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Abstract

Hepatitis E virus (HEV), a non-enveloped, positive-stranded RNA virus, is transmitted in a faecal-oral manner, and causes
acute liver diseases in humans. The HEV capsid is made up of capsomeres consisting of homodimers of a single structural
capsid protein forming the virus shell. These dimers are believed to protrude from the viral surface and to interact with host
cells to initiate infection. To date, no structural information is available for any of the HEV proteins. Here, we report for the
first time the crystal structure of the HEV capsid protein domain E2s, a protruding domain, together with functional studies
to illustrate that this domain forms a tight homodimer and that this dimerization is essential for HEV–host interactions. In
addition, we also show that the neutralizing antibody recognition site of HEV is located on the E2s domain. Our study will
aid in the development of vaccines and, subsequently, specific inhibitors for HEV.
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Introduction

Infectious viral hepatitis is a major health problem in both

developing and developed countries. Hepatitis E virus (HEV) is an

important cause of severe hepatitis in humans and is responsible for

unusually high rates of mortality in pregnant women by the

development of fulminant liver disease [1]. HEV morphologically

resembles the Calicivirus and had been initially classified into the

family of Caliciviridae. However, sequence comparisons and

phylogenetic taxonomy differentiate HEV from Calicivirus, and it

now defines a new family named Hepeviridae [2,3]. This family has at

least four recognized genotypes, but with a single serotype [4]. The

HEV genome is a positive-stranded RNA of approximately 7.5 kb

that encodes at least three different proteins. One of these genes

(ORF2) encodes a single structural protein (pORF2) of 660aa. A

22 Å low- resolution cryoEM structure of recombinant HEV virus-

like particles shows that the virus capsid is made up of subunits

(capsomeres) consisting of homodimers of this structural protein [5].

Subunits of this dimeric capsid protein interact through their

dimeric C-terminal domain to form a virus shell that protrudes from

the viral surface [5,6]. The initial contact with host cells to initiate

viral infection is believed to occur through these protrusions [7].

Our previous studies on a number of recombinant HEV viral

capsomeres derived from E2 protein (aa394–606) suggested that

the dimeric domain encompasses aa459–606, of which, aa597–

602 are involved in dimer formation. In addition, regions spanning

aa394–459 and aa607–660 are believed to be involved in the

stabilization of the homodimers [6]. Monoclonal antibodies

reactive against the abovementioned regions bind to live HEV,

and at least two monoclonal antibodies (8C11 and 8H3) could

neutralize the infectivity of HEV [8]. A recombinant mutant of

E2, p239 (ORF2 aa368–606), forms particles of diameter 23 nm,

presumably via dimeric interactions [6,9]. These particles could

specifically adsorb and penetrate susceptible host cells similarly to

live viruses. This interaction could be blocked by the neutralizing

monoclonal antibodies mAb 8C11 and 8H3 [7], thus suggesting

that the dimeric domain of these polypeptides resembles the virus

capsid (capsomeres including the neutralization sites), most

probably the surface protrusion.

As a continuation of our efforts to understand the structure and

function of the Hepatitis E virus and its proteins, here we report

the crystal structure of the dimerization domain of the recombi-

nant capsid protein E2 (hereafter referred to as E2s, located on

ORF2 aa455–602) refined up to 2.0 Å resolution. This is the first

report of a crystal structure of a HEV protein. E2s has a b-barrel

architecture consisting of an internal hydrophobic pore with both

sides of the b-barrel blocked by short loops. The structure-based

site-directed mutagenesis targeting the dimer interface, as well as

the surface groove of the E2s domain, i.e. the proposed

neutralizing antibody binding site, showed that the E2s domain

is lying in the region of HEV that is likely to be involved in host

interactions for effective propagation of viral infection. Further,
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our studies suggest that the dimerization of capsid E2s domain is a

prerequisite for the virus-host interaction as well as for the binding

of some neutralizing antibodies to HEV.

Results

Overall structure
The structure of recombinant E2s domain from Hepatitis E

Virus (HEV) capsid was solved by the Single-wavelength

Anomalous Dispersion (SAD) method from a synchrotron data

set using Br heavy atom soaked crystals. The model was refined to

a final R-factor of 0.198 (Rfree = 0.240) at 2.0 Å resolution

(Table 1). The E2s model consists of residues from Ser459 to

Ala602. Five residues at the N-terminus had no interpretable

electron density map and were not modeled. The asymmetric unit

consists of one E2s molecule (Figure 1A and 1B). Notably, the

symmetry related molecules maintain the tight dimeric architec-

ture of E2s (Figure 1C and 1D).

