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Abstract

Aerobic organisms have a tricarboxylic acid (TCA) cycle that is functionally distinct from those found in anaerobic organisms.
Previous reports indicate that the aerobic pathogen Mycobacterium tuberculosis lacks detectable a-ketoglutarate (KG)
dehydrogenase activity and drives a variant TCA cycle in which succinyl-CoA is replaced by succinic semialdehyde. Here, we
show that M. tuberculosis expresses a CoA-dependent KG dehydrogenase activity, albeit one that is typically found in
anaerobic bacteria. Unlike most enzymes of this family, the M. tuberculosis KG: ferredoxin oxidoreductase (KOR) is extremely
stable under aerobic conditions. This activity is absent in a mutant strain deleted for genes encoding a previously
uncharacterized oxidoreductase, and this strain is impaired for aerobic growth in the absence of sufficient amounts of CO2.
Interestingly, inhibition of the glyoxylate shunt or exclusion of exogenous fatty acids alleviates this growth defect, indicating
the presence of an alternate pathway that operates in the absence of b-oxidation. Simultaneous disruption of KOR and the
first enzyme of the succinic semialdehyde pathway (KG decarboxylase; KGD) results in strict dependence upon the
glyoxylate shunt for growth, demonstrating that KG decarboxylase is also functional in M. tuberculosis intermediary
metabolism. These observations demonstrate that unlike most organisms M. tuberculosis utilizes two distinct TCA pathways
from KG, one that functions concurrently with b-oxidation (KOR-dependent), and one that functions in the absence of b-
oxidation (KGD-dependent). As these pathways are regulated by metabolic cues, we predict that their differential utilization
provides an advantage for growth in different environments within the host.
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Introduction

Despite the identification of Mycobacterium tuberculosis as the

causative agent of tuberculosis (TB) over 125 years ago, two billion

people worldwide are infected with this potentially lethal pathogen

[1]. Each year, nearly ten million individuals will develop active

TB; of these, approximately two million will die. Efforts to control

the TB pandemic are now being threatened by the increasing

prevalence of M. tuberculosis strains that are resistant to many or all

available antimycobacterial drugs [2]. Understanding the biology

of M. tuberculosis will facilitate the identification of targets for novel

therapeutic approaches to preempt this persistent pathogen.

Determination of the full genome sequence of M. tuberculosis has

enabled the prediction and assembly of conserved metabolic

networks [3–5]. While such models are valuable for understanding

the metabolic architecture of an organism, discrepancies between

genome-based predictions and data from genetic and biochemical

analyses occasionally arise. For example, of the ten M. tuberculosis

genes predicted to encode subunits for a-ketoglutarate (KG) and

pyruvate dehydrogenases, only two have been shown to possess the

corresponding function [6,7]. Indeed, biochemical surveys of

enzymes of the tricarboxylic acid (TCA) cycle indicate that M.

tuberculosis does not utilize a conventional KG dehydrogenase [8].

This disjunction at the conversion of KG to succinyl-CoA suggests

either that this activity is non-essential for cellular metabolism, or

that conversion of KG proceeds by means of a novel pathway. In

support of the latter, it was recently shown that M. tuberculosis

encodes enzymes capable of catalyzing a variant TCA cycle which

uses succinic semialdehyde (SSA) rather than succinyl-CoA [8].

In this novel cycle, KG decarboxylase (KGD) catalyzes the

thiamine pyrophosphate (TPP) dependent decarboxylation of KG

to form SSA [8]. Subsequently, SSA dehydrogenase oxidizes SSA

to succinate with the reduction of NADP+ to NADPH [8]. Similar

to the canonical cycle, this cycle enables the extraction of reducing

power to drive reductive processes, while still directing KG to

succinate. However, similar to the glyoxylate shunt, this pathway

bypasses the synthesis of ATP via succinate thiokinase. This bypass

requires that pools of succinyl-CoA for synthesis of methionine,

diaminopimelate, sulfolipids and heme be derived in an energy-

dependent manner, either from succinate at the expense of ATP or

from methylmalonyl-CoA via methylmalonyl-CoA mutase [9].

Despite this apparent inefficiency, KGD is predicted to play an

important role in growth of the Mycobacteria on carbohydrates as

the sole carbon and energy source [10].

In most aerobic organisms, the unidirectional oxidative

decarboxylation of KG to succinyl-CoA is catalyzed by a ternary
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complex consisting of dihydrolipoyl dehydrogenase, dihydrolipoyl-

lysine-residue succinyltransferase, and succinyl-transferring KG

dehydrogenase. Interestingly, microaerophilic and strictly anaer-

obic organisms often utilize an alternative enzyme, KG: ferredoxin

oxidoreductase (KOR), which can couple the interconversion of

KG and succinyl-CoA to the reduction/oxidation of ferredoxin.

KOR and other a-ketoic acid: ferredoxin oxidoreductase family

members are typically composed of a CoA-coordinating a/c
subunit, and a TPP and iron-sulfur cluster containing b-subunit

[11]. Measurement of this activity requires anaerobic conditions,

both because these enzymes are irreversibly inactivated by O2, and

because the commonly used chromogenic reporter substrate for

the assay is rapidly oxidized under aerobic conditions [12–14].

These oxidoreductases have been identified in anaerobes and

microaerophiles belonging to all three domains of life [15],

suggesting their presence in the last universal common ancestor. In

most cases, KOR is utilized for the reductive carboxylation of

succinyl-CoA to KG [16,17]. Yet, it has been suggested that the

hyperthermophilic anaerobe Thermococcus litoralis might utilize

KOR for the generation of succinyl-CoA to support biosynthetic

reactions [13].

