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Abstract

The interferon-induced transmembrane protein BST-2/CD317 (tetherin) restricts the release of diverse enveloped viruses
from infected cells. The HIV-1 accessory protein Vpu antagonizes this restriction by an unknown mechanism that likely
involves the down-regulation of BST-2 from the cell surface. Here, we show that the optimal removal of BST-2 from the
plasma membrane by Vpu requires the cellular protein b-TrCP, a substrate adaptor for a multi-subunit SCF E3 ubiquitin
ligase complex and a known Vpu-interacting protein. b-TrCP is also required for the optimal enhancement of virion-release
by Vpu. Mutations in the DSGxxS b-TrCP binding-motif of Vpu impair both the down-regulation of BST-2 and the
enhancement of virion-release. Such mutations also confer dominant-negative activity, consistent with a model in which
Vpu links BST-2 to b-TrCP. Optimal down-regulation of BST-2 from the cell surface by Vpu also requires the endocytic
clathrin adaptor AP-2, although the rate of endocytosis is not increased; these data suggest that Vpu induces post-endocytic
membrane trafficking events whose net effect is the removal of BST-2 from the cell surface. In addition to its marked effect
on cell-surface levels, Vpu modestly decreases the total cellular levels of BST-2. The decreases in cell-surface and intracellular
BST-2 are inhibited by bafilomycin A1, an inhibitor of endosomal acidification; these data suggest that Vpu induces late
endosomal targeting and partial degradation of BST-2 in lysosomes. The Vpu-mediated decrease in surface expression is
associated with reduced co-localization of BST-2 and the virion protein Gag along the plasma membrane. Together, the data
support a model in which Vpu co-opts the b-TrCP/SCF E3 ubiquitin ligase complex to induce endosomal trafficking events
that remove BST-2 from its site of action as a virion-tethering factor.
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Introduction

HIV-1 encodes specific proteins dedicated to counteracting host

cell ‘‘restriction factors’’ that inhibit viral replication [1]. In the

prototypic example of this relationship, the accessory protein Vif,

found in almost all lentiviruses, targets cytidine deaminases in the

APOBEC family for proteasomal degradation [2]; these cellular

enzymes would otherwise damage nascent viral cDNAs to inhibit

infectivity [3]. In the second example of this host-pathogen

relationship, the accessory protein Vpu, found almost exclusively in

HIV-1 and SIVcpz, counteracts the cellular transmembrane protein

BST-2/CD317 (tetherin) [4,5]. BST-2 is an interferon-induced, cell-

surface and lipid-raft associated protein that tethers nascent, fully

formed HIV-1 virions to infected cells, preventing their release and

subsequent spread [4–8]. Vpu decreases the expression of BST-2 at

the cell surface [5,9], and the removal of BST-2 from its site of

tethering action may underlie the mechanism by which Vpu

counteracts this cellular restriction [5]. However, how Vpu reduces

the levels of BST-2 at the cell-surface is currently unknown.

Vpu is a small, transmembrane protein that, in addition to

enhancing the release of virions from infected cells [10–13],

induces the degradation of CD4, and possibly class I MHC, by

linking these proteins to the multi-subunit SCF (Skp1-Cullin-F-

box)/b-TrCP containing E3 ubiquitin ligase complex [14,15].

Vpu recruits b-TrCP to membranes of the endoplasmic reticulum

to trigger the proteasomal degradation of CD4 [14]. This process

requires the interaction of Vpu with b-TrCP [14]. This interaction

is mediated by a canonical DpSGxxpS sequence (where pS

indicates phosphoserine) in the cytoplasmic domain of Vpu and a

propeller-like arrangement of WD repeats in b-TrCP [16,17]. b-

TrCP interacts via its F-box domain with Skp1 and the remainder

of the Cullin-1-based E3 ligase complex, leading to the presumed

ubiquitination of CD4 and the targeting of CD4 to the

proteasome.

The conserved serines in the DpSGxxpS sequence of Vpu are

required for the efficient down-regulation of cell-surface BST-2 as

well as for the degradation of CD4 [5,18]. However, Vpu-

mediated down-regulation of BST-2 is not effectively blocked by

inhibition of the proteasome [5], raising the possibility that Vpu

recruits b-TrCP to induce ubiquitin-mediated endosomal traffick-

ing events that remove BST-2 from the cell surface. Furthermore,

although the serine residues in the DpSGxxpS sequence contribute
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to the enhancement of virion-release by Vpu, they are not

absolutely required for this activity [5,18,19]. This observation has

left the role of surface down-regulation in the counteraction of

BST-2 by Vpu unresolved.

Here, we show that b-TrCP is required for both the optimal

down-regulation of BST-2 and the enhancement of HIV-1 virion-

release by Vpu. Vpu-mediated down-regulation of BST-2 from the

cell surface is also partly dependent on the plasma membrane

associated clathrin adaptor protein complex AP-2 and can be

inhibited by disruption of the endo-lysosomal pH gradient. These

data suggest that Vpu recruits b-TrCP to induce ubiquitin-

mediated endosomal trafficking events that reduce the levels of

BST-2 on the plasma membrane, effectively removing BST-2 from

its site of action as a virion-tethering factor.

Results

b-TrCP is required for optimal down-regulation of BST-2
and enhancement of virion-release by Vpu

To test the hypothesis that b-TrCP plays a role in the Vpu-

mediated down-regulation of BST-2 from the cell surface, we

over-expressed a b-TrCP mutant with a deletion in the F-box

domain (DF-box b-TrCP). b-TrCP binds Vpu via its WD domain,

while it binds to the SCF E3 ubiquitin ligase complex via its F box

domain. Since DF-box b-TrCP binds Vpu but cannot link it and

any Vpu-interacting proteins to the ubiquitination machinery, it

functions as a dominant negative mutant [14]. As previously

reported [5], Vpu down-regulated endogenous BST-2 from the

surface of HeLa cells as measured by flow cytometry (Figure 1A,

left panel, in which transfection using a Vpu-expression plasmid

reduced the mean fluorescence intensity (MFI) of the cells by

69%). Cells transfected to over-express wild-type b-TrCP also

supported the efficient down-regulation of BST-2 by Vpu (a

reduction of 77% in MFI; Figure 1A, middle panel). In contrast,

DF-box b-TrCP inhibited the down-regulation of BST-2 by Vpu

(a reduction of only 25% in MFI; Figure 1A, right panel).

Immunoblot data indicated that the exogenous b-TrCP and DF-

box b-TrCP proteins were expressed appropriately (Figure 1B). In

four independent experiments, the activity of Vpu when wild-type

b-TrCP was over-expressed relative to the activity of Vpu alone

was 1.10 (standard deviation = 0.22), whereas the activity of Vpu

when DF-box b-TrCP was expressed relative to the activity of Vpu

alone was 0.40 (standard deviation = 0.20); p = 0.007 by Student’s

t test. The expression of Vpu was not differentially affected in cells

expressing DF-box b-TrCP relative to cells expressing wild-type b-

TrCP, weighing against an indirect mechanism for these effects

(data not shown). The inhibition of Vpu-activity by DF-box b-

TrCP supported key roles for b-TrCP and the linkage of Vpu to

the b-TrCP/SCF E3 ubiquitin ligase complex during the down-

regulation of BST-2.

To test further the role of b-TrCP in the modulation of BST-2

by Vpu, we used RNA interference to target the endogenous

protein. Mammalian cells express two closely related proteins, b-

TrCP-1 and b-TrCP-2 [20]. HeLa cells were transfected with

plasmids expressing short hairpin RNAs (shRNAs) targeting Renilla

GFP (as a control), b-TrCP-1, b-TrCP -2, or both b-TrCP-1 and -

2; GFP was co-expressed as an indicator of transfection.