E2s mainly consists of a single domain that forms a b-barrel.

Residues from b2, b3, b6 and b7, along with loops protrude at one

side of the b-barrel structure to form a surface groove of

approximately 15 Å in width and 11 Å in depth (Figure 1A). The

b-barrel consists of nine anti-parallel b-strands running from one end

of the molecule to the other. On one side of the b-barrel, there are

three loops which connect adjacent b-strands, whereas on the other

side, three loops and a double-strand b-sheet connect adjacent b-

strands. The pore inside the b-barrel is highly hydrophobic in nature

with side chains consisting of thirteen Leu, seven Val, two Ile, three

Tyr, two Phe and one Trp, making up a total of 28 hydrophobic

residues lining the inner pore surface (Figure S1). Approximate

dimensions of the b-barrel are 30 Å in height and 13 Å in diameter.

The top and the bottom side of the cavity of the b-barrel are blocked

by loops connecting residues Thr586 and Ala590; Ala467 and

Phe462 respectively (Figure 1B). Considering the hydrophobic

nature and size of the cavity, we postulate that the cavity could have

a role in recognizing hydrophobic ligands. However, the exact role of

the cavity as yet remains to be established.

E2s is a dimer
E2s was found to exist exclusively as a 2.55 S particle

(Figure 2A), which corresponds to a homodimer in solution, with

an apparent molecular mass of 30,6516421Da (Figure 2B), as

determined by analytical ultracentrifugation (AUC) experiments.

These observations were consistent with a dimeric arrangement

observed in the crystal structure (symmetry related subunits), with

the dimer having approximate dimensions of 54630615 Å. The

symmetry related subunits of the dimer are packed in a

perpendicular fashion to each other, resulting in a maximum

interaction (Figure 1C). The strong hydrophobic cluster at the

dimer interface is maintained by side chains of residues Val503,

Trp548, Thr552, Ala555, Tyr557, Tyr561, Val598 and Val600 of

both subunits of the dimer. In addition, eight hydrogen bonding

contacts (,3.5 Å) mainly from Arg542, Lys544, Ser546, Thr552,

Thr553, Asn562, Thr564 and Ser566 of both subunits are

involved in maintaining the dimer architecture. The surface area

buried upon dimer formation was calculated using PISA server

[10], and was found to be 1142.7 Å2, or 16.1% of the total surface

of each subunit. The dissociation constant (Kd) was estimated as

3976283 nM by the sedimentation equilibrium method in AUC

experiments (Figure 2B). The observed tight dimerization of E2s

suggests a functionally important role of the dimer structure.

Figure 3 shows the omit map of the C- terminal region which is

involved in the dimerization.

Structural comparison
All the positive-stranded RNA eukaryotic viruses have been

shown to have a capsid protein folded as b-barrels with jelly roll

topology [11,12]. These capsid proteins mostly consist of a shell

and a projection domain [13,14]. The shell domain is a tightly

closed domain protecting the viral RNA with its jelly roll b-barrel

oriented such that the b-strands run tangentially to the particle

surface [12]. However, the projection domain, if present, appears

Author Summary

Infectious viral hepatitis is a major disease in both
developing and developed countries. Hepatitis E virus
(HEV) is one of the major causes of severe inflammation of
the liver, which is characterized by jaundice, fever, liver
enlargement, and abdominal pain in humans and non-
human primates. The hepatitis E virus capsid is made up of
individual subunits consisting of homodimers of a single
structural protein forming the virus shell. These dimers are
believed to protrude from the viral surface and to interact
with host cells to initiate infection. To date, no structural
information is available for any of the HEV proteins. This
article reports the crystal structure of the HEV capsid
protein domain E2s (protruding domain), along with
functional studies, which illustrate the tight homodimeric
state of E2s and that dimerization is essential for both
HEV–host interactions and disease progression. We also
show that the neutralizing antibody recognition site of
HEV is located on the E2s domain. The present findings will
aid the development of vaccines and novel inhibitors for
HEV.

Table 1. Data Collection and Refinement Statistics.

