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Abstract

Bacterial infections targeting the bloodstream lead to a wide array of devastating diseases such as septic shock and
meningitis. To study this crucial type of infection, its specific environment needs to be taken into account, in particular the
mechanical forces generated by the blood flow. In a previous study using Neisseria meningitidis as a model, we observed
that bacterial microcolonies forming on the endothelial cell surface in the vessel lumen are remarkably resistant to
mechanical stress. The present study aims to identify the molecular basis of this resistance. N. meningitidis forms aggregates
independently of host cells, yet we demonstrate here that cohesive forces involved in these bacterial aggregates are not
sufficient to explain the stability of colonies on cell surfaces. Results imply that host cell attributes enhance microcolony
cohesion. Microcolonies on the cell surface induce a cellular response consisting of numerous cellular protrusions similar to
filopodia that come in close contact with all the bacteria in the microcolony. Consistent with a role of this cellular response,
host cell lipid microdomain disruption simultaneously inhibited this response and rendered microcolonies sensitive to blood
flow–generated drag forces. We then identified, by a genetic approach, the type IV pili component PilV as a triggering factor
of plasma membrane reorganization, and consistently found that microcolonies formed by a pilV mutant are highly sensitive
to shear stress. Our study shows that bacteria manipulate host cell functions to reorganize the host cell surface to form
filopodia-like structures that enhance the cohesion of the microcolonies and therefore blood vessel colonization under the
harsh conditions of the bloodstream.

Citation: Mikaty G, Soyer M, Mairey E, Henry N, Dyer D, et al. (2009) Extracellular Bacterial Pathogen Induces Host Cell Surface Reorganization to Resist Shear
Stress. PLoS Pathog 5(2): e1000314. doi:10.1371/journal.ppat.1000314

Editor: H. Steven Seifert, Northwestern University Feinberg School of Medicine, United States of America

Received October 28, 2008; Accepted January 26, 2009; Published February 27, 2009

Copyright: � 2009 Mikaty et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Work was funded by the INSERM, ANR, and CNRS.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: guillaume.dumenil@inserm.fr

Introduction

Infectious diseases leading to colonization of the blood by the

infectious agent are a major burden to society. Such infections lead

to devastating clinical manifestations including septic shock,

hemorrhagic syndromes or infection of the brain (meningitis).

Pathogens triggering such diseases are diverse and include viruses,

bacteria (Gram-positive and Gram-negative), parasites and fungi.

The common characteristic of these pathogens is their presence in

the bloodstream at a given point of the infection process. Such

pathogens are exposed to mechanical forces exerted by the blood

flow, which follows a complex pattern throughout different blood

vessels. This specific environment is increasingly recognized as a

determining factor during pathogenesis and implies an adaptation

of the pathogens [1–3]. One such infectious agent, used as a model

in this study, is the Gram-negative bacteria Neisseria meningitidis [4].

N. meningitidis infection leads to two distinct clinical manifesta-

tions, a rapidly evolving form of septicemia or meningitis. The

only known reservoir is the human nasopharynx, where the

bacterium multiplies without causing symptoms in 10–20% of the

human population who serve as carriers[5]. At a low frequency,

bacteria cross the epithelial barrier and access the bloodstream,

causing septicemia. In the bloodstream, N. meningitidis interact with

endothelial cells, cross the blood brain barrier (BBB) and

proliferate in the brain [4,6].

One property of this pathogen thought to be key both in

nasopharynx colonization and in disease development is its ability

to adhere to host cells. As is the case for numerous pathogens,

adhesive properties of N. meningitidis are mediated by filamentous

organelles designated type IV pili [7]. In addition to adhesion, type

IV pili allow bacteria to spontaneously form large aggregates in

suspension and on the cellular surface. In N. meningitidis, expression

of functional type IV pili on the bacterial surface requires 22 pil

genes. The main and structural component of a pilus is the pilin, a

protein encoded by the pilE gene in N. meningitidis. After being

cleaved by the prepilin peptidase PilD, pilin subunits assemble in a

helical fiber in the periplasm and exit the outer membrane

through a pore [8]. In pathogenic Neisseria species, there are seven

pilin-like proteins, so-called due to their conserved N-terminal

PilD cleavage sequences: PilH, PilI, PilJ, PilK, ComP, PilV and

PilX (referred to as PilL in N. gonorrheae) [9]. PilH, I, J and K are

essential for Tfp biogenesis since the corresponding mutants are

non-piliated [9,10]. In contrast, comP, pilV and pilX mutants are

piliated, so the corresponding proteins are thought to insert in the
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pilus fiber and mediate specific type IV pili dependent functions

[9,11–14].

We previously demonstrated the importance of mechanical

forces generated by the bloodstream on the process of pathogen-

esis [4]. In the bloodstream, shear stress levels vary between 5 and

100 dynes/cm2 with values reaching 40 dynes/cm2 in capillary

networks commonly colonized by N. meningtidis during infection

[15]. Initial binding to host cells is strongly inhibited by shear stress

and can only occur in capillaries where shear stress occasionally

decreases to values below 0.5 dynes/cm2 for short periods of time

before increasing back to values around 40 dynes/cm2. After

initial binding, bacteria proliferate on the cell surface and form

large microcolonies strikingly resistant to high external forces

generated by the bloodstream. These microcolonies eventually fill

the entire lumen of the capillaries and could strongly affect the

barrier function of the endothelium. The ability of these large

bacterial colonies to resist blood flow on the surface of endothelial

cells in brain capillaries is therefore a probable determining factor

in subsequent crossing of the BBB. The mechanical environment

of microcolonies is also important during nasopharynx coloniza-

tion. Bacterial microcolonies forming on the epithelium are

exposed to high levels of shear stress due to mucus flow, sneezing

and coughing.

Like several extracellular pathogens including Group A

Streptococci [16] and Bartonella spp. [17], N. meningitidis triggers a

local remodeling of the eukaryotic cell membrane. In the case of N.

meningitidis, surface remodeling results in numerous cell membrane

projections that can be found inside and around microcolonies

adhering to the cell surface [6,18,19]. Induction of these cellular

projections was proposed to be the initial step of an invasion

process leading to crossing of cellular barriers by transcytosis [6].

However, the low efficiency of invasion (approx. one bacteria per

thousand completes transcytosis) suggests that the potent bacteria-

induced remodeling of the host cell surface has other functions.

In vitro analysis of infection in culture allowed description of this

cellular response at the molecular level. A profound actin

cytoskeleton reorganization was found to take place at the base

of bacterial microcolonies [20] leading to the formation of a

honeycomb lattice structure called ‘‘cortical plaque’’. Ezrin, an

actin binding protein member of the ERM (Ezrin/radixin/

moesin) family, is abundantly recruited to the tip of cellular

projections surrounding N. meningitidis [18]. Furthermore, in

addition to ERM family proteins, numerous host cell transmem-

brane proteins such as ICAM-1, CD44, CD46 and ErbB2 are

clustered under microcolonies [18,20–22].