Subsequently, the cells were re-transfected to express Vpu and a

second indicator protein, IL-2 receptor a (Tac antigen; CD25),

and then analyzed by flow cytometry for the expression of both

indicator proteins and BST-2. The shRNA targeting the sequence

common to genes 1 and 2 inhibited the Vpu-mediated down-

regulation of BST-2 (Figure 1C); this effect was modest and

primarily evident in cells expressing high levels of Tac. In contrast,

the shRNAs specific for b-TrCP-1 or -2 had little or no inhibitory

activity (Figure 1C). To quantify these effects, comparable regions

of peak cell density for the Tac-positive and BST-2 down-

regulated cells in each analysis were picked based on contour plots,

and the MFI values of these regions were used to determine the

fold down-regulation of BST-2 by Vpu in each condition. This

analysis indicated that Vpu induced a 17-fold down-regulation of

BST-2 in cells expressing the control shRNA targeting Renilla

GFP, whereas it induced a 8.5-fold down-regulation in cells

expressing the shRNA targeting the sequence common to b-TrCP

genes 1 and 2. Using these data plus those from a second,

independent experiment (Figure S1), the activity of Vpu in cells

expressing shRNA to b-TrCP-1 was 1.39 relative to the activity of

Vpu in cells expressing shRNA targeting Renilla GFP, whereas the

relative activity in cells expressing shRNA targeting b-TrCP-2 was

0.80, and the relative activity in cells expressing shRNA targeting

both b-TrCP-1 and -2 was 0.49. To validate these shRNAs, we

tested their effectiveness and specificity using co-expressed, HA-

tagged, b-TrCP-1 (Figure 1D). The vector encoding the shRNA

specific for b-TrCP-1 and the vector encoding the shRNA

targeting both b-TRCP-1 and -2 were equally active against b-

TrCP-1-HA, whereas the vector specific for b-TrCP-2 was

inactive. These data suggested that targeting b-TrCP-1 alone is

insufficient to inhibit the modulation of BST-2 by Vpu. Overall,

the inhibitory effect of the shRNA targeting both b-TrCP-1 and -

2, which reduced the activity of Vpu by 51% as noted above (see

Figure S1) supported the data obtained from the DF-box,

dominant negative experiments. Both sets of data are consistent

with the hypothesis that b-TrCP is a cellular co-factor for the

down-regulation of cell-surface BST-2 by Vpu.

Since down-regulation from the cell surface has been proposed

as the mechanism by which Vpu counteracts the restriction

mediated by BST-2 [5], we asked whether over-expression of DF-

box b-TrCP also inhibited the enhancement of virion-release by

Vpu. Vpu-mediated enhancement of virion-release was measured

as the fractional secretion of p24 capsid antigen from virus-

producing cells. As previously reported [5], Vpu markedly

enhanced the efficiency of capsid-release in HeLa cells expressing

endogenous BST-2: 38% of the total capsid antigen produced was

released into the surrounding medium in the case of cells

expressing wild-type virus, whereas only 4% of capsid antigen

was released in the absence of Vpu (see ‘‘mock’’ in Figure 2). The

over-expression of b-TrCP had little or no effect on these release-

efficiencies: 43% for wild-type virus compared to 4% for virus

lacking Vpu (Figure 2). In contrast, DF-box b-TrCP inhibited the

release of wild-type virus, whose efficiency of release was reduced

to 9%, while having little or no effect on the release of virus lacking

Vpu, whose efficiency of release was 3% (Figure 2). These data

Author Summary

The cellular protein BST-2 prevents newly formed particles
of HIV-1 and other enveloped viruses from escaping the
infected cell. HIV-1 encodes the protein Vpu to counteract
this host defense, but the mechanism of this antagonism is
currently unknown. Here, the data suggest that Vpu
recruits the cellular protein b-TrCP to modulate the
trafficking of BST-2 within internal cellular membranes,
removing BST-2 from its apparent site of action at the cell
surface. These results add a new example to the growing
paradigm of viral counteraction of so-called ‘‘restriction
factors,’’ proteins that provide an innate defense against
viruses, by co-option of cellular regulatory assemblies
known as multi-subunit ubiquitin ligases.

Counteraction of BST-2 by HIV-1 Vpu

PLoS Pathogens | www.plospathogens.org 2 May 2009 | Volume 5 | Issue 5 | e1000450



indicated that DF-box b-TrCP is a selective inhibitor of the release

of Vpu-expressing virus, consistent with its ability to inhibit the

down-regulation of cell surface BST-2 by Vpu.

DF-box b-TrCP inhibits the degradation of CD4 by Vpu [14],

and high levels of cell-surface CD4 can inhibit the Vpu-mediated

enhancement of virion-release by unclear mechanisms [21]. The

HeLa cells used in the preceding experiments express CD4. To

determine whether the above results were an indirect consequence

of inhibition of CD4-degradation, we repeated the virion-release

experiments using a CD4-negative HeLa cell line (Figure S2).

Notably, these cells supported a Vpu-phenotype of similar

magnitude to that of the CD4-positive cells used throughout this

study; Vpu enhanced virion-release by 9.5-fold when CD4-positive

HeLa cells were used as viral producers (Figure 2) and by 8.5-fold

when CD4-negative HeLa cells were used as viral producers

(Figure S2). These data indicated that the levels of CD4 on the

HeLa cells used herein were not sufficient to inhibit the

enhancement of virion-release by Vpu. Furthermore, the expres-

sion of DF-box b-TrCP, but not the over-expression of wild-type

b-TrCP, inhibited the enhancement of virion-release by Vpu in

CD4-negative viral producer cells (Figure S2). Interestingly, the

inhibition of Vpu-activity in these experiments was not as great as

that observed using the CD4-positive cells, suggesting that a model

in which CD4 inhibits release may be operative. Nevertheless,

these data indicated that the role of b-TrCP as a co-factor for the

enhancement of virion-release by Vpu does not require CD4.

Residues in the DSGxxS b-TrCP binding motif are
required for optimal down-regulation of BST-2 and
enhancement of virion-release by Vpu

Vpu interacts with b-TrCP via a prototypical DSGxxS motif in

its cytoplasmic domain [14]. We previously observed that

Figure 1. b-TrCP is required for the optimal down-regulation of cell-surface BST-2: inhibition of Vpu activity by DF-box b-TrCP and
shRNA targeting b-TrCP-1 and -2. (A) DF-box b-TrCP inhibits Vpu-mediated down-regulation of cell-surface BST-2. Cells (HeLa) were transfected
with either an empty plasmid or a plasmid expressing Vpu, along with a plasmid expressing GFP as a transfection marker. The cells were also
transfected with either an empty plasmid (‘‘mock’’), a plasmid expressing b-TrCP, or a plasmid expressing a b-TrCP protein lacking the F-box (DFbox
b-TrCP). The next day, the cells were stained for surface BST-2 and analyzed by two-color flow cytometry. Histograms represent the relative cell
number vs. BST-2 fluorescence intensity for the GFP-positive cells. The percentage of GFP-positive cells varied between 30 and 33% for the six
transfections shown. Gray-shaded histograms represent cells not transfected to express Vpu; unshaded histograms represent cells transfected to
express Vpu. DF-box b-TrCP inhibited the Vpu-mediated down-regulation of cell surface BST-2 in each of four experiments; statistical analysis is
described in the text. (B) Cells (HeLa) were transfected with a plasmid expressing b-TrCP (WT b-TrCP), or a plasmid expressing a b-TrCP protein lacking
the F-box (DFbox b-TrCP), or not transfected; cell lysates were analyzed by immunoblot to detect the HA-tagged b-TrCP proteins. (C) shRNA targeting
b-TrCP inhibits Vpu-mediated down-regulation of cell-surface BST-2. Cells (HeLa) were transfected with plasmids expressing shRNAs targeting either
Renilla GFP (rGFP) as an irrelevant control, b-TrCP-1, b-TrCP-2, or both b-TrCP-1 and -2; in two cases these plasmids also expressed jellyfish GFP (the
plasmids targeting b-TrCP-1 and both b-TrCP-1 and -2); for the others a separate plasmid expressing GFP was co-transfected. Two days later, the cells
were re-transfected with an empty plasmid or a plasmid expressing Vpu, along with a plasmid expressing Tac antigen (IL-2 receptor a; CD25) as a
transfection marker. The next day, the cells were stained for surface BST-2 and Tac, and then analyzed by three-color flow cytometry. Two-color dot
plots are the BST-2 vs.Tac intensity of the individual GFP-positive cells. The results shown are representative of two independent experiments. (D)
HeLa cells were transfected with the indicated plasmids expressing shRNAs used in (C) along with the plasmid expressing b-TrCP-1-HA; cell lysates
were analyzed by immunoblot to detect the HA-tagged b-TrCP.
doi:10.1371/journal.ppat.1000450.g001