Category Data Set

Data Collection Cell parameters (Å, u) a = b = 111.45, c = 84.33

a= b= 90, c= 120

Space group R32

Resolution range (Å) 5022.0 (2.0722.0)

Reflections (total/unique) 141359/24473

Redundancy 5.8 (3.8)

Completeness (%) 92.6 (68.2)

Rsym
a 0.088 (0.269)

Refinement Resolution range (Å) 25.022.0

Rwork
b (Number of Reflections) 0.1975 (20153)

Rfree
c (Number of Reflections) 0.2401 (1006)

RMSD bond lengths (Å) 0.006

RMSD bond angles (u) 1.400

Ramachandran Plot Most favored region (%) 80.2

Additional allowed regions (%) 17.5

Generously allowed regions (%) 2.4

Disallowed regions (%) 0.0

Values in parentheses are for highest-resolution shell.
aRsym =S|Ii2,I.|/S|Ii| where Ii is the intensity of the ith measurement, and ,I.
is the mean intensity for that reflection.

bRwork =S| Fobs2Fcalc|/S|Fobs| where Fcalc and Fobs are the calculated and
observed structure factor amplitudes, respectively.

cRfree is calculated using the same equation as that for Rwork but 5% of
reflections where chosen randomly and omitted from the refinement.

doi:10.1371/journal.ppat.1000537.t001

Structure of HEV Capsid Protein E2s Domain
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to be structurally more variable. The N-terminal region of the

HEV capsid protein pORF2 is most likely to represent the shell

domain, whereas E2s, the C-terminal region of pORF2, is

considered as the projection domain of the HEV capsid protein.

A search for topologically similar proteins within the PDB

database performed with the program DALI [15] revealed no

significant structural homology for E2s. Notably, E2s does not

share any significant sequence or structural homology with any

known viral proteins. It appears to represent the structurally more

variable features of the projection domains.

It is worth mentioning here that Hepatitis E Virus was initially

grouped with Caliciviruses, which comprise Norwalk Virus (NV)

and San Miguel Sea lion Virus (SMSV). P2 domains of rNV and

SMSV have been shown to be recognized by neutralizing

monoclonal antibodies, which would suggest that they play a role

in virus host interactions [13,14]. Similar to the E2s domain of

HEV, these P2 subdomains of rNV and SMSV are the most

exposed regions, and contain determinants of strain specificity for

Norwalk Virus (NV) and SMSV, respectively [13,14]. Therefore,

independent structural comparisons of the E2s dimers with the P2

domains of rNV and SMSV were performed. These three

domains adopt the b-barrel architecture as shown in Figure 4A

and 4B. Because the projection domain of the virus is highly

structurally variable, the strand connectivity is not the same

between E2s and the other two P2 domain structures (Figure 4B).

In addition, the number of b-strands of these three domains is

different (Figure 4B). The core part of this domain comprises of

nine b-strands in E2s, whereas, there are seven b-strands in both

rNV and SMSV P2 subdomain, respectively. However, cores of b-

barrels of these three domains can be superposed up to certain

extent (RMSD of 3.8 Å for 64 Ca atoms; 7% sequence identity

with rNV P2 domain; RMSD of 3.4 Å for 87 Ca atoms; 8%

sequence identity with SMSV P2 domain).

Dimerization of E2 and HEV neutralization
Analysis of the dimer interface of E2s provided new insight into

its tight dimeric architecture. In the case of NV and SMSV the P2

subdomains are dimers and are shown to interact with the host

Figure 1. Structure of E2s. (A) Ribbon diagram of the subunit of the E2s dimer, side view. (B) Top view of the subunit of E2s dimer showing the
cavity. b-strands and random coils/turns are depicted in red and green respectively. N- and C-termini are labeled. The dimerization interface and
groove region are labeled. (C) The E2s dimer. Subunit A is shown in yellow, subunit B in red. Dimeric interface residues from both subunits are shown
in ball-and-stick representation. Notably, the asymmetric unit consists of one subunit of the dimer. This dimer is generated by crystallographic
symmetry. These figures were prepared by using Molscript and Raster3D [32,33]. (D) Close-up view of the dimer interface. Key residues involved in
the dimerization are labeled. This figure was prepared using PyMol [34].
doi:10.1371/journal.ppat.1000537.g001

Structure of HEV Capsid Protein E2s Domain
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[13,14,16,17,18]. To verify that the dimerization of E2s is crucial

for the host interaction of HEV, several mutations on dimer

interface regions of E2/E2s were carried out (Figures 5 and 6), and

their roles in destabilizing the dimer formation were studied. A

total of eleven point mutants of E2/E2s were constructed. Non-

reducing SDS-PAGE was used to verify the dimerization of these

mutants in comparison with the standard MW markers (Figure 5).