Here, we demonstrate that while M. tuberculosis can drive a TCA

cycle with the canonical intermediates, it does so in an

unconventional way using an anaerobic-type KOR. As homologs

of KOR are broadly distributed throughout the Actinobacterial

class, with the exception of the Corynebacterial and Bifidobacter-

ial families, this enzyme likely plays a greater role in oxidative

metabolism than was previously thought. In addition, we find that

KOR is dispensable for growth of M. tuberculosis under conditions

that promote the utilization of the variant SSA-containing TCA

cycle, revealing that these cycles are regulated by different

environmental cues. These studies indicate that the KOR pathway

operates concurrently with b-oxidation, while the KGD pathway

operates under conditions that do not favor fatty acid catabolism.

These pathways likely endow M. tuberculosis with metabolic

plasticity required for growth on diverse host-derived carbon

and energy sources. Since a growing body of evidence indicates

that lipids (for example cholesterol and fatty acids) are a

predominant growth substrate for M. tuberculosis during infection

[18–22], we speculate that flux through KOR represents an

important step in intermediary metabolism in vivo.

Results

Mycobacterium tuberculosis encodes an anaerobic-type
a-ketoglutarate: ferredoxin oxidoreductase homolog

While all other activities of the TCA cycle have been measured

from cellular extracts of M. tuberculosis, detection of KG

dehydrogenase has remained elusive [6,8]. Several anaerobic

and microaerophilic organisms encode various evolutionarily

related ferredoxin-dependent oxidoreductases that can intercon-

vert specific acyl-CoA thioesters and their cognate a-ketoic acids,

such as KG, pyruvate, indolepyruvate and isovalerate [23]. These

oxidoreductases are of distinct ancestry from aerobic-type a-ketoic

acid oxidoreductases such as pyruvate dehydrogenase and KG

dehydrogenase [15]. Surprisingly, while M. tuberculosis does not

express measurable KG dehydrogenase activity [6], it does encode

a putative anaerobic-type a-ketoic acid: ferredoxin oxidoreductase

(Figure 1A). Products of this locus include a fused a- and c-subunit

encoded by Rv2455c which shows a conserved binding site for

coordination of CoA (GXXGXG), and a b-subunit encoded by

Rv2454c which shows the highly conserved motif involved in TPP

and iron-sulfur cluster binding (CXGCGXnGDGXnC) [11].

Based on intergenic distance and an extensive assessment of

correlative expression data, Rv2454c and Rv2455c are likely

organized in an operon with Rv2452c and Rv2453c [24]. While

Rv2452c is of unknown function, Rv2453c encodes a putative

molybdopterin-type dinucleotide biosynthesis protein.

It was not possible to predict the substrate for this oxidoreduc-

tase based on sequence homology alone, thus, a subunits of several

biochemically characterized a-ketoic acid: ferredoxin oxidoreduc-

tases were aligned to reconstruct a phylogenetic tree (Figure 1B).

In most cases, the resulting clades coincided with the preferred a-

ketoic acid substrate. The M. tuberculosis homolog grouped within

the clade for KG oxidoreductases (KOR). Further, this gene

cluster was identified in 23 out of 43 individual Actinobacterial

species for which the complete genome sequences were available.

A phylogram derived from alignment of these homologs revealed a

cladotypic pattern (Figure 1C) suggesting that the locus was

present in the Actinobacterial ancestor. It is interesting to note that

these genes were not identified in Bifidobacterial and Corynebac-

terial species. Indeed, C. glutamicum has been show to express a bona

fide aerobic-type KG dehydrogenase, the sequence of which is

highly similar to KGD of M. tuberculosis [25].

Rv2454c-Rv2455c encode an aerotolerant coenzyme
A-dependent KG oxidase activity

French pressure cell lysates prepared from aerobic cultures of

M. tuberculosis, M. bovis BCG and M. smegmatis were assessed for

methylviologen (MV, an artificial chromogenic electron acceptor)

reductase activity using various electron donors. Enzymatic assays

were performed under anaerobic conditions to prevent potential

oxidation of the KOR complex, and to prevent the reoxidation of

MV by O2 and components of the aerobic respiratory chain.

Consistent with the presence of an anaerobic-type KOR, KG

served as an electron donor for reduction of MV (Table 1). This

activity was dependent on the presence of CoA and Mg2+ (data not

shown). Unlike some a-ketoic acid: ferredoxin oxidoreductases, the

mycobacterial activity was not stimulated by addition of TPP to

the reaction mixture. However, a CoA-independent KG dehy-

drogenase activity was observed in the presence of TPP (data not

shown), consistent with the previous report of KGD [8].

Author Summary

Knowledge of the basic biology of Mycobacterium
tuberculosis is essential to identifying novel ways to
combat the emerging threat of drug-resistant tuberculosis.
Since the tricarboxylic acid (TCA) cycle is a cornerstone of
metabolism and M. tuberculosis does not possess a
‘‘typical’’ TCA cycle enzyme set, much effort has been
focused on elucidating the components of this pathway.
Previous reports indicate that M. tuberculosis possesses a
variant TCA cycle in which succinic semialdehyde replaces
succinyl-CoA. Since this pathway does not conserve as
much metabolic energy as the canonical pathway, we
considered an alternative hypothesis: that M. tuberculosis
might possess an anaerobic type a-ketoglutarate dehy-
drogenase. In this manuscript, we investigate this previ-
ously unknown activity for mycobacteria using a combi-
nation of genetic and biochemical approaches, and
demonstrate that M. tuberculosis is capable of driving a
conventional TCA cycle in an unconventional way. We also
validate the existence of the previously described variant
pathway and provide evidence that these two pathways
are differentially utilized in response to a metabolic signal,
fatty acid catabolism.

Completing the TCA Cycle of M. tuberculosis
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To determine whether the KOR product was succinyl-CoA, the

reaction mixture was separated by ion exchange chromatography

and eluted material was analyzed by UV absorbance at 260 nm.