Counteraction of BST-2 by HIV-1 Vpu
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substitution of these serine residues (52 and 56 in Vpu of HIV-

1NL4-3) with asparagines markedly inhibited the down-regulation

of cell surface BST-2 when Vpu was expressed from a proviral

plasmid; this mutation was also associated with a reduction in the

efficiency of virion-release [5]. To extend this mutational analysis

with respect to the roles of the binding domain for b-TrCP and the

cytoplasmic domain of Vpu as a whole, we constructed a Vpu-

expression plasmid encoding the serine substitutions, Vpu-S52/

56N, as well as three other mutants: Vpu-D51A; Vpu-D51A-S52/

56N; and Vpu-32, encoding a truncated Vpu missing most of the

cytoplasmic domain including the DSGxxS motif. Vpu-S52/56N

and Vpu-D51A were impaired in their ability to down-regulate

BST-2 from the cell surface (Figure 3A). This functional

impairment was not attributable to poor expression of the mutant

proteins at steady state (Figure 3A). Instead, these mutants were

expressed at slightly greater levels than the wild-type protein,

which may cause an overestimation of their relative activity at the

protein level. The phenotype of the combination mutant Vpu-

D51A-S52/56N was indistinguishable from that of Vpu-D51A

and Vpu-S52/56N, suggesting that the DSGxxS sequence behaves

as a single entity and that either the D51A or the S52/56N

substitution is sufficient to abolish binding to b-TrCP. The Vpu-32

truncation mutant was devoid of activity, however, the expression

of this construct was not verifiable by western blot. Overall, these

mutational data supported the role of b-TrCP in the Vpu-

mediated down-regulation of BST-2.

To test a model in which Vpu links BST-2 to the b-TrCP/SCF

E3 ubiquitin ligase complex (see Figure 1A), we tested the Vpu-

S52/56N protein for the ability to dominantly interfere with the

activity of wild-type Vpu. The over-expression of Vpu-S52/56N

inhibited the down-regulation of BST-2 by wild-type Vpu

(Figure 3B). These data suggested that Vpu-S52/56N can saturate

endogenous BST-2, prevent wild-type Vpu from linking BST-2 to

the b-TrCP/SCF E3 ubiquitin ligase complex, and function as a

dominant-negative Vpu-mutant.

Next, we used the mutant panel above to correlate the down-

regulation of BST-2 with the enhancement of virion-release. The

mutant Vpu proteins were tested for their ability to rescue the

efficiency of virion-release when expressed in trans (Figure 3C). To

avoid misinterpretation due to over- or under-expression, the

amount of plasmid expressing wild-type Vpu was titrated to the

minimum required for trans-complementation (data not shown;

this amount of plasmid was also used for all the Vpu-expression

constructs in the experiment of Figure 3A and in the experiment of

Figure 3B for wild-type Vpu). Vpu-S52/56N, Vpu-D51A, and

Vpu-D51A-S52/56N were impaired in their ability to enhance

virion release, whereas Vpu-32 was completely inactive. These

mutational data confirmed the role of the b-TrCP binding motif in

the enhancement of virion-release by Vpu, and they supported a

correlation between the ability of Vpu to enhance virion-release

and its ability to down-regulate cell-surface BST-2.

Vpu induces a modest reduction in the total cellular
levels of BST-2

Since a b-TrCP-mediated mechanism of down-regulation could

involve a reduction in the total cellular levels of BST-2 via

ubiquitin-mediated proteasomal and/or endo-lysosomal degrada-

tion, we sought to measure the effect of Vpu on the total cellular

levels of BST-2. Under conditions in which a robust down-

regulation of BST-2 from the cell surface was detected by flow

cytometry, no effect on the total steady-state levels of BST-2

protein was detected by immunoblot (Figure 4A, which reveals

multiple immunoreactive bands in the range of 25–36 kilodaltons

consistent with heterogeneous glycosylation of BST-2 [22]).

Because this analysis was potentially limited by the transfection

efficiency (36% GFP-positive cells in the transfection including the

Vpu-expression vector in Figure 4A), we used intracellular staining

and flow cytometry to quantify total cellular BST-2 in transfected

cells and compared this to cell-surface levels. While the levels of

BST-2 on the cell surface were reduced 10-fold by Vpu, the total

cellular levels were reduced by only 1.8 fold. A very subtle effect of

Vpu on the total cellular expression of BST-2 was observed when

cells from a separate experiment were physically sorted to enrich

for GFP-expression prior to analysis by immunoblot (Figure S3),

and when BST-2 was expressed by transient transfection together

with Vpu in HEK 293 T cells (data not shown). Together, these

data suggested that Vpu modestly decreases the total cellular levels

of BST-2, consistent with previous data [9], although whether this

decrease is sufficient to account for the reduction in the level of

BST-2 on the cell surface is unclear.

The plasma membrane clathrin adaptor protein complex
AP-2 is required for optimal down-regulation of cell
surface BST-2 by Vpu

Because Vpu reduced the level of BST-2 on the cell surface

more dramatically than it reduced the total cellular level of BST-2,

we considered a model in which Vpu and the b-TrCP/SCF E3

ubiquitin ligase complex remove BST-2 from the plasma

membrane via an influence on ubiquitin-mediated endosomal

trafficking [23,24]. Ubiquitination is a regulatory mechanism of

endocytosis (reviewed in [25]), and in some examples this requires

the plasma membrane-associated clathrin adaptor AP-2 [26]. AP-

2 is a member of the endosomal adaptor protein (AP) complex

family. These heterotetrameric complexes coat endosomal mem-

branes, where they recruit cargo proteins and in some cases the

vesicle-scaffolding protein clathrin (reviewed in [27]). To test the

role of AP complexes in the down-regulation of BST-2 by Vpu, we

used siRNA to target the medium (m) subunits of three of the four

members of the AP complex family. siRNA targeting the m subunit

of AP-2 (m2), but not siRNAs targeting the m subunits of AP-1 (m1)

or AP-3 (m3), inhibited the Vpu-mediated down-regulation of

BST-2 (Figure 5A). This inhibition was partial, reflecting either an

incomplete knockdown [supported by immunoblot data (not

shown) and immunofluorescence microscopy (Figure 5B)] or

additional mechanisms of down-regulation. Notably, the knock-

Figure 2. DF-box b-TrCP inhibits Vpu-mediated enhancement
of virion-release. Cells (HeLa) were transfected with either a proviral
plasmid expressing wild-type HIV-1NL4-3 (‘‘WT’’) or a proviral plasmid
expressing an isogenic vpu-negative mutant (‘‘DVpu’’). The cells were
also transfected with an empty plasmid (‘‘mock’’), a plasmid expressing
b-TrCP, or a plasmid expressing the b-TrCP DF-Box mutant. The next
day, the fraction of the total p24 capsid antigen produced by the cells
that was secreted into the media was measured. The average values
from two independent experiments are graphed; the error bars indicate
the actual values obtained from each experiment.
doi:10.1371/journal.ppat.1000450.g002
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down of AP-2 had no effect on the surface levels of BST-2 in the

absence of Vpu.

To exclude that the knockdown of AP-2 acted on Vpu rather

than BST-2, we examined the distribution of Vpu in cells treated

with siRNA to m2 by immunofluorescence microscopy (Figure 5B).

The knockdown of AP-2 was incomplete under these conditions,

with at most half the cells showing reduced expression of the a
subunit of the complex. As noted previously [28], the distribution

of Vpu (here from HIV-1NL4-3, a group M, clade B genome) was

endosomal, and steady-state expression at the plasma membrane

was minimal. Notably, little co-localization of Vpu and AP-2 was

observed. Furthermore, regardless of the levels of AP-2, Vpu

maintained an endosomal distribution; it was not displaced to the

plasma membrane by knockdown of AP-2. These data weighed

against the possibility that the knockdown of AP-2 affected Vpu

trafficking and consequently function. Instead, the data suggested

that AP-2 mediates the trafficking of BST-2 in a manner that

supports down-regulation by Vpu.