Independently, the dimeric nature of most of E2/E2s constructs

was verified by analytical ultracentrifugation and gel filtration

experiments (Figures S2 and S3). In addition to C-terminal

residues, Arg542 and Tyr557 were revealed by the structure of E2s

to be possibly involved in the dimerization. Arg542 is involved in

two inter-subunit hydrogen bonding contacts. However, the

mutant of Arg542 to Ala was still observed as a dimer in solution

and reacted with mAb 8C11. Tyr557 is a part of the hydrophobic

cluster, which consists of Tyr559, Tyr561 and Tyr584 from both

subunits of the E2s dimer. The mutant of Tyr557 to Ala still

showed up as a dimer in solution (Figure S2). However, it migrated

as a monomer on a non-reducing SDS-PAGE (Figure 5). It was

observed that this mutant retained mAb 8C11 reactivity only as a

dimer, but lost its ability to recognize antibodies when it became a

monomer in the presence of 0.1% SDS. Furthermore, we observed

that five more mutants, namely, E2-T564A, E2-V598E, E2-

A599E, E2-L601E and E2-A602E, existed exclusively as mono-

mers in phosphate-buffered saline at pH 7.4. These mutants were

found to lack the ability to interact with HEV-neutralizing

Figure 2. Dimerization of E2s in solution was investigated by analytical ultracentrifugation (AUC). (A) Sedimentation velocity
experiment shows that E2s behaves as a single globular species having the sedimentation coefficient of 2.55S and a hydrated friction ratio of 1.30. (B)
Sedimentation equilibrium experiment indicates that E2s mainly exists as a dimer with M.W. 30,6516421 Da. The dissociation constant of the E2s
dimer, Kd was fitted as 3976283 nM using the self-association model.
doi:10.1371/journal.ppat.1000537.g002

Figure 3. Stereo view of the electron density map. Simulated annealing Fo-Fc omit map of the C-terminal region of E2s, which is crucial for the
dimerization. Residues Val600, Leu601 and all atoms within 2.0 Å were omitted prior to refinement. The map contoured at a level of 3s. This figure
was prepared using PyMol [34].
doi:10.1371/journal.ppat.1000537.g003

Structure of HEV Capsid Protein E2s Domain
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monoclonal antibody, mAb 8C11 (Figure 5). These results confirm

that HEV neutralization sites are associated with the dimeric

nature of E2/E2s. In order to further verify the integrity of

secondary structures in these mutants, circular dichroism (CD)

spectra were recorded for wild-type E2, as well as, for all other

mutants. In all cases, CD spectra showed the existence of similar

secondary structures (Figure S4).

Moreover, our studies confirmed that various constructs of E2,

such as E2a, p239 and E2s, contain the major dimerization site in

the C-terminal region between aa597 and aa602 (Table S1) [6].

This is supported by the structure of E2s, which reveals the

participation of hydrophobic residues of the b11 strand (Gly589 to

Ala602) in forming the dimeric interface.

Previously we had shown that mAb 8C11 and 8H3 neutralize

HEV infection in monkeys [8] and block virus-host interaction [7].

Consequently, all E2 constructs were verified for the ability to form

dimers and were tested for their reactivity with the neutralizing

monoclonal antibodies (Figure 5). The structure of E2s reported

here is the representative structure for all E2 constructs. E2s is the

shortest among all constructs of E2 (Figure 5) that can dimerize and

recognize HEV antibodies, in a way similar to other E2 constructs,

as well as the native HEV [8]. Furthermore, E2s contains most of

the conserved residues. More importantly, it contains the crucial

dimerization region of E2. The structure of E2s shows that C-

terminal residues, such as Ala597, Val598, Ala599, Leu601 and

Ala602, are directly engaged in dimer formation, with additional

interactions from Tyr557 further stabilizing dimers.

HEV antibody recognition and E2s
We have investigated the functional relevance of E2 constructs

through a panel of 33 previously reported mAb that are reactive

against the E2 fragment (aa 394–606) and p239 (aa 368–606)

(Table S1). These antibodies target the unique structural features

of E2/E2s. Thirteen of them are linear epitope - reactive

antibodies and 20 of them are conformational determinants.

Moreover, two of 13 linear epitope-reactive antibodies and 15 of

20 conformational determinant -reactive antibodies can bind

genotype I and/or genotype IV HEV. We have further identified

that two of them (mAb 8C11 and 8H3) can neutralize the

infectivity of HEV, thus preventing the virus from infecting

primates [8]. Notably, one of the recombinant E2 constructs, p239

(ORF2 aa368–606), forms a virus like particle (VLP) with a

diameter of 23 nm [9]. The p239 VLP was found to specifically

adsorb and penetrate susceptible host cells similarly to live HEV

viruses. This interaction could be blocked by the neutralizing mAb

8C11 and 8H3 [7]. This showed that the recombinant E2

constructs shared many common features of the native virus.

