resulting PCR product was digested with BamHI and

SacI and cloned into pGD plasmid resulting pYC/DI72sat/

2xmiR171.

N. benthamiana leaves were agroinfiltrated as described [19,48].

A. tumefaciens cultures containing different plasmids were combined

as follows: pGD-L-p33 (OD600 = 0.35), pGD-L-p92

(OD600 = 0.15), pGD-DI72sat (OD600 = 0.15), pGD-p19 [to ex-

press p19 suppressor of gene silencing [48], OD600 = 0.15) and the

above plasmids expressing the dominant negative A. thaliana

ESCRT proteins (OD600 = 0.4).

Agroinfiltrated leaves were collected after 2.5 days. For analysis

of repRNA accumulation, total RNA was extracted as described

[5,13]. The DI-72 repRNA was detected with a labeled RNA

probe complementary to RIII/RIV(+) [5,13]. For the analysis of

the tombusvirus replicase activity, leaf samples (250 mg) were

ground in liquid nitrogen and mixed with 2 ml buffer A (50 mM

Tris-HCl pH 8.0, 15 mM MgCl2, 10 mM KCl, 2 mM EDTA,

20% glycerol, 0.3% plant protease inhibitor cocktail, 80 mM b-

mercaptoethanol) [51]. The mixture was passed through a 10 ml

syringe fitted with cheesecloth to trap cell debris. The clarified

extract was centrifuged at 300 g for 5 min to pellet additional cell

debris. The supernatant was collected and centrifuged at 21,000 g

for 20 min to pellet membranes. The pellet was washed in 1 ml of

buffer B+1.2 M NaCl (50 mM Tris-HCl pH 8.0, 10 mM MgCl2,

1 mM EDTA, 6% glycerol, 0.3% plant protease inhibitor cocktail,

80 mM b-mercaptoethanol) [51], centrifuged again and the

membrane pellet was finally resuspended in 250 ml buffer B (no

NaCl). 20 ml of the plant membrane fractions (containing active

viral replicase) were used for in vitro replicase assays as described

[7,24].

Analysis of TBSV repRNA replication in yeast and in vitro
Replication assays in yeast was performed as described [52].

Accumulation of DI-72 repRNA was measured by Northern blot

using RNA probes complementary to region III-IV of DI-72 and

to the 18S ribosomal RNA [5,52].

In vitro replicase assay with membrane-enriched fraction was

done as described previously [7,24]. Note that the amount of p33

protein in each sample was adjusted to comparable levels. The in

vitro replicase assembly assay with yeast extracts was done as

described previously [23]. For the RNase protection assay, the

membrane-enriched fraction from wt, vps23D and vps24D yeast

strains expressing wt p33/p92pol/repRNA was obtained as

described [12]. Then, 25 ml of the membrane-enriched prepara-
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tion dissolved in buffer E [200 mM sorbitol, 50 mM Tris-HCl

pH 7.5, 15 mM MgCl2, 10 mM KCl, 10 mM b-mercaptoethanol,

1% proteinase inhibitor mix (Sigma)] was digested with 1 ml of

20 mg/ml RNase A for 5 min. After the treatment, the RNA was

extracted with phenol-chloroform, ethanol precipitated, recovered

by centrifugation and analyzed in 5% polyacrylamide denaturing

gel, blotted and hybridized with a 32P-labeled (+)DI-72 RNA

probe [12].

Protein co-purification
S. cerevisiae strains BRO1::6xHA-KanMX4 and UEV::6xHA-

KanMX4 were generated by homologous recombination using

strain BY4741 as background. PCR was performed using plasmid

pYM-14 (EUROSCARF) [53] as template and primers #2493/

#2494 and #2492/#2491 (Table S1), respectively. The PCR

products were transformed to BY4741 and recombinant yeast

colonies were selected in YPD plates supplemented with G418.

Recombinant yeast strains were transformed with plasmid pGBK-

33HFH or pGBK-His33 [12] and grown in minimal media

supplemented with 2% glucose at 29uC. 300 ml of pelleted yeast

were used to purify p33 with anti-FLAG M2 agarose as described

previously [18], except that the washing steps were performed at

room temperature. P33 was detected with anti-FLAG antibody (1/

5,000 dilution) and AP-conjugated anti-mouse antibody (1/5,000).

Bro1-6xHA and UEV-6xHA proteins were detected with anti-HA

antibody from rabbit (Bethyl; 1/10,000 dilution) and

AP-conjugated anti-rabbit (1/10,000) followed by NBT-BCIP

detection.

Analysis of protein interactions
The split-ubiquitin assay was based on the Dualmembrane kit 3

(Dualsystems biotech). pGAD-BT2-N-His33 has been described

previously [18]. pPR-N-VPS23 and pPR-N-ScUEV were gener-

ated by PCR using yeast genomic DNA and primer pairs of

#2252/#2046 and #2252/#2292 (Table S1), respectively. The

PCR products were digested with EcoRI and NheI and cloned into

pPR-N-RE [18]. pPR-C-BRO1 was obtained by PCR using yeast

genomic DNA and primers #2053/#2054. The product was

digested with BamHI and NheI and cloned into pPR-C-RE [18].