The absorbance profile of the eluted material was compared to

those of CoA and succinyl-CoA standards. As shown in Figure 2,

the reaction mixture prepared using cell extract from M. tuberculosis

strain mc27000 (H37Rv DpanCD DRD1 [26]) revealed a peak that

coincided with that of succinyl-CoA, indicating that a significant

fraction of CoA was activated to succinyl-CoA in the reaction

mixture.

Assays in which pyruvate (Table 1), glyoxylate, oxaloacetate and

3-indole pyruvate (data not shown) were used as electron donors

did not yield measurable MV reduction, indicating that the

observed a-ketoic acid oxidation is likely specific to KG in M.

tuberculosis. In contrast, M. smegmatis extracts could catalyze

pyruvate-dependent reduction of MV (Table 1). Yet, a large

fraction of this activity was found to be CoA-independent (Table 1).

Unlike M. tuberculosis and M. bovis, M. smegmatis encodes an

additional a-ketoic acid: ferredoxin oxidoreductase homolog,

which is likely responsible for this activity. In addition, there was

no measurable reduction of other electron carriers, such as NAD+,

NADP+, FMN, FAD or menadione, when KG was used as an

electron donor (data not shown).

Due to the presence of a solvent exposed iron-sulfur cluster,

most a-ketoic acid: ferredoxin oxidoreductases are rapidly

inactivated when exposed to O2 [13,14]. Thus, the utility of these

enzymes is usually restricted to anaerobic and microaerophilic

environments. To determine whether the M. tuberculosis KOR was

Table 1. CoA-dependent a-ketoglutarate: MV oxidoreductase
activity in M. tuberculosis, M. bovis and M. smegmatis.

Strain nmol MVred min21 mg21 protein

KG NADH Pyruvate

M. tuberculosis mc27000 (wild type) 1.060.1 1.760.1 ,0.01

M. tuberculosis mc27010 (DkorAB) ,0.01 1.960.1 NM*

M. tuberculosis mc27011 (DkorAB
- complemented)

1.360.1 1.960.1 NM

M. tuberculosis H37Ra 0.6860.15 NM NM

M. bovis BCG 1.660.2 NM ,0.01

M. smegmatis mc2155 1.760.2 2.960.2 0.5960.02 (0.32){

*Not measured.
{A fraction of pyruvate: MV oxidoreductase activity from M. smegmatis mc2155
was CoA-independent (shown in parentheses).

doi:10.1371/journal.ppat.1000662.t001

Figure 1. M. tuberculosis encodes an a-ketoglutarate: ferredoxin oxidoreductase. (A) Genetic map of the M. tuberculosis Rv2454c-Rv2455c
(korAB) region. Conserved c, a and b domains are indicated by brackets. The bar labeled DkorAB denotes the region that was replaced by a
hygromycin cassette using specialized transduction. The bar labeled compl. represents the region of the genome that was used for complementation
of the DkorAB strain. (B) Phylogenetic tree of the a subunits of characterized members of the a-ketoic acid: ferredoxin oxidoreductase family.
Sequences were acquired from the NCBI protein database (www.ncbi.nlm.nih.gov). Alignments were made by the ClustalW method, trees were
reconstructed by the Neighbor Joining method using the European Bioinformatics Institute server (www.ebi.ac.uk/Tools/clustalw2/index.html),
graphics were generated using TreeView X (darwin.zoology.gla.ac.uk/,rpage/treeviewx/). a-ketoic acid substrates utilized by members of each clade
are indicated to the right. The scale represents substitutions per residue. (C) Phylogenetic tree of a subunits of the a-ketoic acid: ferredoxin
oxidoreductase found in several Actinobacteria. Alignments and trees were generated as described in B.
doi:10.1371/journal.ppat.1000662.g001

Completing the TCA Cycle of M. tuberculosis
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tolerant to air exposure, cell extracts were incubated under a

normal atmosphere at room temperature. At various intervals the

extracts were assayed for remaining KOR activity. As controls,

air-exposed B. fragilis extracts were assayed for pyruvate:

ferredoxin oxidoreductase (POR) and KOR. Similar to that

which has been described for B. thetaiotaomicron, the B. fragilis POR

was rapidly inactivated following air exposure (Figure 3) [14], as

was the B. fragilis KOR (Figure 3). In contrast, when M. tuberculosis

lysates were exposed to air the KOR activity was remarkably

stable (Figure 3), indicating that M. tuberculosis KOR remains

functional under aerobic conditions.

To determine the contribution of Rv2454c-Rv2455c (herein

referred to as korAB) to KOR activity, the respective genes were

deleted using specialized transduction [27]. Consistent with a

previous study of gene essentiality in M. tuberculosis, mutations in

Rv2454c-Rv2455c could be tolerated [28]. Codon 50 of korA

through codon 334 of korB were replaced with a hygromycin

resistance cassette (Figure 1A). While cell extracts from the

resulting strain had wild type levels of NADH: MV oxidoreductase

activity, there was no measurable reduction of MV using KG as an

electron donor (Table 1) and succinyl-CoA production was

diminished to ,5% of that from the wild type extract (Figure 2).

Importantly, introduction of an intact copy of korAB restored both

KOR activity and succinyl-CoA production (Table 1, Figure 2).

These results demonstrate that the M. tuberculosis korAB gene cluster

codes for a KOR that is expressed and stable under fully aerobic

conditions.

KOR is conditionally essential for growth of M.
tuberculosis

Based on the lack of detectable KG dehydrogenase activity [6]

and the presence of KGD [8], it has been proposed that M.

tuberculosis catalyzes a variant TCA cycle in which succinyl-CoA is

replaced by SSA [8]. However, as KOR is active in aerobically

grown M. tuberculosis, it is possible that this enzyme can also

functionally replace KG dehydrogenase in the TCA cycle.