Thus, it can be suggested that the host and antibody interaction

sites/regions of HEV are similar if not identical.

Based on our studies on various E2 constructs, we hypothesize

that the surface exposed groove region is the most likely antibody

recognition site of HEV (Figure 1A). To verify this hypothesis we

have carried out several mutations targeting the groove region,

and studied their interactions with mAb 8C11 and 8H3 (Figures 6,

7 and S5). Interestingly, the structure of the groove region of E2s is

unique, and no such groove region was observed in the P2 domain

in either rNV or SMSV [13,14]. Our analysis showed that (1) all

these mutants remained as dimers, (2) only D496A mutant did not

recognize mAb 8C11 and 8H3, and (3) mutants E479A, Y485A,

I529A and K534A abrogated the reactivity of mAb 8H3, while

retaining the 8C11 reactivity (Figure 7B). These mutagenesis

studies suggest that the groove region may contain a neutralization

site. It is possible that the required positioning of the groove region

Figure 4. Structural comparison of E2s with P2 domains. (A) Side-by-side ribbon diagram of HEV-E2s, the SMSV-P2 domain (pdb code 2gh8)
and the rNV-P2 domains (Pdb code 1ihm). b-strands and a-helices are numbered. N- and C-termini are also labeled. These figures were prepared
using Molscript and Raster3D [32,33]. (B) Topology diagrams of HEV-E2s, the SMSV-P2 domain and the rNV-P2 domain. b-strands, a-helices and
connecting loops are represented by red arrows, blue cylinders and green lines respectively.
doi:10.1371/journal.ppat.1000537.g004

Structure of HEV Capsid Protein E2s Domain
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Figure 5. Mutational studies on the dimer interface. (A) The schematic representation of wild-type E2 and eleven point mutations targeting
the dimer interface region. Secondary structural elements are shown for the E2s region. The mutated residues located on the b-strands and coils are
shown in red and black, respectively. (B) These mutants and wild-type E2 were subjected to non-reducing SDS-PAGE and Western Blotting with the
neutralizing mAb 8C11 and 8H3 to study the effects of these mutations on dimerization and neutralization, respectively. [+] denotes dimerization or
reactivity with 8C11 or 8H3, [2] denotes loss of the respective property. Note that both the capacity to form dimers and the reactivity with mAb 8C11
and 8H3 were abolished simultaneously in six of these mutants: Y557A, T564A, V598E, A599E, L601E and A602E.
doi:10.1371/journal.ppat.1000537.g005

Structure of HEV Capsid Protein E2s Domain
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might be preserved only in the dimeric form of E2, and it might

collapse when it becomes a monomer (Figure 7B, lane E2-N, H).

Hence we propose that the dimeric form of E2 is essential to

position these groove regions for the neutralization of HEV. We

see that antibody interactions are associated with the E2 region of

HEV, a region which may mediate the first contact with the host

cell to initiate viral infection [7]. Thus, the capsid protein domain

E2 is a functionally important region of HEV, and it reacts against

different mAb that are capable of HEV immune capture and virus

neutralization.

Discussion

HEV is one of the major causes of acute hepatitis in humans

and non-human primates. Neutralizing antibodies such as 8C11

and 8H3 bind with native HEV [8], as well as with the dimeric

form of E2 constructs [6,19]. We believe that the interaction sites

of these antibodies are located on the surface region of HEV, and

that the dimeric E2 domain is, presumably, located in this region

of HEV. Furthermore, based on our experimental observations on

the mAb recognition of E2 constructs, we strongly believe that the

dimeric nature of E2 is functionally relevant. The homodimer E2

domain is the C-terminal part of the major capsid protein of HEV

containing the antibody neutralization site of HEV. The present

structural and functional studies on the recombinant E2s, a

representative construct of E2 domain, demonstrate the important

role of dimerization and its implication for virus-host interaction.

Our analysis suggests that the HEV-neutralizing sites, as defined

by mAb 8C11 and 8H3, are distinct, because the specificity of

each antibody is different. However, mAb reactive sites are strictly

associated with the dimeric domain of HEV capsid protein, i.e. the

E2 domain. The recognition by these mAb is totally lost with the

dissociation of the dimeric form of E2 into its monomeric form.