The action of Vpu is post-endocytic and partly
dependent on the endo-lysosomal pH gradient

The simplest explanation for the preceding data is that Vpu

recruits b-TrCP to induce ubiquitin-mediated endocytosis of BST-

2. To test this, we compared the rate of endocytosis of BST-2 in

cells that were expressing Vpu with those that were not (Figure 6).

Human BST-2 was internalized constitutively, consistent with

previous studies of rodent BST-2 [29]. Surprisingly, although Vpu

down-regulated the steady-state expression of BST-2 on the cell

surface (data not shown), the fractional rate of internalization of

BST-2 from the cell surface was unaffected. These data suggested

that although AP-2 and presumably the endocytosis of BST-2 are

required for efficient down-regulation, the actual site of action of

Vpu is post-endocytic.

To test the hypothesis that Vpu influences BST-2 at a post-

endocytic trafficking step, we examined the effect of the endosomal

proton-pump inhibitor bafilomycin A1 on the down-regulation of

BST-2. By blocking the activity of the endosomal vATPase,

bafilomycin A1 inhibits acidification of the endosomal system,

which normally maintains a gradient of decreasing pH from early/

sorting endosomes to late endosomes and lysosomes. Consequently,

bafilomycin A1 has at least two effects: it inhibits pH-gradient

dependent trafficking to late endosomes and lysosomes [30–32], and

it inhibits acid-dependent lysosomal degradation [33]. Here,

bafilomycin A1 inhibited the down-regulation of BST-2 from the

cell surface by Vpu (Figure 7A). Bafilomycin A1 also inhibited the

reduction of intracellular BST-2 induced by Vpu. Notably, in some

experiments, bafilomycin A1 appeared to induce a modest decrease

in the level of cell-surface (but not intracellular) BST-2 indepen-

dently of Vpu; this effect could be due to its ability to delay transport

along the biosynthetic, exocytic pathway [34]. Bafilomycin A1 did

not affect the steady-state expression of Vpu itself (data not shown).

These data on the inhibitory effect of bafilomycin A1, together with

the data on endocytic rate and the role of AP-2, suggested that Vpu

acts at a post-endocytic step to reduce the cell surface levels of BST-

2. The data are consistent with a model in which Vpu targets BST-2

that has been endocytosed constitutively via AP-2 to late endosomes

and lysosomes, where it is sequestered from the plasma membrane

and partially degraded.

We previously reported that the treatment of cells expressing

Vpu with the proteasome inhibitor MG-132 for five hours did not

effectively restore BST-2 to the cell surface, leading to the

conclusion that surface down-regulation is not a direct conse-

quence of proteasomal degradation [5]. Here, to test the

hypothesis that the down-regulation of BST-2 from the cell

surface is ubiquitin-dependent, we treated Vpu-expressing cells

with MG-132 for 14-hours, reasoning that this longer duration of

proteasome-inhibition was more likely capable of reducing the

cellular pools of free ubiquitin. Prolonged treatment with MG-132

inhibited the Vpu-mediated down-regulation of BST-2, although

not as effectively as treatment with bafilomycin A1 (Figure 7B).

These data supported the hypothesis that the down-regulation of

BST-2 by Vpu is at least in part ubiquitin-dependent.

Vpu-mediated surface down-regulation reduces the co-
localization of BST-2 and the virion proteins p17/p55 Gag
along the plasma membrane of virus-producing cells

The mutual dependence of the down-regulation of BST-2 and

the enhancement of virion-release on b-TrCP suggests a causal

relationship between these two effects of Vpu. The idea that Vpu

counteracts restriction of virion-release by removing BST-2 from

the cell surface seems intuitively obvious, but modulation of the

subcellular distribution of BST-2 by Vpu was not evident in

initially published microscopic data [4,5]. These studies examined

the expression of BST-2 in optical sections of permeabilized cells.

We reevaluated this paradox by specifically imaging the cell

surface, both by staining the cells for BST-2 before permeabiliza-

Figure 3. Residues within the DSGxxS b-TrCP binding motif of Vpu are required for optimal down-regulation of BST-2 and
enhancement of virion-release. (A) Down-regulation of BST-2 by Vpu-mutants. Cells (HeLa) were transfected with an empty plasmid, a plasmid
expressing Vpu, or a plasmid expressing the indicated Vpu mutant, along with a plasmid expressing GFP as a transfection marker. The amount of
Vpu-expression plasmid in each transfection (160 ng) was just sufficient in the case of the wild-type to rescue the release of virions from cells
expressing a vpu-negative genome (see (C) below and the Materials and Methods section). The next day, the cells were stained for surface BST-2 and
analyzed by two-color flow cytometry. Left: Histograms represent the relative cell number vs. BST-2 fluorescence intensity for the GFP-positive cells. In
each panel, the heavy line is the curve for the indicated Vpu mutant. The shaded curve is the empty vector control, and the light line is the curve for
wild-type Vpu. The percentage of cells that were GFP-positive was 11 for Vpu-WT, 14 for Vpu-D51A, 10 for Vpu-S52/56N, and 10 for Vpu-D51A-S52/
56N. The results shown are representative of two independent experiments. Right: aliquots of each population were also analyzed by SDS-PAGE and
immunoblot for Vpu and actin; molecular weight markers are indicated on the left in kilodaltons. (B) Vpu-S52/56N inhibits down-regulation of BST-2
by the wild-type protein. Cells (HeLa) were transfected as described in (A) above, except that in the right panel a combination of the plasmid
expressing wild-type Vpu (160 ng) and the plasmid expressing Vpu-S52/56N (1.0 mg) was used (see also the Materials and Methods section). The next
day, the cells were stained for surface BST-2 and analyzed by two-color flow cytometry. Histograms represent the relative cell number vs. BST-2
fluorescence intensity for the GFP-positive cells. The gray-shaded histogram represents cells not transfected to express Vpu (same in each panel); the
unshaded histograms represent cells transfected to express Vpu, Vpu-S52/56N, or the combination of WT-Vpu plus Vpu-52/56N. The percentage of
GFP-positive cells was 35 for WT-Vpu, 48 for Vpu-52/56N, and 49 for WT-Vpu plus Vpu-52/56N. The results shown are representative of two
independent experiments. (C) Enhancement of virion-release by Vpu-mutants. Cells (HeLa) were transfected with a proviral plasmid expressing the
vpu-negative mutant DVpu (1.44 mg), along with a plasmid expressing Vpu or the indicated Vpu mutant (160 ng). For the positive control, cells were
transfected with the wild-type proviral plasmid alone; for the negative control, cells were transfected with DVpu along with an empty plasmid. The
next day, the fraction of the total p24 capsid antigen produced by the cells that was secreted into the media was measured. Results are the average
of duplicate transfections and are representative of two independent experiments.
doi:10.1371/journal.ppat.1000450.g003
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Figure 4. Vpu decreases total cellular BST-2 to a lesser extent than cell-surface BST-2. (A) Effect of Vpu on the steady-state total cellular
levels of BST-2 detected by immunoblot. Cells (HeLa) were transfected with an empty plasmid or a plasmid expressing Vpu along with a plasmid
expressing GFP as a transfection marker in a 20:1 weight ratio. Left: The next day, the cells were stained for surface BST-2 and analyzed by two-color
flow cytometry: two-color dot plots are the BST-2 vs. GFP intensity of the individual cells. Right: aliquots of each population were also analyzed by
SDS-PAGE and immunoblot for Vpu, actin and for BST-2; molecular weight markers are indicated on the left in kilodaltons. (B) Effect of Vpu on
intracellular and surface levels of BST-2 measured by flow cytometry. Cells (HeLa) were transfected as described in (A) with an empty plasmid or a
plasmid expressing Vpu along with a plasmid expressing GFP as a transfection marker. The next day, the cells were stained for BST-2 either without
(‘‘surface’’) or with (‘‘intracellular’’) permeabilization and analyzed by two-color flow cytometry: two-color plots are the BST-2 vs. GFP intensity of the
individual cells.
doi:10.1371/journal.ppat.1000450.g004
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tion and by acquiring images just above the cover glass (Figure 8).