Consistent with a role for KOR in oxidative metabolism in M.

tuberculosis, the DkorAB strain was incapable of growth on solid

medium unless the atmosphere was supplemented with abundant

CO2 (Figure 4A). Indoor ambient CO2 levels were found to range

from 0.078% to 0.084% during the course of these experiments.

This CO2-dependent phenotype was also observed for M.

tuberculosis strains H37Ra, CDC1551 and M. bovis BCG in which

korAB was deleted (data not shown). In liquid medium, growth of

the KOR-deficient strain was similar to that of the wild type strain

when abundant CO2 was supplied (Figure 4B), whereas this strain

was retarded under ambient air (Figure 4C) and fully inhibited

upon further CO2 restriction (Figure 4D). Importantly, introduc-

tion of a cosmid containing Rv2425c-Rv2456c abolished this CO2

dependency (Figure 4A, C, D). This graded response to CO2

indicates that KOR-dependent decarboxylation of KG is an

important source of CO2 in M. tuberculosis metabolism. It is

predicted that the KOR-deficient strain is capable of growth with

a broken TCA cycle due to the presence of the glyoxylate shunt.

While this mode bypasses the production of CO2, it permits the

extraction of reducing equivalents and production of biosynthetic

precursors from two carbon units that enter the cycle.

KOR is dispensable for growth upon inhibition of the
glyoxylate shunt

To determine whether the glyoxylate shunt is essential for

growth in the absence of KOR, strains were plated on medium

containing the isocitrate lyase (ICL) inhibitor 3-nitropropionate

(3NP) [21,29]. Surprisingly, 3NP was found to alleviate the CO2

requirement of the KOR mutant strain (Figure 5A). Moreover,

Figure 2. korAB is essential for the formation of succinyl-CoA
from a-ketoglutarate and CoA by M. tuberculosis. Reaction
mixtures containing CoA, KG, MV, MgCl2 and cell extracts from M.
tuberculosis mc27000 (wild type), the DkorAB strain, and the comple-
mented strain (compl.) were separated by ion exchange chromatogra-
phy and CoA species were detected by UV absorbance (260 nm)
following elution. CoA and succinyl-CoA were run as standards.
doi:10.1371/journal.ppat.1000662.g002

Figure 3. M. tuberculosis KOR activity is tolerant to O2 exposure.
Whole cell lysates of M. tuberculosis and B. fragilis were exposed to air at
room temperature and remaining KOR (M. tuberculosis, squares; B.
fragilis, circles) and POR (B. fragilis, diamonds) activities were assessed
under anaerobic conditions. Percent activity remaining was calculated
by dividing the rate of methyl viologen reduction at timex by that at
time0 (% activity remaining = ratet = x/ratet = 06100). Data shown
represent the mean 6 standard deviation of three independent
determinations.
doi:10.1371/journal.ppat.1000662.g003

Completing the TCA Cycle of M. tuberculosis
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this heightened CO2 dependency was also diminished by exclusion

of fatty acids, namely oleic acid and Tween 80 (an oleic acid-

polyethylene ester used to prevent cell aggregation), which are

standard components of mycobacterial growth media (Figure 5B).

Thus, while KOR is important for CO2 metabolism in the

presence of exogenously supplied fatty acids, suppression of fatty

acid utilization appears to promote activity of a compensatory

pathway. As glyoxylate, a product of ICL, can inhibit SSA

dehydrogenase [30], it is possible that the variant TCA cycle

proposed by Tian et al [8] is favored under conditions in which

catabolism of exogenous fatty acids is dampened.

To determine whether KOR is essential for growth of M.

tuberculosis on fatty acids as the sole carbon source, the DkorAB

mutant was grown in medium containing Tween 80, which can be

hydrolyzed by mycobacteria to form oleic acid and an inert non-

metabolizable ethylene polymer. Similar to that which was

observed for growth on mixed carbon sources, the DkorAB mutant

grew nearly as well as the wild type strain on Tween 80 when the

atmosphere was supplemented with 5% CO2 (Figure 5C). As

expected, 3NP inhibited growth of the wild type strain, indicating

that the glyoxylate shunt is essential for growth on this source of

oleic acid. Further, when the DkorAB strain was grown under an

atmosphere with ambient levels of CO2, there was a modest

growth defect that could not be reversed by supplementation with

succinate (Figure 5D). Unlike that which was observed with mixed

substrates, the DkorAB strain grew poorly under further CO2

restriction (Figure 5E), suggesting that gluconeogenesis might

provide enough additional CO2 to support growth in the absence

of KOR.

Differential utilization of the KOR and KGD pathways
To determine whether KGD is important for intermediary

metabolism, kgd (Rv1248c) was deleted in M. tuberculosis mc27000

and in the KOR deficient strain. DRv1248c mutants were readily

obtained despite the prediction that Rv1248c is essential for growth

of M. tuberculosis on standard medium [31]. In medium containing

both carbohydrates (dextrose and glycerol) and fatty acids (Tween

Figure 4. korAB is essential for growth of M. tuberculosis in the
absence of sufficient levels of CO2. (A) Serial dilutions of M.
tuberculosis mc27000 (wild type), DkorAB and the complemented strain
(compl.) were spotted on supplemented 7H10 medium containing
glycerol (0.5%), dextrose (0.2%), oleic acid (60 nl ml21) and Tween 80
(0.05%). Plates were incubated under atmospheres with indicated
amounts of CO2 for 20 days. (B–D) Growth of M. tuberculosis mc27000
(squares), DkorAB (circles) and complemented strain (diamonds) in
supplemented 7H9 medium containing glycerol (0.5%), dextrose (0.2%),
oleic acid (60 nl ml21) and Tween 80 (0.05%) under an atmosphere
containing 0.04% CO2 (B), 0.08% CO2 (C) or 5% CO2 (D).
doi:10.1371/journal.ppat.1000662.g004