Further mutagenesis of E2 constructs suggests that mAb 8C11 and

8H3 interact with the neutralization sites located near the surface

groove region, and that the conformation of the dimeric structure

is important for neutralization.

Taken together the presence of neutralizing antibody binding

sites of HEV on E2s, and the shape of the dimer, we suggest that

E2s is present on the surface protrusions of HEV shown in the

electron microscopic structure [5]. The equivalent protruding

region of rNV and SMSV is different, and this might be due to

structural variations of these protruding domains E2 vs. P2 of HEV

and rNV/SMSV respectively. These variations may be related to

the specific recognition to a specific host cell. Nonetheless, we

suggest that the protruding region of the hepatitis E virus is

equivalent to the protruding P2 subdomains of the rNV virus and

SMSV [13,14] and both are expected to have a similar role in host

interactions. Notably, due to the resemblance in morphology,

hepatitis E virus was formerly included in the family Caliciviridae

(comprising of rNV and SMSV), before it was reclassified to a

separate genus, Hepevirus in the family Hepeviridae, according to the

phylogenetic analyses [2,3]. This protruding region which is likely

to harbor the E2s and the antibody binding site of the hepatitis E

virus, is crucial for its interaction with the host cell for initiation or

propagation of viral infection. This is likely to be a universal

mechanism for most virus-host interactions and would warrant

further study. Our results can be extended towards vaccine

development against HEV infection in humans, and to open up

new avenues to design specific inhibitors for the virus.

Materials and Methods

Plasmid and strain construction
The E2s gene (encoding HEV ORF2 aa 455–602) was PCR

amplified from the E2 gene (ORF2 aa 394–606) [6], then

subcloned into a vector pMD 18-T with a TA cloning kit (Takara,

Dalian, China), and ligated to a non-fusion pTO-T7 expression

plasmid [20] in NdeI/EcoRI restriction sites. The alanine scanning

mutageneses on E2s or E2 were carried out with site-directed PCR

reactions. All resultant DNA fragments were cloned into a pTO-

T7 plasmid. The E.coli ER2566 strain was transformed to express

these non-fusion proteins with an additional start Met at N-

terminus.

Purification and crystallization
All recombinant proteins formed inclusion bodies in bacterial

cells. Inclusion bodies were separated from cellular debris by

extensive washing with buffer containing 2% Triton X-100, and

then dissolved by homogenization with 4 M (for E2 and its

mutants) or 8 M urea (for E2s and its mutants). Proteins were

renatured by dialysis against phosphate-buffered saline at pH 7.4

(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 2 mM

KH2PO4) at room temperature and further purified by gel

filtration HPLC using a TSK gel SW3000 25 mm660 cm column

(TOSOH, Japan). E2s was dialyzed with pure H2O and

Figure 6. Mapping of site-directed mutation on E2s. A transparent surface representation of the subunit of the E2s dimer is shown at two
different orientations. (A) Shows the dimerization mutants and (B) shows the groove region mutants. Figure 6(B) is 180u rotated with respected to
Figure 6(A). Further the view of Figure 6(A) is related to the view of Figure 1(A) with an anticlockwise rotation of 90u. All mutated residues are shown
in ball and stick model. Residues playing roles in the E2s dimerization are shown in blue. Residues in the groove region that were mutated to study
the reactivity of mAb are shown in magenta. This figure was prepared using PyMol [34].
doi:10.1371/journal.ppat.1000537.g006

Structure of HEV Capsid Protein E2s Domain
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Figure 7. Mutational studies on the groove region. (A) The schematic representation of wild-type E2 and nine point mutations targeting the
solvent-accessible residues near the groove region. (B) The wild type E2 and its mutants were subjected to non-reducing SDS-PAGE and Western
Blotting with the HEV-neutralizing antibody 8C11 or 8H3. In this figure the lanes with H indicate samples in the reduced condition (i.e. these samples
were heated up to 100uC for 3 minutes). These samples were mainly resolved as monomers. The lanes with N indicate samples in the non-reducing
condition (i.e. these samples with 0.1% SDS, no BME and were not heated). These samples were resolved mainly as dimers. All nine mutants remained
as dimers. Western Blotting showed that the dimeric E2 wild type and eight mutants were reactive with mAb 8C11. Of these, only E479A, Y485A,
I529A, K534A and D496A abolished the 8H3 reactivity. Interestingly, mutant D496A abolished the HEV neutralizing antibodies 8C11 and 8H3 reactivity
while maintaining the dimeric arrangement.
doi:10.1371/journal.ppat.1000537.g007
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concentrated to 15 mg/ml for crystallization. Crystallization drops