These data revealed that the surface of cells expressing

endogenous BST-2 and vpu-negative virus is covered with a

punctate distribution of both BST-2 and the viral structural

protein p17/p55 Gag (Figure 8A). In many cases these puncta

overlapped and likely represented the co-localization of BST-2 and

Gag in endocytic pits and/or at sites of virion assembly. In

contrast, in cells expressing wild-type (vpu-positive) virus, BST-2-

containing puncta were diminished in intensity or completely

absent, and less co-localization of BST-2 and Gag was detected.

These images are similar to those of cells transiently expressing

epitope-tagged BST-2 [35], although the co-localization between

transiently expressed BST-2 and Gag in the absence of Vpu

appears even more striking than that shown here for endogenous

BST-2; this difference could be due to supra-physiologic

expression following transient transfection and/or to masking of

the native epitope by bound virions. Here, analysis of over 10 cells

expressing either wild-type or vpu-negative virus indicated an

average Pearson coefficient of correlation between surface BST-2

and Gag signals of 0.048 for cells expressing the wild-type and 0.11

for cells expressing vpu-negative virus (1.0 indicates a perfect

positive correlation; 0 indicates no correlation; and 21.0 indicates

a perfect negative correlation); p = 0.002 by Student’s t test (data

not shown). Analysis of over 100 individual surface puncta picked

Figure 5. The plasma membrane clathrin adaptor protein complex AP-2 is required for optimal down-regulation of BST-2 from the
cell surface by Vpu. (A) Cells (HeLa) were transfected once with siRNAs targeting either the medium (m) subunits of AP-1 (m1), AP-2 (m2), AP-3 (m3),
or an irrelevant ‘‘non-target’’ (NT) sequence. Three days later, the cells were re-transfected with either an empty plasmid or a plasmid expressing Vpu,
along with a plasmid expressing GFP as a transfection marker. The next day, the cells were stained for surface BST-2 and analyzed by two-color flow
cytometry. Histograms represent the relative cell number vs. BST-2 fluorescence intensity for the GFP-positive cells. Gray-shaded histograms
represent cells not transfected to express Vpu; unshaded histograms represent cells transfected to express Vpu. Inhibition of Vpu-mediated down-
regulation of BST-2 by siRNA targeting m2 was observed in each of four independent experiments. (B) Cells (HeLa) were transfected once with siRNAs
targeting either m2 or an irrelevant ‘‘non-target’’ (NT) sequence. Three days later, the cells were re-transfected with a plasmid expressing Vpu. The
next day, the cells were fixed, permeabilized, and stained for Vpu and AP-2. The cells were imaged as described in the Materials and Methods section;
a single focal plane is shown. Asterisks indicate cells with reduced expression of AP-2.
doi:10.1371/journal.ppat.1000450.g005
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randomly in the Gag image-channel on seven cells expressing virus

of each genotype indicated no relationship between the intensity of

BST-2 and Gag in the case of wild-type but a trend toward a

positive correlation in the case of vpu-negative virus (Figure 8B).

These data indicated that the down-regulation of BST-2 from the

cell surface by Vpu occurs during viral gene expression in a

manner consistent with counteraction of virion-tethering activity.

Discussion

The data herein indicate that the Vpu-mediated removal of the

transmembrane protein BST-2/CD317 (tetherin) from the cell

surface and the Vpu-mediated enhancement of virion release are

correlated by a mutual dependence on the cellular co-factor b-

TrCP, a substrate adaptor for an SCF E3 ubiquitin ligase

complex. b-TrCP/SCF E3 ligase complexes recognize numerous

physiologic cellular substrates, targeting some for ubiquitin-

mediated proteasomal degradation and others for ubiquitin-

mediated endocytosis [14,23,24,36–38]. We propose that Vpu

recruits b-TrCP to remove BST-2 from the cell surface via post-

endocytic membrane trafficking events (Figure 9). The conse-

quence is reduced expression of BST-2 at the plasma membrane,

decreased availability of BST-2 for interaction with nascent

virions, and counteraction of the ability of BST-2 to restrict the

release of progeny virions from infected cells.

The conclusion that b-TrCP plays a role in the Vpu-mediated

modulation of BST-2 and the relief of restriction derives from

three experimental approaches: expression of a dominant negative

mutant of b-TrCP, expression of shRNAs targeting b-TrCP, and

functional characterization of conserved residues within the

binding site on Vpu for b-TrCP. Each of these experimental

approaches inhibited the down-regulation of cell surface BST-2

and/or the enhancement of virion-release, but in each case the

inhibition was incomplete. These results suggest that the

recruitment of the b-TrCP/SCF E3 ligase complex enables

optimal Vpu-activity but is not frankly obligatory. b-TrCP-

independent activity could rely on direct binding between Vpu

and BST-2 and endosomal sequestration as discussed below.

Interestingly, the expression of an shRNA targeting b-TrCP-1 and

-2 inhibited Vpu-activity less efficiently than the expression of the

dominant negative mutant, D-F-box b-TrCP. We suspect this

difference may be a technical one. Alternatively, the activity of the

D-F-box mutant could in principle be due to competition with a

WD- and F-box containing protein other than b-TrCP-1 or -2, but

we consider this very unlikely, because over-expression of full-

length b-TrCP-1 did not inhibit Vpu-activity.

The proposed model for the down-regulation of BST-2 by Vpu

from the cell surface (Figure 9) incorporates three key components:

b-TrCP and by inference ubiquitination, the plasma membrane

clathrin adaptor AP-2; and endosomal acidification. The proposed

itinerary for BST-2 is internalization from the plasma membrane

via AP-2, then sorting by Vpu/b-TrCP-mediated ubiquitination

followed by pH-dependent endosomal transport. Alternative

models are possible. Specifically, the roles of AP-2, b-TrCP-

mediated ubiquitination, and endosomal acidification could

represent independent mechanisms of action of Vpu. Nevertheless,

the model proposed is attractive because it incorporates all the

data into a single pathway. The model is also consistent with the

physiologic roles of b-TrCP in the removal of cellular receptors

from the plasma membrane. These cellular transmembrane

proteins, which include the human growth hormone, prolactin,

and the type-1 interferon receptors, are down-regulated from the

cell surface by b-TrCP-dependent endocytosis and/or lysosomal

degradation [23,24,38,39].