Figure 5. Conditional essentiality of korAB for growth of M.
tuberculosis. (A) Serial dilutions of single cell suspensions of M.
tuberculosis mc27000 (wild type) and the DkorAB strain were spotted on
supplemented 7H10 medium containing glycerol (0.5%), dextrose
(0.2%) and Tween 80 (0.05%) with or without 200 mM 3NP. Plates were
incubated under atmospheres with indicated amounts of CO2 for 20
days. (B) Growth of M. tuberculosis mc27000 (squares), DkorAB (circles)
and complemented strain (diamonds) in supplemented 7H9 medium
with glycerol and dextrose without oleic acid or Tween 80 under an
atmosphere containing 0.04% CO2. (C–E) Growth of M. tuberculosis
mc27000 (squares), DkorAB (circles; filled circles, 0.1% succinate) and
complemented strain (diamonds) in supplemented 7H9 medium with
Tween 80 (0.5%) as the sole carbon source under atmospheres
containing 5% (C), 0.08% (D), and 0.04% CO2 (E).
doi:10.1371/journal.ppat.1000662.g005

Completing the TCA Cycle of M. tuberculosis
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80), under a CO2 enriched atmosphere, growth of the Dkgd strain

was indistinguishable from that of the wild type strain regardless of

the presence of 3NP (Figure 6A, B). Thus, under these conditions

KOR is sufficient to maintain flux through the TCA cycle.

However, the DkorAB Dkgd strain showed a slower growth rate

relative to the wild type and single mutant strains (Figure 6A),

indicating that either pathway can function to some degree in the

M. tuberculosis TCA cycle. As growth of the DkorAB Dkgd strain was

fully inhibited by the presence of 3NP (Figure 6B), blockade of all

three pathways results in arrest of intermediary metabolism.

When the Dkgd strain was cultivated in medium containing

carbohydrates as the sole carbon source in the presence of 5%

CO2, there was a marked defect compared to the wild type and

DkorAB strains (Figure 6C). Interestingly, growth of the DkorAB

Dkgd strain was similar to that of the Dkgd single mutant

(Figure 6C), indicating that KOR contributes minimally during

growth on carbohydrates as the sole carbon source. This notion is

further supported by the observation that growth of the Dkgd and

DkorAB Dkgd strains was fully inhibited by the presence of 3NP,

whereas growth of the wild type and DkorAB strains was

unaffected (Figure 6D). The growth defects observed for both

the Dkgd and DkorAB Dkgd strains were exacerbated by incubation

under an atmosphere with an ambient level of CO2 (Figure 6E).

As the growth defect of the DkorAB Dkgd strain was more severe

than that of Dkgd alone, KOR appears to have a minimal

contribution to intermediary metabolism under these conditions.

Growth of these strains was markedly improved by supplemen-

tation with succinate (Figure 6E), indicating that the growth

defects of these strains are due both to limitations in generation of

succinate and CO2. These observations indicate that KGD plays

a predominant role in growth on carbohydrates as the sole

carbon source.

Growth of the Dkgd strain on Tween 80 as the sole carbon

source was similar to that of the wild type strain regardless of the

presence of CO2 (Figure 6F), consistent with a primary role for

KOR in the TCA cycle under conditions that favor b-oxidation.

In contrast, the DkorAB Dkgd strain was significantly more retarded

for growth on Tween 80 than was either DkorAB or Dkgd alone

(Figure 5C, 6F). Thus, while KOR is the major mediator for

conversion of a-ketoglutarate during growth on fatty acids, KGD

can also contribute to a minimal degree.

Discussion

A previous report indicates that M. tuberculosis lacks a canonical

TCA cycle, as CoA-dependent KG dehydrogenase activity was

undetectable in crude cellular extracts [6]. Until recently it was

unclear whether mycobacteria require an intact TCA cycle as they

can produce TCA cycle-derived biosynthetic precursors via the

glyoxylate shunt [9], although doing so would require that

succinyl-CoA be formed in an energy dependent manner. Since

isocitrate lyase (ICL) is dispensable for growth on carbohydrates as

a carbon source [20,21], it is likely that a TCA cycle of some form

exists in M. tuberculosis. Based on biochemical studies of KG

decarboxylase (KGD) and SSA dehydrogenase, it was recently

proposed that SSA replaces succinyl-CoA in the M. tuberculosis

TCA cycle [8]. While this pathway should support growth on

carbohydrates when the glyoxylate shunt is inoperable (Figure 7),

it still requires that succinyl-CoA be produced by alternate means.

In addition to enzymes of this alternate pathway, M. tuberculosis

and other mycobacterial species encode an anaerobic-type a-

ketoic acid: ferredoxin oxidoreductase homolog that is most closely

related to those that interconvert KG and succinyl-CoA. Here, we

demonstrate that M. tuberculosis contains a KOR activity that

Figure 6. KGD and KOR are differentially required for growth of M. tuberculosis. M. tuberculosis strains mc27000 (wild type, squares), DkorAB
(circles), Dkgd (diamonds) and DkorAB Dkgd (triangles) were grown under a 5% CO2 (A–D) or 0.08% CO2 (E) atmosphere in supplemented 7H9 medium
containing glycerol and dextrose (carbs, A–E) with 0.05% Tween 80 (A & B) or tyloxapol (C–E). 200 mM 3-nitropropionate (B & D) and 0.1% succinate (E,
solid symbols) were added to the growth media. (F) Strains M. tuberculosis Dkgd (diamonds) and DkorAB Dkgd (triangles) were grown under a 5% CO2

(open symbols) or 0.08% CO2 (solid symbols) atmosphere in supplemented 7H9 medium containing 0.5% Tween 80 as the sole carbon source.
doi:10.1371/journal.ppat.1000662.g006
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results in the formation of succinyl-CoA, and requires the korAB

gene cluster. As we were unable to identify the physiologic electron

acceptor for this enzyme, it is currently unclear how KOR feeds

into the cellular reduction/oxidation pools. Yet, since the M.

tuberculosis KOR a subunit contains two hydrophobic stretches

(from amino acids 249–273 and 304–340), it is possible that the

complex is membrane associated and is reoxidized following

interaction with another membrane associated redox partner.