In the closely related pathogen N. gonorrhoeae, mutants defective in

the biosynthesis of type IV pili were shown to be unable to induce

host cell membrane remodeling [20]. The ability of type IV pili to

retract is important for optimal signaling, but if there is a specific

component of type IV pili beyond retraction force per se involved in

triggering the cellular response, it remains to be identified [23].

The goal of this study was to identify the molecular mechanism

allowing large bacterial aggregates to resist the high mechanical

forces exerted by the blood flow in brain capillaries during

pathogenesis and by mechanical forces operating in the naso-

pharynx during colonization. Hence, the study was conducted

mostly on endothelial or in some cases epithelial cells. We first

show that bacterial auto-aggregation is insufficient to explain the

mechanical resistance of microcolonies growing on the host cell

surface. Pharmacological compounds targeting specific cellular

functions were then used to identify processes involved in

increasing microcolony cohesion. Finally we identified bacterial

factors involved in triggering the cellular response underlying the

increased mechanical resistance of microcolonies.

Results

Type IV pili–dependent bacterial autoaggregative
properties are insufficient to explain the mechanical
resistance of microcolonies growing on the cellular
surface

We previously showed that N. meningitidis growing in tight

bacterial aggregates on eukaryotic cellular surfaces are highly

resistant to external forces exerted by the harsh conditions found

in the nasopharynx or in the bloodstream [4]. As this property of

meningococci is likely to be a determining factor of nasopharynx

colonization and pathogenesis we undertook to further explore its

molecular basis. When proliferating in suspension, N. meningitidis

form bacterial aggregates of different sizes, spontaneously and

independently of the adhesion to host cells; this process depends

on type IV pili. Our first hypothesis was therefore that bacteria-

bacteria interactions could explain the mechanical resistance of

bacterial colonies growing on the cellular surface. To test this we

compared cohesive forces involved in bacterial aggregates growing

on the cellular surface vs. forces for aggregates growing in

suspension by studying their rupture under controlled shear stress.

Bacteria were exposed to shear stress in a laminar flow chamber

(Figure 1A) as previously described [4]. GFP-expressing bacteria

were allowed to grow on cells until they formed microcolonies, at

which point mechanical force was introduced with liquid flow. As

expected, shear stress could be increased to 10 dynes/cm2 for a

period of 5 min without any sign of detachment (Figure 1B,

compare left and right panels). To quantify the effect of flow,

bacteria growing on cells were collected and plated to determine

the number of colony forming units (CFU, Figure 1C). The

number of CFUs did not change after the introduction of flow.

Bacterial colonies were in fact resistant to shear stress levels of 100

dynes/cm2, a value which represents the highest forces operating

in large blood vessels (Figure 1D). Under the assumption that

bacteria behave as spherical beads, it can be estimated that a shear

stress of 100 dynes/cm2 exerts a force of about 300 pN on a single

Author Summary

Certain infectious agents reach the bloodstream and
succeed in surviving and multiplying at this site. This
stage of the infection is associated with a life-threatening
condition. The Gram-negative bacterium meningococcus,
responsible for septicemia and meningitis, stands out as a
paradigm of such a pathogen. Despite the characteristic
flow-generated hydrodynamic forces of the bloodstream,
meningococci have the striking ability to bind to the
endothelium and to multiply in bacterial aggregates called
microcolonies. Meningococci form aggregates in absence
of eukaryotic cells, but we show that such aggregates are
sensitive to mechanical stress, indicating that the presence
of host cells enhances microcolony cohesion. Consistently,
analysis of meningococcal microcolonies growing on the
host cellular surface reveals that these structures are dense
with cellular material in the form of cellular protrusions.
Blocking this bacteria-induced cellular response renders
microcolonies sensitive to blood flow. We then identify a
bacterial component located on the outside of the bacteria
and in direct contact with host cells as a key factor in the
induction of this cellular response. This bacteria-induced
cellular response is therefore a striking example of how
pathogens exploit cellular functions as a survival strategy,
in this case in the particular context of the bloodstream.

Adhesion Under Shear Stress
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bacterium, or 30 nN on a 10 mm wide colony [24]. When growing

on cells, bacterial aggregates are therefore highly resistant to

mechanical stress.

The resistance of bacterial aggregates growing in suspension

and in the absence of cells was then tested using a cone and plate

device to ensure a homogeneous shear stress throughout the entire

sample (Figure 2A). Bacteria were grown in suspension under

conditions allowing the formation of aggregates of various sizes,

similar to those found on the surface of human cells (7–15 mm in

diameter). Under the same conditions, a mutant lacking type IV

pili did not form any aggregates (not shown). Introduction of 10

dynes/cm2 dramatically decreased the number of aggregates

(Figure 2B, compare left and right panels). To quantify the effect,

the size distribution of the aggregates was then determined

microscopically by automatic image analysis. In absence of shear

stress, aggregates ranged over a wide size distribution with the

smallest aggregates involving only a few bacteria and others

occasionally reaching sizes up to 10,000 bacteria. For further

analysis we limited our analysis to a window of sizes between 500

and 5000 bacteria to match aggregate sizes found on the cell

surface. Such suspensions of bacterial aggregates were submitted

to different levels of shear stress varying between 2.5 and 10

dynes/cm2 and the number of aggregates was determined

(Figure 2C). Shear stress levels as low as 2.5 dynes/cm2 were

sufficient to significantly affect the number of aggregates in the

suspension and the effect increased with the intensity of shear.

Application of 10 dynes/cm2 led to a nearly twenty-fold decrease

in the number of aggregates. As a comparison, the effect of shear

stress on aggregates formed by the pilT mutant was determined.

The pilT mutant is characterized by a defect in pilus retraction,

bacteria are hyperpiliated and the pilT strain forms aggregates that

are unusually large and numerous. Application of 10 dynes/cm2

shear stress had no effect on the number of aggregates (Figure 2D).

Sensitivity of aggregates in suspension to shear stress is therefore a

pilus retraction-dependent property.

To confirm these results under conditions more closely

mimicking those found when bacteria are growing on the cellular

surface in the flow chamber, bacteria were immobilized on a glass

surface with an adsorbed antibody directed against the major pilin

and allowed to proliferate before their mechanical resistance was

Figure 1. Bacterial aggregates adhering to host cells are highly resistant to shear stress. Bacterial aggregates on the cellular surface were
submitted to shear stress and the ability of the aggregates to remain intact was compared (scale bars corresponds to 50 mm). (A) A monolayer of
endothelial cells was infected with N. meningitidis expressing GFP for a period of 3 hours to allow microcolony formation as observed by fluorescence
microscopy. Infected cells were then submitted to 10 dynes/cm2 in a laminar flow chamber as depicted on the diagram for a period of 5 min. (B)
Aggregates remained unchanged before and after application of 10 dynes/cm2 (compare left and right panels). (C) The number of colony forming
units before (black bars) and after (white bars) application of 10 dynes/cm2 was determined by a dilution plating and CFU determination. (D) The
effect of 100 dynes/cm2 was determined.
doi:10.1371/journal.ppat.1000314.g001
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evaluated. Bacteria growing on the glass surface formed large

aggregates similar in shape and size to those found on cells.