The data herein indicate that in addition to modulating cell-

surface levels, Vpu modestly decreases the total cellular concen-

tration of BST-2. Both the decrease in surface levels and the

decrease in intracellular BST-2 were sensitive to the endosomal

proton pump (vATPase) inhibitor bafilomycin A1. These data

suggest that Vpu induces, at least to some extent, the lysosomal

degradation of BST-2. However, we suspect on quantitative

grounds that lysosomal degradation is a consequence of the

removal of BST-2 from the cell surface rather than the cause of the

reduced surface levels. Given the relatively modest extent of

degradation, we speculate that a substantial fraction if not the

majority of the surface down-regulation effect results from the

Figure 6. Vpu does not increase the rate of endocytosis of BST-2. Cells (HeLa) were transfected with either an empty plasmid (‘‘no Vpu’’) or a
plasmid expressing Vpu (‘‘plus Vpu’’), along with a plasmid expressing GFP as a transfection marker. The next day, the cells were labeled at 4uC with
an antibody to BST-2, warmed for the indicated times at 37uC, then stained with a fluorophore-conjugated secondary antibody and analyzed by two-
color flow cytometry. The amount of BST-2 remaining on the cell surface over time is shown for the GFP-positive cells. The fluorescence intensities of
the time zero cells (no incubation at 37uC) for each population (‘‘no Vpu’’ and ‘‘plus Vpu’’) were set at 100%. The expression of Vpu reduced the
surface levels of BST-2 by 3-fold in this experiment (data not shown). The results shown are representative of two independent experiments.
doi:10.1371/journal.ppat.1000450.g006
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Figure 7. Bafilomycin A1 inhibits the ability of Vpu to down-regulate BST-2. (A) Cells (HeLa) were transfected with either an empty plasmid
or a plasmid expressing Vpu, along with a plasmid expressing GFP as a transfection marker. Immediately after the transfection, the cells were treated
with bafilomycin A1 (final concentration 0.13 mM in DMSO) or DMSO only for 14 hours, and then stained for surface or intracellular BST-2 and
analyzed by two-color flow cytometry. Histograms represent the relative cell number vs. BST-2 fluorescence intensity for the GFP-positive cells. Gray-
shaded histograms represent cells transfected to express Vpu; unshaded histograms represent cells transfected with the empty plasmid. The plots
shown are representative of at least two transfections for each experimental condition. (B) Cells (HeLa) were transfected as described above.
Immediately after the transfection, the cells were treated with bafilomycin A1 (final concentration 0.13 mM in DMSO), MG-132 (final concentration
30 mM in DMSO), or DMSO only for 14 hours, and then stained for surface BST-2 and analyzed by two-color flow cytometry. Histograms represent the
relative cell number vs. BST-2 fluorescence intensity for the GFP-positive cells. Gray-shaded histograms represent cells transfected to express Vpu;
unshaded histograms represent cells transfected with the empty plasmid. The plots shown are representative of two independent experiments.
doi:10.1371/journal.ppat.1000450.g007
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sequestration of BST-2 within endosomes. Intriguingly, the virally

encoded RING-CH ubiquitin ligase K5 of KHSV, which like Vpu

down-regulates BST-2, uses a mechanism similar to that just

proposed to remove the natural killer cell ligand MICA from the

cell surface: targeting surface MICA to an endosomal compart-

ment without inducing marked degradation [40].

Notably, a more striking decrease in the total cellular expression

of BST-2 than is shown herein was previously observed during the

expression of Vpu in HeLa cells and macrophages, though

apparently not in certain T cell lines [9,41]. These quantitative

differences may relate to differing levels of expression, but how

Vpu would antagonize BST-2 in the absence of either down-

regulation from the cell surface and/or a decrease in total cellular

expression is unclear [41]. Of further interest, treatment of cells

with proteasome-inhibitors was very recently shown to reverse a

Vpu-induced decrease in the total cellular expression of exoge-

nous, epitope-tagged BST-2 in HEK293 cells [42]. These data led

to the proposal that Vpu induces the proteasomal degradation of

BST-2. Notably, these experiments involved prolonged incubation

of cells with the proteasome-inhibitors, which likely depletes the

cellular pool of free ubiquitin [43]. Thus, a more inclusive

interpretation of such results is that depletion of cellular BST-2 by

Vpu is ubiquitin-dependent. This conclusion is mechanistically

consistent with the data herein, insofar as ubiquitin-dependent

processes include not only proteasomal degradation but also

endosomal trafficking and lysosomal degradation. We previously

reported that the exposure of HeLa cells to the proteasome

inhibitor MG-132 for five hours minimally reversed the Vpu-

mediated down-regulation of surface BST-2 [5], but here we show

that a 14-hour exposure induces a more striking inhibition. These

Figure 8. Vpu decreases the co-localization of BST-2 and the virion-protein p17 Gag along the plasma membrane. (A) Cells (HeLa)
were transfected to express either wild-type (vpu-positive) or vpu-negative (DVpu) viral genomes. The next day, the cells were fixed and stained
without permeabilization for surface BST-2 (red). The cells were subsequently permeabilized with detergent and stained for p17/p55 Gag (blue).
Images were acquired in a focal plane just above the cover glass to capture the distribution of proteins along the plasma membrane. (B) Correlation
of the relative staining intensities of BST-2 and Gag in cell surface puncta; units are arbitrary.
doi:10.1371/journal.ppat.1000450.g008
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data support the hypothesis that the effect of proteasome-inhibitors

on the Vpu-induced down-regulation of BST-2 reflects ubiquitin-

depletion. Overall, although the prolonged exposure to protea-

some-inhibitors cannot distinguish between proteasomal degrada-

tion and other ubiquitin-dependent mechanisms, the roles of AP-2

and b-TrCP together with the inhibition by bafilomycin A1

reported here support a model of ubiquitin-mediated endo-

lysosomal trafficking.

As noted above, the plasma membrane adaptor protein

complex AP-2 was required for the efficient down-regulation of

BST-2 by Vpu. This result is consistent with the observation that

rodent BST-2, though associated with lipid rafts via its C-terminal

GPI-anchor, is internalized constitutively via the clathrin adaptor

AP-2 [29]. This result also leads to the conclusion that at least part

of the down-regulation results from the direct removal of BST-2

from the plasma membrane, a mechanism that may provide the

most rapid reduction of cell surface levels. Alternative mechanisms

such as total cellular depletion or retention of BST-2 within

biosynthetic or exocytic membrane systems rely on the physiologic

rate of turnover at the plasma membrane to clear BST-2 from its

site of virion-tethering action. Since Vpu is expressed late during

the viral life cycle concurrently with the structural proteins of the

virion, the direct removal of BST-2 from the plasma membrane

via endosomal trafficking could be key to the temporally effective

relief of restricted virion-release.

Exactly how the Vpu-mediated recruitment of b-TrCP would

affect the endosomal trafficking of BST-2 remains to be elucidated.

The rates of endocytosis of BST-2 in the presence and absence of

Vpu were equivalent, an observation that weighs against the

involvement of proteins such as epsin and eps15, which participate

in endocytosis and which recognize ubiquitin as a sorting signal

[26,44]. Instead, the influence of Vpu on BST-2 is apparently post-

endocytic. This conclusion is based both on the absence of an effect of

Vpu on endocytosis and on the inhibition of down-regulation

obtained by disruption of the endosomal pH gradient by treatment of

cells with bafilomycin A1. We favor the hypothesis that Vpu and the

b-TrCP/SCF E3 ligase complex influence the itinerary of BST-2 at

the level of early, sorting endosomes. Here, we speculate that Vpu

diverts BST-2 from a recycling pathway, which would normally

return it to the cell surface, toward late endosomes, in which BST-2

Figure 9. Model for the relief of BST-2-mediated restriction by Vpu. (A) Vpu recruits b-TrCP to induce ubiquitin-mediated trafficking events
that remove BST-2 from the plasma membrane, its site of action as a virion-tethering factor. Circles in the cytoplasmic domain of Vpu represent
phosphoserines 52 and 56. The interaction between BST-2 and Vpu and the ubiquitination of BST-2 are currently speculative. (B) Vpu induces
bafilomycin A1-sensitive post-endocytic trafficking of BST-2 and endo-lysosomal degradation. The removal of BST-2 from the plasma membrane
involves constitutive endocytosis of BST-2 via AP-2, followed by Vpu-mediated post-endocytic sorting events. Recycling of BST-2 to the plasma
membrane in the absence of Vpu is currently speculative.
doi:10.1371/journal.ppat.1000450.g009
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would become sequestered and partially degraded (Figure 9B).

Candidate ubiquitin interacting proteins that could mediate such a

sorting event include the monomeric clathrin adaptor Hrs, which

plays a canonical role in recruiting endocytosed epidermal growth

factor receptor for transport to late endosomes at this junction within

the endosomal system [45].

Another key question that emerges from our model is whether

or not Vpu induces the ubiquitination of BST-2. Notably, we have

observed that mutation of both lysines in the cytoplasmic domain

of BST-2 does not block the down-regulation of surface expression

by Vpu (data not shown). These data suggest that if Vpu and the

b-TrCP/E3 ligase complex induce ubiquitination of BST-2, then

this must occur on non-lysine residues. Nevertheless, ubiquitina-

tion of BST-2 itself is not an essential feature of a model involving

b-TrCP; for example, the requirement for b-TrCP in the

internalization of growth hormone receptor (GHR) appears to

be independent of GHR ubiquitination [24].