KOR was probably overlooked in previous studies because of

the requirement for anaerobic assay conditions resulting from the

use of an O2-reactive reporter dye. In contrast to similar enzymes

from the obligate anaerobe B. fragilis, the M. tuberculosis KOR

activity was stable during extensive air exposure. Interestingly,

sequence of the predicted iron-sulfur cluster coordination site of

the M. tuberculosis enzyme was similar to that of other O2-sensitive

KORs and does not contain a recognizable stabilization domain

found in some d-proteobacterial PORs [32]. While it is possible

that the mycobacterial KOR is intrinsically aerostable, it is also

possible that there might be an unidentified stabilization partner.

Despite the peculiarity of finding such an oxidoreductase in an

obligately aerobic organism, KOR is conserved in many other

Actinobacteria. As this class of eubacteria includes both aerobes

and anaerobes, it is possible that the Actinobacterial ancestor was

a facultative anaerobe, and that more stringent O2 requirements

may have arisen with divergence of the various clades. Indeed,

mycobacteria possess a suite of genes commonly associated with

anaerobic metabolism, such as an anaerobic-type ribonucleotide

reductase [33] and a respiratory nitrate reductase [34]. Although

conditions for anaerobic cultivation of mycobacteria have yet to be

defined, it has recently been demonstrated that M. tuberculosis can

grow under an atmosphere containing as little as 1.3% O2 when

provided with supplemental CO2 [35]. Thus, dampening

oxidative metabolism results in a CO2 deficit, and likely leads to

defects in lipid, arginine, adenine and uracil biosynthesis [36].

Consistent with its role in oxidative metabolism, we find that

KOR is essential for growth of M. tuberculosis under an ambient

atmosphere where the CO2 concentration is relatively low. As

outlined in Figure 7, KOR functions concurrently with the

glyoxylate shunt, likely to provide both succinyl-CoA and CO2, as

well as reducing equivalents. Interestingly, KOR is dispensable for

growth when the glyoxylate shunt is inoperable. Further genetic

analysis revealed that KGD is essential for this bypass, indicating

that the SSA pathway operates under conditions where utilization

of exogenous fatty acids is minimal (Figure 7). Along these lines,

we find that while KGD plays a critical role during growth on

carbohydrates, it contributes little during growth in medium

containing fatty acids. These observations suggest the presence of a

metabolic regulatory cascade that is responsive to b-oxidation.

It was recently shown that the forkhead-associated protein GarA

inhibits KGD activity in M. smegmatis [10] and its homolog OdhI

inhibits KG dehydrogenase in Corynebacterium glutamicum [25]. In both

cases, the serine threonine kinase PknG was found to modulate GarA

activity via phosphorylation, although the signal for this regulatory

cascade has yet to be described. In M. smegmatis, constitutive

inhibition of KGD via unphosphorylated GarA results in a profound

growth defect on dextrose and glycerol [10], indicating that this

decarboxylase is predominantly utilized for growth on carbohy-

drates. Based on these findings, we predict that glyoxylate serves as

the metabolic trigger for inhibition of KGD, likely through inhibition

of PknG-mediated GarA phosphorylation (Figure 7). Furthermore,

since we find that KOR cannot compensate for the loss of KGD

during growth on carbohydrates alone, KOR must be subject to

some means of regulation that has yet to be identified.

While a comprehensive analysis of the genetic requirements for

growth and survival of M. tuberculosis indicates that genes linked to

carbohydrate metabolism might be important early during

infection [22], a large body of evidence indicates that lipids

represent the major carbon source for growth and persistence of

Figure 7. Integrated model of routes and regulation in the M. tuberculosis TCA cycle. The glyoxylate cycle (inner cycle), canonical TCA cycle
(medial cycle), and variant TCA cycle (outer cycle) are depicted. Blue lines indicate pathways that are utilized concurrently with b-oxidation, green
lines indicate pathways that are utilized during growth on carbohydrates as the sole carbon source, and black lines indicate pathways that are
common to both modes of growth. Red lines indicate blocks imposed by 3NP on isocitrate lyase (ICL), PknG on GarA, and GarA on KGD. The dotted
red lines represent the putative blocks imposed by glyoxylate on SSA dehydrogenase and PknG.
doi:10.1371/journal.ppat.1000662.g007
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M. tuberculosis in vivo [18–22]. When lipids are processed via b-

oxidation pathway, they are broken down in a series of steps into

acetate and propionate (reviewed in [37]). Studies of ICL (for

acetate utilization) and methylcitrate lyase (MCL, for propionate

utilization) suggest that fatty acids might be important lipidic

carbon sources for M. tuberculosis during infection [20,21]. Yet, it

has recently been demonstrated that sterols, such as cholesterol,

can be also be catabolized by M. tuberculosis both in vitro and in vivo

[18,19]. As cholesterol catabolism also results in the formation of

propionate and acetate, ICL and MCL are predicted to be

required for use of sterols as well [38]. Given the concurrent

function of the KOR pathway with the glyoxylate shunt, we

predict that flux of KG runs largely through KOR, rather than

KGD, during growth in vivo. The availability of these mutant

strains will allow us to distinguish between these possibilities.