Introduction of 10 dynes/cm2 led to the progressive detachment of

the colonies (Figure 2E, compare left and right panels). Higher

magnification observation shows that a monolayer of bacteria

remains attached to the glass slide after application of shear stress

(Figure 2F). Taken together, these results show that wild type N.

meningitidis bacterial aggregates are sensitive to shear stress levels in

the range of 2.5–10 dynes/cm2 when not attached to host cells.

This indicates that the forces engaged in the cohesion of the

suspended aggregates were at least one order of magnitude lower

than those ensuring mechanical resistance of microcolonies

formed by N. meningitidis at the surface of host cells.

Lipid microdomain disruption by cholesterol depletion of
the host cell plasma membrane renders microcolonies
sensitive to mechanical stress

The sensitivity to shear stress of bacterial aggregates in

suspension suggests that host cells play an active role in conferring

mechanical resistance to bacterial microcolonies on the cell

surface. To identify the cellular components involved in conferring

mechanical resistance to microcolonies, inhibitors of several

cellular processes were tested. Results presented here focus on

drugs targeting the actin cytoskeleton (cytochalasin D), the

microtubule network (nocodazole) and plasma membrane lipid

composition (methyl-ß-cyclodextrin (MßCD)).

Figure 2. Bacterial aggregates in suspension are sensitive to shear stress. Bacterial aggregates in the absence of host cells were submitted
to shear stress and the ability of the aggregates to remain intact was compared (scale bars corresponds to 50 mm). (A) GFP-expressing N. meningitidis
proliferating in suspension in cell culture medium were analyzed under a microscope to visualize aggregates of whose number and size were
determined by microscopy and automated image analysis. Bacterial aggregates were submitted to 2.5–10 dynes/cm2 shear stress levels in a cone and
plate device as depicted on the diagram and aggregates analyzed. (B) Aggregates in suspension were disrupted after application of 10 dynes/cm2

(compare left and right panels). (C) The effect of different shear stress levels on the number of bacterial aggregates was determined. (D) The effect of
shear stress was determined for the pilT strain deficient for pilus retraction. (E) Bacteria were immobilized on a glass slide coated with a monoclonal
antibody directed against type IV pili, allowed to proliferate and colonies were submitted to 10 dynes/cm2. (F) Higher magnification view of a colony
immobilized on a glass slide before and after shear stress application.
doi:10.1371/journal.ppat.1000314.g002
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Cytochalasin D (1 mM) and nocodazole (1 mM) treatment did

not affect the cohesion of microcolonies, indicating that neither the

actin nor microtubule cytoskeleton was involved in conferring

mechanical resistance (Figure 3A, Cytochalasin D and Nocoda-

zole). The efficiency of these drugs was monitored by immuno-

fluorescence visualization of their effects on F-actin and microtu-

bules. In contrast, treatment with MßCD at a concentration of

4 mM led to a twenty-fold decrease in the number of adherent

bacteria (4.76107 vs. 2.56106). By decreasing the cholesterol

concentration in the plasma membrane, MßCD inhibits the

formation of lipid rafts, a process necessary for numerous cellular

signaling pathways [25]. Among our panel of inhibitors, MßCD

was the only drug that had an effect on the mechanical resistance

of microcolonies. The effect was reversed by repletion of

cholesterol (Figure 3A, MßCD+Chol). Video microscopy revealed

that after MßCD addition and flow increase, microcolonies were

less tightly associated with the cellular surface and found to be

progressively disrupted, leaving a monolayer of bacteria directly in

contact with the cellular surface (Figures 3B, Video S1 and S2).

Importantly, MßCD did not affect the ability of the bacteria to

form aggregates in suspension nor did it affect the amount of pili

present on bacteria growing in suspension or on cells as seen by

immunofluorescence (data not shown). The two- vs. three-

dimensionality of microcolonies was easily discernible by phase

contrast microscopy but can be best documented with confocal

microscopy (Figure 3C). The frequency of two- and three-

dimensional microcolonies was determined following MßCD

treatment and the application of shear stress (Figure 3D, white

and black bars respectively). In the absence of shear stress, 66+/

20.3% of microcolonies were multilayered. As expected, in the

absence of the drug, microcolonies were resistant to shear stress.

Upon treatment of cells with 6 mM MßCD, the frequency of

three-dimensional colonies dropped from 63+/20.4% to 36+/

20.8% following application of flow. The effect was concentration

dependent, with intermediate values at a concentration of 4 mM

MßCD.

Strikingly, disruption of the actin and microtubule cytoskeletons

did not affect microcolony cohesion. In contrast, altering plasma

membrane composition by depleting plasma membrane choles-

terol pools rendered bacterial colonies sensitive to mechanical

stress. These results show that host cells actively participate in

maintaining bacterial adhesion in the presence of mechanical

stress by a plasma membrane dependent process likely involving

lipid rafts.

Figure 3. Host cell cholesterol depletion with cyclodextrin renders bacterial microcolonies sensitive to shear stress. Implication of
specific cellular functions was tested using inhibitors targeting actin cytoskeleton, microtubules or plasma membrane cholesterol. (A) The effect of
increasing shear stress on GFP-expressing wild type microcolonies growing on cells treated with cytochalasin D, Nocodazole, or methyl ß cyclodextrin
(MßCD) was analyzed by a plating assay, before (black bars) and after flow increase (10 dynes/cm2, white bars). The effect of cholesterol repletion is
also indicated (MßCD+Chol). (B) Application of shear stress on infected cells treated with MßCD led to the appearance of numerous flat two-
dimensional microcolonies (right panel) visible under the fluorescence microscope in contrast with the large three-dimensional microcolonies (left
panel) observed on untreated cells (scale bar correspond to 10 mm). (C) Images of 2D and 3D microcolonies were taken with a confocal microscope
and the Z-section is presented (scale bars correspond to 3 mm). (D) The frequency of 2D (white bars) and 3D (black bars) microcolonies was
determined under the different conditions and expressed as the percentage of the total number of colonies.
doi:10.1371/journal.ppat.1000314.g003
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Lipid microdomain disruption blocks formation of
bacteria-induced cellular projections

N. meningitidis proliferating on the cellular surface form tight

aggregates and trigger a local cellular response with the formation

of cellular projections between and around diplococci [18] that

could explain the difference of behavior between aggregates in

suspension and on the cellular surface. To challenge such a

hypothesis, we tested whether cholesterol depletion affected this

bacteria-induced cellular response.