containing 1 ml E2s protein solution (15 mg/ml) and 1 ml reservoir

solution were equilibrated by hanging drop vapor diffusion at

21uC. The best crystals were grown from a reservoir solution

consisting of 0.1 M HEPES pH 7.5, 12% PEG3350 and 5 mM of

cobalt chloride hexahydrate, nickel (II) chloride hexahydrate,

cadmium chloride dehydrate and magnesium chloride hexahy-

drate. Crystals measuring ,0.2 mm in length grew over the

course of 3 days, belonged to the space group R32, and contained

one molecule in the asymmetric unit. Obtaining the diffraction

quality single crystals and the phasing were the most challenging

task in this project. The present data set is the best of over one

hundred data sets collected. The X-ray data collection and

refinement statistics are given in Table 1.

Data collection, structure solution and refinement
Crystals were cryo-protected in the reservoir solution supple-

mented with 25–30% glycerol, and flash cooled at 100 K. The

structure was determined using Br heavy atom soaked crystals of

recombinant E2s protein by the single-wavelength anomalous

dispersion (SAD) method. X-ray diffraction data were collected at

the beamline X12C, Brookhaven National Laboratory using a

Quantum-210 CCD detector (ADSC). A single data-set was

collected at the wavelength corresponding to the peak. All data-

sets were processed with HKL2000 [21]. Three Br sites of an

asymmetric unit were located by using the program BnP [22].

Phases were further improved by density modification using

RESOLVE [23,24], which gave a final overall Figure of merit

0.70. Over 67% of the backbone atoms of the model were built by

the RESOLVE iteration method [25]. Remaining residues of the

molecules were added after several cycles of manual model

building by using O [26], followed by refinement using CNS [27].

Finally, 244 well-defined water molecules were added, and

refinement was continued until the R-value converged to 0.198

(Rfree = 0.240) for reflections I.s (I) to 2.0 Å resolution. The

model had good stereochemistry, with all residues within allowed

regions of the Ramachandran plot (Table 1) analyzed by

PROCHECK [28].

Analytical Ultra-Centrifugation (AUC)
The AUC velocity experiment was to independently establish the

homogeneity of the molecules in solution, and subsequently

determine their molecular mass by equilibration experiment.

Sedimentation velocity (SV) and sedimentation equilibrium (SE)

experiments were conducted at 20uC on a Beckman XL-A analytical

ultracentrifuge, equipped with absorbance optics and an An60-Ti

rotor. The molecular mass and partial specific volume of E2s, the

solvent density and viscosity of the solvent were calculated from the

amino acid or buffer composition using the program SEDNTERP

(John Philo, Amgen, Thousand Oaks, CA, and RASMB). For SV

experiments E2s was diluted to 1 mg/ml (,1.2 OD280 nm) in

phosphate-buffered saline at pH 7.4. The rotor speed was set at

60,000 rpm for the highest resolution. The sedimentation coefficient

and f/f0 were obtained with c(s) method [29] using the Sedfit software

(kindly provided by Dr. P. Schuck, National Institutes of Health,

http://www.analyticalultracentrifugation.com). Similarly, for SE

experiments E2s was diluted to 0.69OD, 0.36OD and 0.14OD in

phosphate-buffered saline at pH 7.4 (137 mM NaCl, 2.7 mM KCl,

10 mM Na2HPO4 and 2 mM KH2PO4). Samples were centrifuged,

first at 18,000 rpm, and, subsequently, at 21000, 24000 rpm,

respectively, and finally at 42000 rpm for solute depletion. Data sets

were processed using the program Origin (Beckman) for detecting

multiple equilibria and were fitted to a single ideal species model and

a self-association monomer-dimer model using a nonlinear least

squares fit [30]. In subsequent models the monomer molecular mass

was fixed at the value calculated from the E2s amino acid sequence

(15,788 Da).

SDS-PAGE and Western Blotting (WB)
Analysis of proteins by SDS-PAGE was performed according to

the method of Laemmli with minor modifications [31]. Polyacryl-

amide gels with 12% or 15% acrylamide in the separating gel and

5% in the stacking gel were used. Protein samples were mixed with

equal volumes of 26 loading buffer (100 mmol/L Tris-HCl

pH 6.8, 200 mmol/L BME, 4% SDS, 0.2% Bromophenol blue

and 20% Glycerol). Sample mixtures were heated at 100uC for

3 minutes and subsequently loaded onto the separating gel. For

the non-reducing SDS gel, the buffer contained only 0.1% SDS,

no BME, and the sample was not boiled.