Materials and Methods

Bacterial strains and growth conditions
M. tuberculosis strains used in this study (Table 2) were derived

from strain H37Rv and were routinely cultivated using Middleb-

rook 7H9 and 7H10 media (Difco, Sparks, MD) supplemented with

NaCl (0.85 mg ml21), oleic acid (60 nl ml21), bovine albumin-

fraction V (5 mg ml21), dextrose (2 mg ml21), and glycerol

(5 mg ml21). As indicated in the text, Tween 80 (0.5 mg ml21 or

5 mg ml21; a non-ionic surfactant) or tyloxapol (0.5 mg ml21; a

non-metabolizable non-ionic surfactant) were added to the growth

medium. 100 mg ml21 pantothenic acid was added for growth of

pantothenic acid auxotrophic strains [26]. M. smegmatis strain

mc2155 [39] was cultivated with 7H9 and 7H10 supplemented with

dextrose (2 mg ml21) and tyloxapol (0.5 mg ml21 for liquid media).

E. coli strain HB101, used for plasmid, cosmid and phasmid

manipulation, was cultivated using LB medium. B. fragilis strain

ATCC 25285 was cultivated using brain heart infusion medium

supplemented with 5 mg ml21 hemin and 5 mg ml21 yeast extract

[40], or using modified anaerobic minimal medium [41]. Bactoagar

(1.5%) was added to media when necessary. 3-nitropriopionate

(200 mM), carbenicillin (50 mg ml21), hygromycin (50 mg ml21 for

M. tuberculosis, 150 mg ml21 for E. coli) and kanamycin (20 mg ml21

for M. tuberculosis, 40 mg ml21 for E. coli) were added to the growth

media as needed.

For growth experiments involving modified atmospheres,

cultures were incubated in a controlled atmosphere chamber

(Coy Laboratory Products, Grass Lake, MI) or in sealed 2.5 L

AnaeroPack boxes (Mitsubishi Gas Chemical Co., Inc.). Atmo-

spheric CO2 supplementation was regulated using an AC100 CO2

controller (Coy Laboratory Products). Atmospheric CO2 restric-

tion was achieved by absorption with 40 ml of a 5% (w/v) solution

of KOH [42]. Under such conditions, atmospheric CO2 was

maintained at a level of 0.04%. Atmospheric CO2 determinations

were made using a Bacharach model 2810 CO2 analyzer (New

Kensington, PA), or a Gray Wolf DirectSenseTM indoor air quality

monitor (Trumbull, CT).

Genetic manipulations and analysis
Purification of cosmids, plasmids and PCR products were

performed using Qiagen products following the manufacturer’s

suggestions. Genetic manipulations of mycobacterial species were

performed as described in [43]. M. tuberculosis strains mc27010

(DkorAB) and mc27012 (Dkgd) were constructed by allelic exchange

using specialized transduction. The allelic exchange phasmids

were constructed by amplifying 1 kb regions flanking korAB and

kgd with primers described in Table 2. Purified DNA fragments

were digested with indicated restriction enzymes. Fragments were

ligated with Van91I fragments of p0004S (T. Hsu, unpublished)

using T4 DNA ligase (NEB). The resulting allelic exchange

Table 2. M. tuberculosis strains and primers used in this study.

Strain Genotype or relevant characteristic Method of construction Source

mc27000 H37Rv DpanCD DRD1 specialized transduction described in ref. 29 laboratory strain

mc27010 mc27000 DkorAB specialized transduction of strain mc27000 with
phage phAESRv2454c-5c

this study

mc27011 mc27000 DkorAB attBL5::pBH33K electroporation of mc27010 with cosmid containing
Rv2425c-Rv2456c

this study

mc27012 mc27000 Dkgd specialized transduction of strain mc27000 with
phage phAESRv1248c

this study

mc27013 mc27000 DkorAB Dkgd specialized transduction of unmarked strain
mc27010 with phage phAESRv1248c

this study

H37Ra spontaneously attenuated derivative of H37Rv spontaneous mutant obtained from Wilbur Jones

mc27014 H37Ra DkorAB specialized transduction of strain H37Ra with
phage phAESRv2454c-5c

this study

Primer Sequence Restriction enzyme used

Rv2455c-1 TTTTTTTTCCATAAATTGGGGCGTTGCACAATCGAGACGAAG Van91I

Rv2455c-2 TTTTTTTTCCATTTCTTGGAGGTGAATCGGTCGCCGGTTAG Van91I

Rv2454c-3 TTTTTTTTGCATAGATTGCCCGGCCAACCTACGATGATG BstAPI

Rv2454c-4 TTTTTTTTGCATCTTTTGCATCAACCGCGCACCAGAGAC BstAPI

Rv1248c-1 TTTTTTTTCCATAAATTGGGGCGTGCTGATCGCCTTTAGCCG Van91I

Rv1248c-2 TTTTTTTTCCATTTCTTGGGCCGGGATCAAGCGAATCTCGCG Van91I

Rv1248c-3 TTTTTTTTCCATAGATTGGTCGCGGAACTTGCGGTACATCTC Van91I

Rv1248c-4 TTTTTTTTCCATCTTTTGGGATCCGCAAATGCAGCTGAGCC Van91I

doi:10.1371/journal.ppat.1000662.t002
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substrates were digested with PacI, ligated to phAE159 [44] and

packaged with MaxPlax packaging extract (Epicenter Biotechnol-

ogies) for propagation as shuttle phasmids in E. coli. Phasmids were

electroporated into M. smegmatis mc2155 for phage propagation.

Allelic exchange substrates were delivered to M. tuberculosis as

previously described [27]. Mutant strains were confirmed by PCR.