The effect of cholesterol depletion, actin cytoskeleton disorga-

nization and microtubule disruption on the ability of bacterial

microcolonies to recruit cellular components in the cortical plaque

was first determined by immunofluorescence. Cellular treatment

with cytochalasin D or nocodazole did not have any effect on the

amount of ezrin recruited by N meningitidis, whereas MßCD

dramatically decreased the amount of ezrin recruitment

(Figure 4A, compare top and bottom panels). Similarly, cytocha-

lasin D or nocodazole did not significantly affect the frequency of

microcolonies recruiting ezrin, whereas with MßCD treatment the

frequency decreased from 83+/23% to 27+/211% (Figure 4B).

A dose response curve indicated that the effect of MßCD increased

with concentration both on epithelial and endothelial cells

(figure 4C, full and open circles respectively). In addition, the

effect of MßCD was fully reversed by the addition of cholesterol

(Figure 4C, full and open square respectively). Similar results were

obtained with other components of the cortical plaque, CD44,

ErbB2 or ICAM-1 (not shown). Cholesterol depletion therefore

prevents the recruitment of cellular components of the cortical

plaque under the bacterial microcolonies.

The potent effect of cholesterol depletion suggested that

cholesterol-rich lipid microdomains could be involved in bacteria-

induced cellular response. Host plasma membrane cholesterol was

detected with Filipin to test this idea. Large amounts of cholesterol

were found clustered under 93% of bacterial microcolonies,

consistent with a role of lipid microdomains (Figure 4D).

To document the effect of lipid microdomain disruption on the

formation of the filopodia-like protrusions, infected epithelial and

endothelial cells were processed for scanning or transmission electron

microscopy. Bacteria formed tight aggregates on the epithelial surface

and were surrounded by a dense network of fibrous cellular material

forming a nest around the bacteria (Figure 5A). Transmission

electron microscopy gives a view of the inside of the colony (Figure 5A,

lower panel) with projections in tight association with all the bacteria

forming the microcolony. Similar images were obtained with bacteria

growing on the surface of endothelial cells (Figure 5B) although the

network of cellular projections was not as dense as on epithelial cells.

Cellular projections could easily be distinguished from type IV pili at

higher magnifications although surprisingly few pili fibers could be

visualized by scanning electron microscopy in contrast with

immunofluorescence studies which visualize a dense meshwork of

pili (data not shown and see Figure 6A). Pili visualized on bacterial

aggregates by scanning electron microscopy in the absence of cells are

Figure 4. Lipid microdomain disruption by cholesterol depletion prevents bacteria-induced cellular response. The effect of cholesterol
depletion by methyl-ß-cyclodextrin (MßCD) on the interaction of N. meningitidis with host cells was tested. (A) Ability of N. meningitidis microcolonies
to recruit cellular components determined by immunofluorescence using Ezrin as a marker. Bacteria and nuclei were stained with DAPI (DAPI); Ezrin
was detected with anti-Ezrin polyclonal anti-serum (Ezrin); and images were merged (Merge). Scale bar corresponds to 10 mm. The top set of images
are untreated cells and in the bottom set, cells were treated with MßCD. (B) Frequency of bacterial microcolonies efficiently recruiting ezrin
(recruitment index) for non-treated cells (NT), in the presence of Cytochalasin D (CD), Nocodazole (Noco), and MßCD. (C) Dose response effect of
MßCD with regard to the ability of bacterial microcolonies to reorganize the cellular surface on the surface of epithelial cells (full circles) and on
endothelial cells (open circles). To control that the effect of MßCD was due to cholesterol, repletion experiments with added cholesterol were
performed with both cell types (squares, open for endothelial cells and full for epithelial cells). (D) Cholesterol localization under bacterial
microcolonies. GFP-expressing bacteria were used (Bacteria); Cholesterol was detected with Filipin (Cholesterol); and images were merged (Merge).
The scale bar corresponds to 5 mm.
doi:10.1371/journal.ppat.1000314.g004
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not completely smooth, vary in diameter and are rarely observed in

bundles larger than 25 nm. In contrast, cellular protrusions on non-

infected epithelial cells are smooth, round and homogeneous in

diameter, 100 nm. In addition, PFA-fixation of cells prior to infection

completely prevents the formation of these structures, indicating that

they are of cellular origin. Endothelial cells treated with 5 mM

MßCD displayed a dramatic reduction in bacteria-induced cellular

projections (Figure 5B, compare left and right panels). Cholesterol

repletion allowed the formation of the cellular projections (data not

shown). N. meningitidis-induced reorganization of the host cell plasma

membrane is therefore dependent on the presence of membrane

cholesterol for the integrity of lipid rafts, and a strong correlation

exists between the presence of bacteria-induced cellular projections

and the cohesion of microcolonies.

Bacteria-induced cellular projection formation depends
on minor pilin PilV

We next sought to identify bacterial factors involved in

triggering the reorganization of the host cell plasma membrane.

Previous studies have highlighted the role of type IV pili in

triggering Neisseria gonorrheae-induced host cell surface reorganiza-

tion [20]. Deletion of the pilE gene encoding the main type IV

pilus component leads to a drastic decrease in the clustering of

cytoskeletal proteins under Neisseria gonorrheae microcolonies.

Although this is likely the case in N. meningitidis, the situation is

complicated by the loss of adhesion of the N. meningitidis pilE

mutant. Consistent with a direct role of pili, detailed examination

of high resolution scanning electron micrographs of infected

epithelial cells revealed that in several instances pili were

associated with the tip of bacteria-induced filopodia-like structures

(Figure 6A). Pilus retraction is important to trigger cortical plaque

formation as a pilT mutant, unable to retract its pili, is less efficient

in triggering this response [20]. In addition to pilT, three proteins

known as minor pilins, PilX, ComP and PilV are prime candidates

as pili components responsible to trigger a cellular response. They

are thought to insert in the pilus fiber and could interact directly

with the host cell surface to trigger a cellular response [12–14].

Because of the strong defect in adhesion of the pilX mutant, the

potential role of the PilX protein in triggering the cellular response

could not be tested. Microcolonies formed by the comP mutant

recruited ezrin as efficiently as the wild type strain. In contrast with

observations in N. gonorrheae [14], adhesion efficiency of the pilV

mutant in N. meningitidis was quantitatively indistinguishable from

the wild type strain (Figure 7D, black bars). Consistently, the

amount of pili present on the surface of the pilV mutant was

indistinguishable from the wild type strain. This was determined

by ELISA on whole bacteria and by immunofluorescence (data

not shown). We therefore tested the ability of the pilV mutant to

recruit ezrin. Under DAPI-stained bacteria in wild type micro-

colonies growing on endothelial cells, ezrin was abundantly

recruited in the typical honeycomb lattice structure. However,

the pilV mutant was strongly affected in its ability to recruit ezrin

(Figure 6B). The same decrease was found for other proteins

normally recruited under N. meningitidis microcolonies including

actin, cortactin, ErbB2, CD44, or ICAM-1 (data not shown). This

pilV mutant effect was also observed on other eukaryotic cell types

(data not shown). To quantitate this effect, the frequency of

colonies efficiently recruiting ezrin was determined; while 91+/

22% and 90+/25% of wild type and comP microcolonies

efficiently recruited ezrin, only 27+/22% pilV colonies did

(Figure 6C, recruitment index). The pilV mutation was comple-

mented with an intact copy of the gene. In this construct, the pilV

gene is regulated at the transcriptional level by an IPTG inducible

promoter (pilVind). In the presence of 100 mM IPTG, colonies

efficiently recruited ezrin with a recruitment index of 86+/25%

(Figure 6C, pilVind,). The presence of IPTG led to increased levels

of protein as shown by western blot (Figure 6D). Microcolonies

formed by the pilT strain are morphologically different from those

formed by the wild type strain and comparison is difficult.