The model herein includes the hypothesis that Vpu and BST-2

interact (Figure 9A). While this remains to be demonstrated,

endosomal co-localization of Vpu and BST-2 has been observed at

the level of light microscopy [4,5]. Intriguingly, robust co-

localization required the native sequence of the Vpu transmem-

brane domain. Furthermore, the transmembrane domain (TMD)

of Vpu is required for both the down-regulation of surface BST-2

and the enhancement of virion-release [5,19]. Consequently, it is

tempting to speculate that Vpu and BST-2 interact via their

transmembrane domains. This hypothesis is supported by our

observations that BST-2 from rhesus macaques, which is not

efficiently down-regulated from the cell surface by Vpu, is

rendered partly Vpu-responsive by the introduction of mutations

in the BST-2 TMD that ‘‘humanize’’ the sequence (data not

shown). It is also supported by recent data indicating that the

inability of Vpu to antagonize the restrictive effect of rhesus BST-2

is a consequence of amino acid changes in the TMD of the rhesus

relative to the human protein [46]. Here, the mutated protein

Vpu-S52/56N dominantly interfered with the down-regulation of

BST-2 by wild-type Vpu. This result is consistent with a model in

which a ternary interaction enables Vpu to link BST-2 to b-TrCP.

Presumably, Vpu-S52/56N can bind BST-2 via its transmem-

brane domain but cannot link it to b-TrCP. Consequently, the

over-expression of Vpu-S52/56N may saturate BST-2 and

competitively inhibit the activity of the wild-type Vpu protein.

As shown here and elsewhere, mutation of the DSGxxS

sequence impairs virion-release, but it does not abolish this

activity [5,18]. Conversely, a Vpu truncation mutant including a

minimal cytoplasmic domain that does not contain the DSGxxS

sequence reportedly retained partial activity in enhancing virion-

release [19]. To reconcile these observations with the model

proposed here, we speculate that a minimal Vpu lacking most of

the cytoplasmic domain or a Vpu lacking a functional b-TrCP

binding motif may retain a modicum of activity in counteracting

BST-2, solely on the basis of its ability to interact with BST-2 and

trap it within the endosomal system. Nevertheless, the data herein

indicate that the recruitment of the b-TrCP/SCF E3 ubiquitin

ligase complex by the full-length, wild-type Vpu protein enables

more efficient removal of BST-2 from the cell surface and

consequently more efficient enhancement of virion-release.

A remarkable feature of this emerging model is that it unites the

transmembrane and cytoplasmic domains of Vpu in the context of

counteracting the restriction imposed by BST-2. This is a new

perspective on the Vpu protein, whose domains have been

previously associated with ‘‘separable’’ functions: the TMD with

the enhancement of virion-release and the cytoplasmic domain

with the degradation of CD4 [19]. Indeed, the cytoplasmic

domain of Vpu is sufficient to induce the degradation of CD4 in

the absence of the native Vpu TMD sequence, because it contains

the determinants for both the interaction with CD4 and the

recruitment of b-TrCP [14,47]. In contrast, both the transmem-

brane and the cytoplasmic domains of Vpu contribute to the

enhancement of virion-release [5,18,19], in accordance with the

model proposed herein.

The spectrum of viruses restricted by BST-2 and the nature of

viral countermeasures to this host defense are currently emerging.

To date, BST-2 has been shown to restrict the release of members

of the retrovirus, filovirus, and arenavirus families. Viral

antagonists of BST-2 include, in addition to Vpu, the K5 protein

of KSHV (HHV-8), the envelope glycoprotein of HIV-2, and the

envelope glycoprotein of Ebola virus [9,35,48,49]. As noted above,

the K5 and Vpu proteins share mechanistic features, insofar as K5

is a membrane-associated ubiquitin ligase, and Vpu recruits a

cellular ubiquitin ligase complex to membranes. How viral

envelope glycoproteins antagonize BST-2 is unclear, but the

HIV-2 envelope down-regulates BST-2 from the cell surface, and

this requires the tyrosine-based AP-2 binding motif in the

cytoplasmic domain of gp41 (data not shown). So far, viral

antagonists of BST-2 appear to operate via the cellular

ubiquitination and/or endosomal trafficking systems.

In summary, we show that b-TrCP is a Vpu-cofactor for the

removal of BST-2 from the plasma membrane and consequently

for the counteraction of the antiviral activity of this interferon-

induced restriction factor. The data herein support a model in

which Vpu utilizes the b-TrCP/E3 ubiquitin ligase complex to

modulate the itinerary of BST-2 within the endosomal system via a

post-endocytic mechanism. Although the molecular details of how

the recruitment of the b-TrCP/E3 ubiquitin ligase complex affects

the trafficking of BST-2 remain to be elucidated, these data add a

new mechanism to the growing paradigm of viral counteraction of

cellular restriction factors by co-option of cellular multi-subunit

ubiquitin ligase complexes.

Materials and Methods

Plasmids, antibodies, and reagents
pcDNA3.1 (Invitrogen, Carlsbad, CA) was used as an empty

vector control. Plasmids expressing HA-tagged b-TrCP-1 and DF-

box b-TrCP-1 were described previously [14]. Plasmids expressing

shRNAs targeting b-TrCP mRNAs were provided by J. Wade

Harper and were expressed from modified versions of pSuperRetro:

the target sequences are GAGAGAGAAGACUGUAAUA for b-

TrCP-1, GCCCAUGUUGCAGCGGGAC for b-TrCP-2, and

GUGGAAUUUGUGGAACAUC for both b-TrCP-1 and 2; a

vector targeting Renilla GFP (rGFP) was used as a control [50,51].

The proviral plasmid pNL4-3 was obtained from the National

Institutes of Health (NIH) AIDS Research & Reference Reagent

Program [52]. The pNL4-3 mutant DVpu (vpuDEL-1) and the

pcDNA3.1-based plasmid expressing codon-optimized Vpu (pVphu)

were provided by Klaus Strebel [19,53]. Mutations were introduced

into the coding sequence of the pVphu plasmid using the Stratagene

QuickChange kit, and the presence of the desired mutations as well as

the absence of unwanted mutations were verified by nucleotide

sequencing. The plasmid expressing GFP (pCG-GFP) was provided

by Jacek Skowronski [54]. A plasmid expressing IL-2 receptor a [Tac

antigen; CD25 (pCDM8-Tac)] was provided by Juan Bonifacino

[55]. The murine monoclonal antibody to BST-2/HM1.24/CD317

was a gift from Chugai Pharmaceutical Co., Kanagawa, Japan. For

flow cytometry, an IgG2a antibody isotype control and a goat, anti-

mouse IgG antibody conjugated to allophycocyanin (APC) was

obtained from BioLegend (San Diego, CA); phycoerythrin (PE)-
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conjugated anti-CD25 was obtained from Becton-Dickinson. Rabbit

antisera to HIV-1 Vpu and p17/p55 were obtained from the NIH

AIDS Research & Reference Reagent Program. The murine

monoclonal antibody to the a subunit of AP-2 was obtained from

Affinity Bioreagents. The murine monoclonal antibody to HA was

obtained from Covance. Secondary antibodies for immunofluores-

cence were obtained from Jackson ImmunoResearch (West Grove,

PA). The vATPase inhibitor bafilomycin A1 was obtained from

Sigma-Aldrich. The proteasome inhibitor MG-132 was obtained

from Calbiochem.

Cells and transfections
Unless specifically noted, the HeLa cells used in this study were

clone P4.R5, which express both CD4 and CCR5 and obtained from

Ned Landau; these cells are a derivative of clone P4 [56] and were

maintained in DMEM plus 10% FBS, penicillin/streptomycin, and

puromycin. Where noted, the CD4-negative HeLa clone Z24 was

used; this line is a precursor to P4 cells and was provided by Chris

Aiken. Cells were transfected using Lipofectamine2000 (Invitrogen)

according to the manufacturer’s instructions. For the experiments

involving expression of DF-box b-TrCP, cells were transfected in

wells of six-well plates using 4 mg total DNA: 2 mg of the empty vector

control, the b-TrCP-expression vector, or the DF-box b-TrCP-

expression vector; and 2 mg of the empty vector control, pVphu, or

pNL4-3 or the DVpu proviral mutant. For experiments involving the

expression of shRNAs, cells were first transfected in wells of twelve-

well plates containing 1.6 mg total DNA, of which either all was the

shRNA expression vector or 0.3 mg was pCG-GFP and the rest was

the shRNA vector, then subsequently transfected with 0.32 mg each

of pCDM8-Tac and pVphu. For experiments involving the

expression of Vpu proteins containing substitutions in the DSGxxS

motif or a termination codon at position 33 (Vpu-32), cells were

transfected in wells of twelve-well plates containing 1.6 mg total DNA,

of which 160 ng was pVphu; the remaining DNA was pCG-GFP and

pcDNA3.1 for the flow cytometry assays, or the DVpu proviral

mutant for the virion release assays. For the transfections combining

the expression of wild type Vpu with Vpu-52/56N, 160 ng of pVphu

and 1000 ng of pVphu-52/56N were used.