For construction of the double mutant strain, it was necessary to

first resolve the hygromycin resistance cassette (which was flanked

by cd resolvase recognition sequences) in mc27010 using the cd
resolvase containing vector pJH532. Cosmid pBH33K used for

complementation of strain mc27010 contains base pairs 2721932–

2757635 of the M. tuberculosis H37Rv genome.

Enzymatic assays
Enzymatic assays were performed using French pressure cell

lysates prepared from mycobacteria grown in aerobic supple-

mented 7H9 medium, or from B. fragilis grown in modified

anaerobic minimal medium. Cells were harvested by centrifuga-

tion at 3,500 X g for 10 min at 4uC. The following steps were

performed in an anaerobic chamber (,1 ppm O2, Coy Labora-

tory Products) containing a gas mixture of 10% H2, 5% CO2 and

85% N2. Cells were washed in an equal volume of chilled

anaerobic 100 mM sodium phosphate (pH 7.2), and resuspended

in 0.1 volume chilled anaerobic phosphate buffer. Anaerobic

phosphate buffer was prepared in the anaerobic chamber using

distilled H2O that had been degassed by boiling immediately

before introduction into the anaerobic atmosphere. Samples were

removed from the chamber and cells were lysed under

70 kg cm22 using a French pressure mini-cell and maintained

under a stream of N2 to exclude O2. Extracts were clarified by

centrifugation at 13,000 X g for 10 min at 4uC, flash frozen with

liquid N2 and stored at 280uC until ready to use.

Reagents for enzymatic assays were purchased from Sigma-

Aldrich and were dissolved in anaerobic phosphate buffer.

Reaction mixtures were prepared under anaerobic conditions

using anaerobic phosphate buffer containing 2.5 mM MgCl2 in

QS-517-S quartz screw top cuvettes (Nova Biotech, El Cajon, CA).

a-ketoic acid: MV oxidoreductase assays were performed as

described [13], with the following modifications: 0.5 mM

coenzyme A, 5 mM MV and 25 mM a-ketoic acid (pyruvate or

KG) were added, and TPP was excluded. NADH: MV

oxidoreductase activity was measured using 0.2 mM NADH and

2.5 mM MV. Reactions were started by addition of cell extract

and MV reduction was measured spectrophotometrically at room

temperature. Reduction values were based on an absorption

coefficient of 12,000 M21 cm21 at 600 nm [45]. Protein estima-

tions were made using the BioRad protein assay reagent.

For analysis of succinyl-CoA production, reaction mixtures were

prepared as described above, however, 100 mM CoA and 50 mM

MV were used. Reaction mixtures were passed through a 0.2 mm

filter and incubated under anaerobic conditions for 30 minutes.

Samples were stored at 280uC until time of analysis. CoA species

were separated by ion exchange chromatography using an Äkta

Explorer (Amersham Biosciences). CoA standards and reaction

mixtures (500 ml) were injected onto a Mono Q HR 5/5 column in

50 mM potassium phosphate (pH 6.5) 50 mM NaCl. Nucleotides

were eluted from the column with a linear gradient from 50 to

350 mM NaCl in 10 column volumes at a flow rate of 2 ml/min,

and detected by UV absorbance (260 nm).

Accession numbers
Sequences for phylogenetic analyses were acquired from the

NCBI protein database (www.ncbi.nlm.nih.gov). Accession num-

bers corresponding to Figure 1B are as follows: Pyrococcus abyssi,

NP_127041; P. horikoshii, NP_142630; P. furiosus, Q51801;

Thermococcus kodakarensis, YP_184393; P. furiosus, Q51804; Thermo-

toga maritima, O05651; Helicobacter pylori, AAC38206; Pantoea

agglomerans, X78558; Klebsiella pneumoniae, CAA31665; Rhodospirillum

rubrum, X77515; Desulfovibrio africanus, CAA70873; Trichomonas

vaginalis, U16822; T. vaginalis, U16823; Halobacterium salinarum,

CAA45825; Hydrogenobacter thermophilus, BAB21494; M. tuberculosis,

CAA16032; Sulfolobus sp., BAA10898; H. pylori, AAC38211;

Methanothermobacter thermautotrophicus, NP_276168; P. horikoshii,

NP_142702; P. furiosus, NP_578262; P. abyssi, NP_126972; T.

kodakarensis, YP_182549. Those corresponding to Figure 1C are as

follows: M. tuberculosis, CAA16032; M. bovis, NP_856129; M.

ulcerans, ABL05848; M. avium, YP_880944; M. gilvum, ABP45093;

M. vanbaalenii, ABM14742; M. smegmatis, YP_888909.1; Mycobac-

terium sp. KMS, YP_939624; pRHL2, Rhodococcus jostii,

ABG94195; Nocardia farcinica, BAD58508; Saccharopolyspora erythraea,

CAM03198; Salinispora arenicola, ABV96568; S. tropica, ABP53176;

F. alni, CAJ59716; Frankia sp. CcI3, ABD09939; Frankia sp.

EAN1pec, ABW15421; Acidothermus cellulolyticus, ABK52058;

Streptomyces coelicolor, CAB60189; S. coelicolor, CAC08296; S.

avermitilis, BAC72589; Thermobifida fusca, AAZ56707; Propionibacte-

rium acnes, EEB67312; Nocardioides sp. JS614, ABL80079; Janibacter

sp. HTCC2649, EAQ00280; F. alni, CAJ65422; Frankia sp. CcI3,

ABD13820; Frankia sp. EAN1pec, ABW16201; M. thermautotrophi-

cus, NP_276168; H. pylori, AAC38211; H. salinarum, CAA45825;

H. thermophilus, BAB21494; Sulfolobus sp., BAA10898. R. jostii

pRHA1 KorA was assembled from translated sequence derived

from NC_008270.
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