Nevertheless, in the same conditions we found that 63+/220% of

microcolonies formed by the pilT strain recruited ezrin (Figure 6C).

To extend these findings, we next evaluated by scanning

electron microscopy whether a pilV mutant could trigger the

formation of cellular projections. Endothelial and epithelial cells

were challenged with N. meningitidis for 2 hours and cells were

processed for scanning electron microscopy. Numerous cellular

projections were associated with wild type bacteria growing on

endothelial cells (Figure 6E, WT) but this effect was strongly

reduced with the pilV mutant where bacteria were associated

with a flat cellular surface (Figure 6E, pilV). Absence of PilV

therefore strongly reduces the ability of the bacteria to re-

organize the cellular surface and to recruit underlying cellular

components.

Figure 5. Lipid microdomain disruption prevents the formation
of bacteria-induced cellular projections. (A) Human epithelial cells
infected with N. meningitidis were visualized by electron microscopy to
document the organization of bacterial microcolonies in relation with
the cellular surface. Low magnification scanning electron microscopy
shows bacteria growing in tight aggregates on the cellular surface
(scale bars are 1 mm). Higher magnification shows the presence of
numerous projections under and around individual bacteria in the
aggregates. Transmission electron microscopy analysis of bacterial
microcolonies showing the dense network of projections surrounding
the bacteria is presented in the lower inset. (B) Scanning electron
microscopy analysis of infected endothelial cells shows cellular
projections (scale bar is 1 mm). Cells were treated with MßCD during
infection and processed for scanning electron microscopy. The number
and length of cellular projections is strongly reduced after MßCD
(compare left and right panels).
doi:10.1371/journal.ppat.1000314.g005
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PilV dependent cellular projection formation is required
to generate shear stress resistant microcolonies

Given that the pilV mutant adheres to host cells and forms

microcolonies normally but does not induce a cellular response,

and that bacterial aggregates in solution in the absence of host cells

have low mechanical resistance, we hypothesized the mechanical

resistance of the pilV mutant microcolonies might also be low. The

flow chamber assay was used to test the ability of pilV

microcolonies to resist to external forces while growing on the

epithelial surface. As expected, in the control experiment with wild

Figure 6. The minor pilin PilV is necessary to induce cellular surface reorganization. Characterization of the ability of a mutant in the pilV
gene to reorganize host cell plasma membrane of endothelial cells. (A) High resolution scanning electron micrographs showing direct contacts
between pili and bacteria-induced cellular protrusions on epithelial cells (arrows, scale bar corresponds to 1 mm). (B) Immunofluorescence analysis of
the cellular response to infection with the pilV mutant (pilV). Bacterial aggregates on the endothelial surface were visualized with DAPI staining
(DAPI). Ezrin immunostaining was used as a marker for the recruitment of cytoskeletal components (Ezrin). Scale bar corresponds to 10 mm. (C)
Quantification of the effect of the pilV mutation on the ability of N. meningitidis to recruit ezrin under microcolonies. The frequency of ezrin
recruitment under individual microcolonies (recruitment index) is represented for the wild type strain (WT), the comP, pilT, and pilV mutants and the
complemented pilV strain (pilVind) in the presence or absence of inducer (100 mM IPTG). (D) Total protein levels of PilV in the different indicated
strains and with different doses of IPTG. (E) Scanning electron microscopy analysis of the cellular surface reorganization induced by wild type (WT) on
endothelial cells and absent in the pilV mutant (pilV), (scale bars correspond to 1 mm).
doi:10.1371/journal.ppat.1000314.g006
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type bacteria, microcolonies resisted high liquid flow without

detectable detachment (Figure 7A, WT). In contrast, microcolo-

nies formed by the pilV mutant were disrupted in the presence of

10 dynes/cm2 shear stress (Figure 7A, pilV). Dynamic observation

by video microscopy revealed a gradual disruption of pilV mutant

microcolonies by mechanical stress (Video S3), in contrast to colonies

formed by wild type bacteria where increased shear stress had no

visible effect (Video S1). To obtain a quantitative measure of the

effect, the morphology of colonies was determined in the presence of

flow for the wild type, pilV and pilVind strains. As previously shown,

the frequency of multilayered wild type microcolonies did not

change in the presence of flow (Figure 7B, WT). With the pilV strain

however, the frequency of multilayered microcolonies decreased

from 72+/23% to 32+/22% (Figure 7B, pilV). Complementation of

the pilV mutation with a wild type copy restored the ability of the

microcolonies to resist mechanical stress (Figure 7B, pilVind). PilV is

therefore necessary under flow conditions to maintain microcolony

cohesion at the cellular surface.

Quantitative measurement of the effect of shear stress was then

performed using the plating assay described previously. As

expected, increased shear stress had little effect on the wild type

or comP microcolonies (Figure 7C, WT, comP). Colonies formed by

the pilT mutant were also highly resistant to shear stress. In

absence of pilV (Figure 7D), bacteria adhered and formed colonies

with the same efficiency as the wild type but introduction of shear

stress decreased the number of bound bacteria by over one

hundred-fold (5.1+/20.66106 to 2.1+/21.26104). Reintroduc-

tion of a wild type copy of the pilV gene rescued the phenotype

(pilVind). The protein PilV is therefore necessary to maintain the

integrity of bacterial microcolonies in the presence of mechanical

stress. In absence of mechanical stress, however, adhesion and

proliferation in aggregates occurs normally.

Discussion

N. meningitidis can be considered a commensal of the human

nasopharynx as these bacteria can survive and multiply in this

environment without causing damage, except in the rare but

devastating cases when they access the bloodstream. In both cases N.

meningitidis adopt a specific lifestyle by adhering to the cellular surface

where they proliferate in tight, three-dimensional aggregates known

as microcolonies in close association with the plasma membrane. We

show here that mechanical resistance of microcolonies is dependent

on the reorganization of the host cell surface induced by the bacteria.