Flow cytometry
For analysis of surface levels of BST-2, cells were stained before

fixation in phosphate buffered saline (PBS) including sodium azide

and 2% FBS at 4uC using an indirect method to detect BST-2: the

HM1.24 murine monoclonal antibody (0.1 mg/ml) was followed

by a goat anti-mouse IgG conjugated to APC. For the analysis of

cells transfected sequentially to express shRNAs followed by Vpu

and Tac antigen, the cells were stained first for BST-2 as just

described, then blocked with normal mouse serum, and finally

stained for Tac antigen using the PE-conjugated antibody to

CD25. For the analysis of total cellular levels of BST-2

(intracellular staining), cells were fixed and permeabilized with

the Cytofix/Cytoperm kit (BD Biosciences), followed by indirect

staining as described above. All samples were analyzed by two- or

three-color flow cytometry; gates for BST-2 were set using an

antibody isotype control (IgG2a) as the primary antibody, gates for

GFP and were set using non-GFP expressing cells, and gates for

Tac were set using a PE-conjugated isotype control. Composite

data profiles were created using FlowJo software (Tree Star, Inc.),

as were MFI determinations of specific populations where

indicated in the supplementary data.

Virion-release assays
A p24 antigen capture ELISA (Perkin-Elmer) was used to

determine the concentration of viral capsid protein in culture

supernatants that were first clarified by centrifugation at 400 g as

well as the concentration of capsid protein in detergent lysates

(0.5% Triton-X-100 in PBS) of the adherent cells. The percentage

of p24 capsid secreted into the culture media was determined as

the concentration of p24 antigen in the supernatants divided by

the concentration of p24 antigen in the total culture (supernatant

plus cells) 6100.

siRNA knockdowns
siRNAs to the m subunits of AP-1, -2, and -3 were obtained from

Dharmacon as 21-nucleotide duplexes with 39dTdT overhangs.

The following mRNA sequences were targeted: m1, AAGGCAU-

CAAGUAUCGGAAGA-3; m2, 5AAGUGGAUGCCUU UCGG-

GUCA; and m3, AAGGAGAACAGUUCUUGCGGC; these

siRNAs were validated previously [57]. The siCONTROL siRNA

1 (Dharmacon) was used as a non-targeting control. Cells were

transfected with the siRNA duplexes using Lipofectamine 2000.

Three days later, the cells were re-transfected with either

pcDNA3.1 or pVphu, along with pCG-GFP, and then stained

the following day for flow cytometry or immunofluorescence

microscopy.

Endocytosis assay
Cells were incubated with antibody to BST-2 at 4uC as

described above except using PBS-FBS without azide for one

hour, then washed, and incubated in DMEM with 10% fetal

bovine serum for various times at 37uC to allow internalization of

surface antigens. Internalization was stopped by the addition of

ice-cold azide-containing PBS-FBS. The cells were then stained

using a goat anti-mouse IgG conjugated to APC, fixed in

formaldehyde, and analyzed by flow cytometry. For each

condition (‘‘no Vpu’’ or ‘‘+Vpu’’), the mean fluorescence

intensities (MFIs) of the ‘‘time 0’’ samples, which were never

incubated at 37uC, were set at 100%.

Immunofluorescence microscopy
Cells were stained for HIV-1 Vpu and AP-2 using the

antibodies above after fixation in 3% formaldehyde and

permeabilization using 0.1% NP40, both in PBS, as previously

described [58]. Images were obtained using a spinning disc

confocal fluorescence microscope fitted with a 1006 objective

(Olympus). For each field, a Z-series of images was collected, and

the data were processed using a deconvolution algorithm (Slide-

book software, Imaging Innovations, Inc). Cells were stained for

surface BST-2 and HIV-1 Gag p17/p55 by fixation and staining

for BST-2, followed by permeabilization as above and staining for

p17/p55. For analysis of the relationship between cell surface

BST-2 and Gag, images of single focal planes adjacent to the cover

glass were deconvolved using a ‘‘no neighbors’’ algorithm

(Slidebook). A Pearson correlation coefficient for the overlap

between BST-2 and Gag was determined using at least 10 cells

expressing either wild-type or Vpu-negative virus using Slidebook

software. To analyze the relationship between the intensities of

BST-2 and Gag at individual puncta on the plasma membrane,

the intensities of over 100 puncta on the surface of seven cells each

for wild-type and Vpu-negative virus were measured using

Slidebook software. Composite multi-color images of single optical

sections were assembled using Adobe Photoshop software.

Western blots
Cellular samples were suspended in loading buffer containing

SDS and dithiothreitol and boiled for 10 min. After resolution on a

12% denaturing polyacrylamide gels (Bio-Rad, Hercules, CA), the
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proteins were transferred to polyvinylidene difluoride membranes

and blotted with the antibodies to Vpu, BST-2, or HA described

above or with antibody to b-actin (Sigma). Detection was performed

using a goat anti-mouse antibody linked to horseradish peroxidase

(Bio-Rad) or a goat anti-rabbit antibody linked to horseradish

peroxidase (Pierce), followed by development with enhanced

chemiluminescence (GE Healthcare, Piscataway, NJ).

Supporting Information

Figure S1 Quantitative effects of shRNAs targeting b-TrCP on

the down-regulation of BST-2 by Vpu. (A) This experiment is an

exact repeat of the one shown in Figure 1C. Cells (HeLa) were

transfected with plasmids expressing shRNAs targeting either

Renilla GFP (rGFP) as an irrelevant control, b-TrCP-1, b-TrCP-2,

or both b-TrCP-1 and -2; in two cases these plasmids also

expressed jellyfish GFP, for the others a separate plasmid

expressing GFP was co-transfected. Two days later, the cells were

re-transfected with an empty plasmid or a plasmid expressing Vpu,

along with a plasmid expressing Tac antigen (IL-2 receptor a;

CD25) as a transfection marker. The next day, the cells were

stained for surface BST-2 and Tac, and then analyzed by three-

color flow cytometry. Two-color dot plots are the BST-2 vs. Tac

intensity of the individual GFP-positive cells. In each analysis,

comparable regions of peak cell density for Tac-positive and BST-

2 down-regulated cells were picked using the ‘‘auto-gating’’ tool of

FlowJo software; the mean fluorescence intensity of each region is

shown numerically within each plot. (B) The data from the above

experiment, together with data derived similarly from the

experiment shown in Figure 1C, were used to calculate the fold-

down-regulation of BST-2 by Vpu in the presence of each shRNA.

Error bars indicate the actual values from the two experiments; the

average is graphed.

Found at: doi:10.1371/journal.ppat.1000450.s001 (1.09 MB TIF)

Figure S2 Inhibitory effect of DF-box b-TrCP on the release of

virions from CD4-negative cells. The experiment was performed

as described in the legend of Figure 2, except that CD4-negative

HeLa cells (clone Z24) were used. The average values from two

independent experiments are graphed; the error bars indicate the

actual values obtained from each experiment.

Found at: doi:10.1371/journal.ppat.1000450.s002 (3.15 MB TIF)

Figure S3 Effect of Vpu on the cellular expression of BST-2

after enrichment of transfected cells by flow-sorting. The

experiment was performed as described in the legend of

Figure 4A, except that the transfected cells were physically sorted

to enrich for GFP-positive (transfected) cells. (A) Immunoblot of

the sorted cells for Vpu, BST-2, and actin. (B) Percentages of GFP-

positive cells in the pre- and post-sorted samples. (C) Two-color

flow cytometric data for the pre- and post-sorted samples.

Found at: doi:10.1371/journal.ppat.1000450.s003 (4.41 MB TIF)
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