For Western Blotting experiments, separated proteins were

transferred from an SDS gel onto a nitrocellulose membrane.

Membranes were soaked in 1:2,000 diluted HEV-neutralizing

monoclonal antibody (8C11 or 8H3), incubated at room

temperature for 1 h, and subsequently washed with 0.2% Tween

20 in phosphate-buffered saline (at pH 7.4). The bound antibody

was detected with alkaline phosphatase conjugated secondary

antibody (DAKO), and developed with a mixture of nitro blue

tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate.

Gel filtration chromatography
Purified proteins were passed through a Superdex 75 10/

300GL column equilibrated in phosphate-buffered saline (at

pH 7.4) using an AKTA Explorer 100 (GE, USA) at a flow rate

of 0.5 ml/min. Molecular weights of eluted proteins were

determined by using the following molecular weight standards:

Conalbumin (75 kDa), Ovalbumin (43 kDa), Carbonic Anhydrase

(29 kDa), Ribonuclease A (13.7 kDa), and Aprotinin (6.5 kDa)

(GE, USA).

Circular dichroism spectrometry
Far UV spectra (260–190 nm) of the E2 wild-type and mutants

were measured in a phosphate-buffered saline at pH 7.4 at room

temperature using a J-810 spectropolarimeter (JASCO, Tokyo),

with 0.1 cm path length and stoppered cuvettes. A total of 5 scans

were recorded and averaged for each spectrum, and the baseline

was subtracted.

Coordinates
Coordinates have been deposited in the Protein Data Bank

(accession code 3GGQ).

Supporting Information

Table S1 Reactivity of E2, p239 and E2s against a panel of 33

mAbs.

Found at: doi:10.1371/journal.ppat.1000537.s001 (0.07 MB

DOC)

Figure S1 The Ca trace of the HEV E2s b-barrel shown in

green, top view. The hydrophobic side chains of the residues from

the cavity region are shown in thick lines. This figure was prepared

by using Molscript and Raster3D [31,32].

Found at: doi:10.1371/journal.ppat.1000537.s002 (0.29 MB TIF)

Figure S2 The dimerization of E2s-Y557A in solution was

investigated by sedimentation equilibrium experiment in analytical

ultracentrifugation (AUC). The results indicate that E2s-Y557A

mainly exists as a dimer with M.W. 29,420697 Da.

Found at: doi:10.1371/journal.ppat.1000537.s003 (1.68 MB TIF)
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Figure S3 Gel filtration chromatography of E2s. By comparison

with the molecular weight standards [Conalbumin (75 kDa),

Ovalbumin (43 kDa), Carbonic Anhydrase (29 kDa), Ribonucle-

ase A ovalbumin (13.7 kDa), and Aprotinin (6.5 kDa)], the

apparent molecular weight of E2s elution fraction was estimated

to be 28.5 kDa which corresponds to the molecular weight of the

dimeric form.

Found at: doi:10.1371/journal.ppat.1000537.s004 (0.34 MB TIF)

Figure S4 Circular dichroism (CD) spectra of E2 and its

mutants. Curve 1 in red: E2 wild-type. Curve 2 in green: E2-

T564A, which becomes a monomer in solution and abolishes the

reactivity with the HEV-neutralizing antibodies 8C11 and 8H3.

Curve 3 in blue: E2-D496A, which has a mutation near the groove

region, and which abolishes the reactivity with HEV-neutralizing

antibodies 8C11 and 8H3, but remains a dimer in solution. These

CD spectra show that all three viriants have similar b-sheet

secondary structures, with peaks at 203 nm, 225 nm and troughs

at 199 nm, 209 nm and 229 nm.

Found at: doi:10.1371/journal.ppat.1000537.s005 (0.15 MB TIF)

Figure S5 SDS-PAGE analysis of E2 and its mutant, D496A.

Lane M is the marker. Lane 1 and 3 are samples in the presence of

0.1% SDS (non reduced condition). Lane 2 and 4: Samples were

heated at 100uC for 3 minutes with SDS and BME. Apparent

molecular weight was estimated by comparing with the molecular

weight markers (M). The wild-type E2 is in lanes 1 and 2, whereas

E2-D496A is in lanes 3 and 4.

Found at: doi:10.1371/journal.ppat.1000537.s006 (1.49 MB TIF)
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