We identify the minor pilin PilV as a central player in inducing this

response. Wild type bacteria trigger the formation of cellular

projections, which confer ability to resist liquid flow generated

mechanical stress (Figure 8, WT). When bacteria are unable to

trigger this cellular response, microcolonies become sensitive to shear

stress and most bacteria detach except those directly in contact with

host cells (Figure 8, pilV or MßCD).

Exactly how cellular projections confer mechanical resistance to

the microcolony is not completely clear but our results suggest that

the formation of cellular projections exert their effect by favoring

Figure 7. PilV is required to maintain integrity of bacterial microcolonies in the presence of shear stress. The ability of microcolonies
formed by a pilV mutant to resist shear stress was tested. (A) Microcolonies on a cellular monolayer formed by wild type or the pilV mutant expressing
GFP were submitted to liquid flow generated force (10 dynes/cm2) in a laminar flow chamber. Images of fluorescent bacteria before and after flow
increase are presented (scale bars correspond to 50 mm). (B) The morphology of microcolonies was determined before and after shear stress
application and the frequency of 2D (white bars) and 3D (black bars) microcolonies determined. (C–D) The number of bacteria adhering to cells
before (black bars) and after application of 10 dynes/cm2 shear stress (white bars) was determined by the plating assay for the indicated strains.
doi:10.1371/journal.ppat.1000314.g007
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direct interaction between the bacteria in the aggregate and the

host cell plasma membrane. In a bacterial aggregate adhering to

the host cell two types of interactions take place: bacteria/bacteria

and bacteria/host. Prior to this study the consensus was that three-

dimensional microcolony formation was only dependent on the

ability of the bacteria to form bacteria/bacteria interactions, a

process being dependent on type IV pili. We show here that under

conditions mimicking the mechanical stress found in the nasophar-

ynx and the bloodstream, bacterial aggregation is not sufficient to

maintain cohesion of the microcolonies. We have previously shown

that individual bacteria adhering to the host cell surface are resistant

to high shear stress levels [4], indicating the bacteria/cell interaction

is shear stress resistant. In the case of wild type bacteria, and in

contrast to the pilV mutant, every bacterium in the aggregate has the

opportunity to directly come into contact with the host cells through

the bacteria-induced projections. Reorganization of the host cell

plasma membrane induced by the bacteria would therefore stabilize

the adhesion of additional bacteria. To describe this collective

behavior we propose the term ‘‘cooperative adhesion’’, to convey the

sense that initial adhesion triggers the host cell structural

rearrangement that allows subsequent bacteria to adhere in a

mechanically resistant microcolony.

An important implication is that the process known as bacterial

adhesion is in fact a multistep process. A first consequence of the

present findings is that before adhesion, bacteria proliferating in

suspension in the bloodstream cannot form aggregates simply

because of level of shear stress. In the bloodstream, shear stress

levels range between 10 and 100 dynes/cm2, and already at 10

dynes/cm2 bacterial aggregates disassemble. In the blood, initial

attachment therefore likely takes place with individual bacteria or

possibly small aggregates. Adhesion starts with the establishment

of contact with the host cells by pioneer diplococci followed by

proliferation with the formation of aggregates through bacteria-

bacteria contacts and concomitantly the induction of cellular

projections that maintain direct contact between bacteria and host

cells and thus strengthen cohesion. Interestingly certain of these

steps can be genetically distinguished, as the pilV mutant is only

deficient for the step involving the strengthening of microcolony

cohesion whereas mutants such as pilC1 are deficient for the initial

attachment step [4].

Previous work showed the importance of Neisseria spp. type IV

pili in triggering a cellular response. Pilus retraction has been

implicated in triggering host cell response as a pilT mutant exhibits

decreased signaling [20]. From the biophysical point of view it is

important to note that the forces created by pilus retraction are in

the same range than the forces generated by shear stress if one

considers that several pili bundles are involved in contacts with

each host cell. According to Goldman et al., under flow-generated

shear stress, a rough estimate of the force exerted on a 10 mm wide

colony at 100 dynes/cm2 would be 30 nN [24], whereas a single

pilus bundle can exert forces in the 1 nN range [26]. These

observations prompted us to evaluate the mechanical resistance of

aggregates formed by the retraction deficient pilT strain. We show

here that in contrast to the wild type strain, application of shear

stress to pilT mutant aggregates does not lead to their disruption.

This result highlights the unusual properties of pilT aggregates and

explains why despite a decreased cellular response, pilT aggregates

growing on a cellular surface are resistant to shear stress. Absence

of detachment in the presence of shear stress could also be due to

the fact that the effect of the pilT mutation on bacteria-induced

cellular response is less pronounced than the pilV mutation.

However, pretreatment of cells with MßCD and infection with the

pilT mutant led to the formation of shear stress resistant colonies

(data not shown) confirming that aggregative properties of the pilT

mutant are sufficient to explain the absence of detachment upon

shear stress application.

Here we show that deletion of a single pilin-like protein PilV

severely affects signaling although retraction and twitching motility

are not affected in this mutant (not shown and [14]). Pilin-like

proteins are thought to insert in the pilus fiber primarily composed

Figure 8. Schematic representation of the link between the ability of microcolonies to resist mechanical force and bacteria induced
cellular response. Wild type bacteria trigger a massive reorganization of the plasma membrane and thus resist flow. The pilV mutant, in contrast, is
able to adhere and form three-dimensional microcolonies but is not able to reorganize the cellular surface and renders the microcolony sensitive to
shear stress. A similar effect occurs when cholesterol is depleted from the host cell with MCßD.
doi:10.1371/journal.ppat.1000314.g008
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of the major pilin PilE. Three such proteins are described in the

Neisseria spp., PilX [11], ComP [13] and PilV [14]. Colocalization

of the protein with the pilus fiber has been demonstrated directly

for PilX by imunogold labeling and electron microscopy and this

protein is necessary for bacteria-bacteria aggregation [11,12]. ComP

is necessary for the natural competence of N. meningitidis and N.

gonorrhoeae, probably for the initial step of DNA uptake. In Neisseria

gonorrhoeae, it was found that the pilV mutant is deficient for adhesion

although shear stress was not applied [14]. This apparent discrepancy

with our results could be due to a difference between bacterial species

or to reproducible differences in experimental technique. We found

that fixing samples with glutaraldehyde, as was done in the Winter-

Larsen et al. study, rendered microcolonies formed by the N.

meningitidis pilV mutant sensitive to washing procedures, suggesting

although not proving the two organisms do manifest the same pilV-

related properties. We found that in the absence of PilV in N.

meningitidis, type IV pili are unable to trigger efficient reorganization of

the host cell membrane. Our results do not formally exclude the

possibility that in addition to its defect in inducing a cellular response,

the pilV mutant also has an aggregation defect revealed by the

application of mechanical stress. Further biophysical studies will be

needed to address this point. The simplest model to explain the role of

PilV in the induction of the cellular response, is that PilV integrates in

the pilus fiber outside of the bacterial body and interacts with a

receptor on the cellular surface, which in turn stimulates a cellular

signaling pathway leading to the reorganization of the cellular

surface. Current efforts are focused on demonstrating this direct

relationship and identifying a target receptor.