A. thaliana UEV-1 (At3g12400; aa1-186) and UEV-2

(At5g13860; aa1-175) were amplified from genomic DNA with

primers #2669/#2670 and #2984/#2985 respectively, digested

with BamHI and SalI and cloned into pPR-N-RE digested with

BamHI/SalI or BglII/SalI. Nicotiana sp homologues of Vps23-UEV

were amplified from N. benthamiana or N. tabacum genomic DNA

with primers #2986 and #2987 (based on accession # EB680173;

nt 208-750), digested with BglII and SalI and cloned into pPR-N-

RE digested with BglII/SalI.

Yeast strain NMY51/vps4D::URA3 was created by homolo-

gous recombination using the URA3 gene, which was amplified

from plasmid pCM189 [54] with primers #2446 and #2447. The

PCR product was transformed into yeast strain NMY51

(Dualsystems) and the recombinants selected on Ura- plates [18].

NMY51 or NMY51/vps4D::URA3 were transformed with

pGAD-BT2-N-His33 and pPR constructs. Transformed colonies

were selected in Trp-/Leu- plates. Yeast colonies were re-

suspended in a small volume of water and streaked onto Trp-/

Leu-/His-/Ade- plates to score interactions.

Confocal laser microscopy
S. cerevisiae strain DKY79 (VPS23-GFP, vps27D, vps4D),

expressing the GFP tagged Vps23p from the native promoter

and chromosomal location [55] was transformed with pYC-CUP-

Flag33 and/or pGAD-pex13-RFP. To create pYC-CUP-Flag33,

Flag-tagged p33 was amplified from pGBK-33HFH with primers

#2450/#992B (Table S1), digested with NcoI/PstI and cloned

into similarly digested pGBK-His33/CUP1 [56]. The resulting

plasmid was used as template for a PCR with primers #2753/

#1403. The product was digested with NheI/XhoI and cloned into

SpeI/XhoI digested pYC2/CT (Invitrogen) generating pYC-CUP-

Flag33. PEX13 ORF was amplified by PCR using primers

#1277/#1278 and pGAD-pex13-CFP [22] as template. RFP

ORF was amplified from genomic DNA of a pex3-RFP yeast

strain [40] using primers #2691/#2663 (Table S1). Both PCR

products were digested with BglII, ligated and reamplified with

primers #1277 and #2663. This product was digested with

HindIII and BamHI and cloned into similarly digested pGAD H-

[12] to generate pGAD-pex13-RFP. The transformed yeast strains

were grown at 29uC in minimal media supplemented with 2%

glucose. Yeast cells were imaged with Olympus FV1000 confocal

laser scanning microscope [20] within 15–45 minutes after

addition of 50 mM CuSO4 to induce p33 expression.

Supporting Information

Figure S1 Reduced number of tombusvirus-induced spherules

in plant cells expressing dominant negative mutants of Snf7-1p

and Vps4p. Representative electron microscopic images of

portions of N. benthamiana cells. Several characteristic virus-

induced spherules are marked with arrowheads. These spherules

are formed via membrane invagination into peroxisomal or ER-

derived membranes. Panels I and II show control samples, which

were obtained from leaves either infected with CNV gRNA or

agroinfiltrated to express p33/p92/DI-72 repRNA. Panel III

shows a magnified portion of panel II to visualize ,20 individual

spherules within the membranous structure. Note that, in

addition to the reduced numbers (not shown), the sizes of the

spherules are very variable in cells over-expressing the dominant

negative Snf7-1p (panel IV) when compared with the control

infections (panels I and II). The expression of the dominant

negative Vps4p mutant made portions of the cells containing

irregular membranes and we could not definitively identify virus-

induced spherules (panel VI).

Found at: doi:10.1371/journal.ppat.1000705.s001 (2.72 MB TIF)

Figure S2 The in vitro activity of the isolated tombusvirus

replicase preparations from N. benthamiana plants expressing full-

length ESCRT factors. Denaturing PAGE of in vitro replicase

activity in the membrane-enriched fraction from co-infiltrated

leaves expressing p33, p92pol, DI-72 repRNA, p19 (suppressor of

gene silencing) and the shown ESCRT factors using the co-

purified repRNA template.

Found at: doi:10.1371/journal.ppat.1000705.s002 (0.05 MB PDF)

Figure S3 The effect of bro1D and vps23D on tombusvirus RNA

accumulation in yeast. Total RNA was extracted from yeast

24 hours after inducing repRNA replication. The accumulation of

(+)repRNAs was measured by Northern blotting, whereas the

ribosomal RNA (rRNA) was used as a loading control (not shown).

Each experiment was done at least six times. Overall the result

indicates that the lack of BRO1 and VPS23 ESCRT genes inhibits

repRNA accumulation, suggesting that these genes play a role in

tombusvirus replication.

Found at: doi:10.1371/journal.ppat.1000705.s003 (0.01 MB PDF)

Protocol S1 Supplementary materials and methods.

Found at: doi:10.1371/journal.ppat.1000705.s004 (0.08 MB PDF)

Table S1 List of primers used in this study.

Found at: doi:10.1371/journal.ppat.1000705.s005 (0.04 MB PDF)
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