The signaling pathway triggered by type IV pili leading to the

formation of cellular protrusions displays distinct properties from the

classical pathway for actin-dependent filopodia formation. The actin

cytoskeleton has been shown to participate in the pili-dependent

process but inhibition of filamentous actin with cytochalasin D or

Latrunculin A does not reduce the ability of bacteria to recruit Ezrin

or to trigger the formation of cellular projections ([18] and data not

shown). Although it is difficult to formally exclude a role for the actin

cytoskeleton in the N. meningitidis-induced cellular response, our

results do suggest that this bacterium takes advantage of unusual

cellular pathways to initiate the response. Consistent with its lack of

effect on the bacteria-induced cellular projections, cytochalasin D

did not render microcolonies sensitive to mechanical stress (data not

shown). In contrast, we show here that removing cholesterol from the

plasma membrane has a strong effect on the ability of the bacteria to

trigger a response and that cholesterol is abundantly recruited below

bacterial microcolonies. The recruitment of CD44 [18], src kinase

[21] and ezrin under microcolonies also supports a role for lipid

microdomains, as these proteins are typically found in these

structures. Interestingly, lipid rafts are known to be necessary for a

growing list of signal transduction pathways, some of which could be

involved in the bacteria-induced process investigated here [25].

Alternatively the effect of cholesterol depletion could be through a

modification of the biophysical properties of the membrane. In any

case, several pathogens are known to interact with lipid rafts at

different stages during the course of pathogenesis [27]. Related to

this study, rafts are also important for the initial adhesion of

individual bacteria, for instance in the case of the Internalin A-

dependent interaction of Listeria monocytogenes with host cells [28] or

the example of the initial interaction of Shigella flexneri with host cells

[29]. In other instances, rafts were found to be necessary for invasion

of host cells or for intracellular survival [27].

Interaction of N. meningitidis with endothelial cells is a new

illustration of how bacteria have evolved to exploit host cell function.

Intracellular bacteria are known to directly divert cellular pathways

to generate a safe niche for the bacteria. In the case of extracellular

bacteria such as N. meningitidis, adhesion is generally viewed as a

passive process reduced to adhesin-receptor interaction [30]. Our

results show that even in the case of extracellular bacteria, an intense

dialogue takes place with host cells and that the nature of this

dialogue influences the properties of the interaction. Interestingly N.

meningitidis is not the only pathogen to induce the formation of

cellular protrusions while proliferating on the cellular surface. The

Gram-positive bacterium Streptococcus pyogenes (group A Streptococ-

cus) responsible for streptococcal sore throat and invasive soft tissue

infection was also found to induce the formation of cellular

projections while proliferating at the epithelial surface [16]. Another

example is Bartonella henselae, a Gram-negative bacillus responsible for

the formation of tumors on the skin surface characterized by

proliferating endothelial cells associated with clumps of bacteria.

Colonization of endothelial cells by aggregates of B. henselae is

associated with the formation of cellular projections closely

resembling those observed with N. meningitidis [17]. In contrast to

other apicomplexans, the parasite Cryptosporidium resides in an

extracytoplasmic parasitophorous vacuole on the cellular surface

[31]. After adhesion, long and thick microvilli that cluster around

developing trophozoites are analogous to the cellular projections

induced by N. meningitidis. Furthermore, host cell membrane

reorganization and attachment is also dependent on lipid micro-

domains [32]. The ‘‘pericellular’’ lifestyle adopted by N. meningitidis

could be a general process adopted by various pathogens. It will be of

interest to test whether certain viruses could also utilize a similar

strategy. In any case our results provide a framework for the analysis

of the functional significance of pathogen-induced host cell

membrane reorganization: these cellular responses provide mechan-

ical resistance to the harsh conditions encountered by extracellular

pathogens in their hosts.

From the evolutionary point of view, properties of N. meningitidis

are positively selected to favor their life in the nasopharynx [33] and

certain of these properties then play an important role in the context

of pathogenesis. Processes described here can be viewed as the result

of such evolutionary pressure. Under pressure to survive in the

nasopharynx, N. meningitidis has evolved a mechanism to maintain

adhesion of microcolonies on the epithelial surface despite harsh

mechanical conditions. This adaptive feature becomes a key

virulence factor when the bacterium enters the blood and adheres

to the cerebral endothelium before invading the brain.

Materials and Methods

Reagents and antibodies
Ezrin was detected using selective rabbit polyclonal antisera kindly

provided by P. Mangeat (CNRS, Montpellier, France). DAPI (49,6-

diamidino-2-phenylindol) and secondary antibodies directed against

rabbit or mouse IgG with Alexa 488 or 564 were purchased from

(Molecular Probes, Eugene USA). Mowiol, Methyl-ß-cyclo-dextrin

(MßCD) for cholesterol depletion, MßCD-cholesterol for cholesterol

repletion, Filipin, Cytochalasin D and Nocodazole were purchased

from Sigma (Sigma, Saint Louis, USA).

Bacterial strains and growth conditions
N.meningitidis 8013 clone 12 is a serogroup C clinical isolate,

expressing a class I SB pilin, Opa-, Opc-, PilC1+/PilC2+ as

described previously [34]. N. meningitidis was grown on GCB agar

plates (Difco) containing Kellogg’s supplements and when required,

100 mg ml21 kanamycin, 4 mg ml21 erythromycin, 50 mg ml21

spectinomycin or 5 mg ml21chloramphenicol at 37uC in moist

atmosphere containing 5% CO2. Escherichia coli transformants were

grown on liquid or solid Luria-Bertani medium (Difco) containing

20 mg ml21 chloramphenicol, 50 mg ml21 spectinomycin or

Adhesion Under Shear Stress

PLoS Pathogens | www.plospathogens.org 11 February 2009 | Volume 5 | Issue 2 | e1000314



200 mg ml21 erythromycin when necessary. Mutation in the pilV

gene was introduced into the N. meningitidis chromosome by natural

transformation of chromosomal DNA extracted from a library of

transposition mutants described elsewhere [35]. To complement the

pilV mutants, the WT pilV allele was amplified using primers PilV1

59-TTAATTAAAGGAGTAATTTTATGAAAAACGTTCAAA-

AAGGC-39 and PilV2 59-GTTTAAACTTAGTCGAAGCCGG-

GGCAG-39, which contained overhangs with underlined restriction

sites for PacI and PmeI and cloned in the PCR2.1Topo plasmid. This

fragment was restricted with PacI and PmeI and cloned into PacI/

PmeI-cut pGCC4 vector, adjacent to lacIOP regulatory sequences

[36]. This placed pilV under the transcriptional control of an IPTG

inducible promoter within a DNA fragment corresponding to an

intragenic region of the gonococcal chromosome conserved in N.

meningitidis. The pilVind allele was then introduced into the

chromosome of a pilV mutant by homologous recombination. N.

meningitidis was made to express the green fluorescent protein (GFP)

by introducing the pAM239 plasmid by conjugation [4]. To

generate the comP mutant a portion of the open reading frame was

amplified with primers ComP88Fnde 59-GCATATGTATCGCAA-

TTATGTTGAGAAAG-39 and 59-TGGATCCCTACTTAAGT-

AACTTGCAGTCCTT-39. This NdeI and BamHI restricted PCR

fragment was cloned into pET14b plasmid (Novagen). The resulting

plasmid was restricted with PmeI, the blunted spectinomycin cassette

[37] was ligated at this site thus interrupting the open reading frame

and the resulting plasmid used to introduce the mutation in N.

meningitidis by transformation. The pilT mutant was described

elsewhere [38].

Cell culture
Cells were grown at 37uC in a humidified incubator under 5%

CO2. Human umbilical vein endothelial cells (HUVECs; Promo-

Cell, Heidelberg, Germany) were used between passages 1 and 8

and grown in Endo-SFM supplemented with 10% heat-inactivated

fetal bovine serum (FBS, PAA Laboratories GmbH, Pasching,

Austria), 2 mM L-Glutamine (Life-Technologies, Grand Island,

USA), 0.5 UI/ml of heparin and 40 mg/ml of endothelial cell

growth supplement (Harbor Bioproducts, Norwood, USA). The

human endometrial cell line Hec1B (HTB113) was purchased

from the American Type Culture Collection (Rockville, Md.) and

maintained in DMEM medium supplemented with 10% fetal

bovine serum (PAA Laboratories).

Immunofluorescence
Cells were plated at a density of 105 cells/cm2 onto 12-mm

diameter glass coverslips coated with fibronectin (10 mg/ml in PBS

for 609). Before the assay, bacteria grown on GCB agar plates were

adjusted to OD600 = 0.05 and then incubated for 2 hours at 37uC
in prewarmed RPMI supplemented with 10% FBS. Approximate-

ly 107 bacteria in culture medium were added to 105 cells/well in a

24-well (MOI = 100), allowed to adhere for 30 min, unbound

bacteria were washed away and infection was allowed to proceed.

At the indicated times, monolayers were processed for immuno-

fluorescence assays. For cytochalasin D, Nocodazole and MßCD

treatments, the drug was maintained throughout the entire

infection period in culture medium at the indicated concentra-

tions. After infection, cells were fixed with 3.7% paraformaldehyde

in PBS for 20 min, permeabilized for 5 min with 0.1% Triton

6100 in PBS and then saturated for 20 min with PBS containing

0.2% gelatin (PBSG) before incubation for 1 hour with the

primary antibodies diluted in PBSG. Ezrin anti-serum was diluted

1/1000 (A kind gift from Paul Mangeat, Montpellier, France).

Cells were then washed with PBS and incubated for 1 hour in

PBSG with anti-rabbit or anti-mouse secondary antibodies

conjugated with Alexa 488 (5 mg/ml). DNA was stained with

DAPI at a concentration of 100 ng/ml. For cholesterol labeling,

Filipin was added after fixation at a concentration of 20 mg/ml.

Finally, cells were washed 3 times in PBS and mounted in Mowiol.

For quantification, efficiency of recruitment was determined as a

recruitment index defined as the percentage of microcolonies

efficiently recruiting a given cellular protein. Experiments were

performed in triplicate and 50–100 microcolonies were counted

for each point.

Laminar flow chamber experiments
Experiments using the laminar flow chamber were done

essentially as described [4]. Endothelial (HUVEC) or epithelial

(HEC1b) cells were grown on fibronectin-coated glass slides at a

concentration of 104 cells on a 6 mm diameter circular area.

Alternatively, disposable flow chambers were used (Ibidi GmbH,

München, Germany). Before the assay, bacteria grown on GCB

agar plates were adjusted to OD600 = 0.02 in prewarmed RPMI

medium containing 10% fetal bovine serum and incubated for

90 min at 37uC. GFP expression was induced by adding 1 mM

IPTG in the culture medium for an additional 90 min. Cells were

infected with 106 bacteria (MOI = 100), adhesion allowed to

proceed for 30 min, unbound bacteria washed and infection

continued for 2–3 h in an incubator. Infected cells on the glass

slide were then placed in a parallel plate flow chamber

(3.3 cm60.6 cm6250 mm, Immunetics, MA, USA) and sealed

with vacuum or the Ibidi chamber was placed directly in flow.

Medium was maintained at 37uC with a heated platform (Minitub,

Germany) and introduced into the chamber using a syringe pump

(Vial Medical, Becton-Dickinson or Harvard Apparatus) at various

flow rates to produce various wall shear stress levels, using Endo-

SFM supplemented with 10% FBS for HUVECs or DMEM

supplemented with 10% FBS for Hec1b. Adhesion of bacteria was

recorded using an Olympus CKX41 inverted microscope with a

206 objective, equipped with a shutter for the fluorescence lamp

and a Hamamatsu ORCA285 CCD camera. The Openlab

software (Improvision, UK) controlled the shutter and camera for

video time-lapse microscopy. The field under observation

corresponded to 425 mm by 320 mm with a resolution of

0.63 mm per pixel. To determine the effect of shear stress on

bacterial adhesion a plating assay was performed. Infected cells

were detached by Trypsin treatment, collected, serial dilutions

performed and a fraction was plated on GCB agar plates.

Estimation of the force exerted on a single bacterium and on a

colony adhering to the celluar monolayer in the flow chamber was

determined according to Goldman et al. [24]. For a static bead

next to a wall within the boundary layer, an expression of the force

for a static bead next to a wall within the boundary layer is given

by F = 1.700566pmr2c where m is viscosity of the fluid, r the bead

radius and c the shear rate.

Analysis of the mechanical properties of bacterial
colonies in absence of cells

Before the assay, bacteria grown on GCB agar plates were

adjusted to OD600 = 0.05 and then incubated for 2 hours at 37uC
in pre-warmed RPMI supplemented with 20% FBS with gentle

agitation. The bacterial suspension was concentrated to OD = 0.6

by a 1 min centrifugation at 15000 g followed by resuspension and

vortex. Aggregation was then allowed to occur for a period of 309

in the incubator. For the cone and plate assay, about 150 ml of

culture was introduced into a cone and plate rheometer

(Brookfield Engineering Laboratories Inc., Middleboro, MA,

USA) and submitted to different levels of shear stress (0–10

dynes/cm2). Bacteria were then collected and observed micro-
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scopically with a 46 lens in a glass bottom 96-well plate (Nunc,

Rochester, USA). Aggregate size and number were determined

with the Image J software [39]. For the immobilization of bacterial

colonies on a glass slide, the 20D9 monoclonal antibody [40] was

adsorbed on the glass surface for 60 minutes in PBS at a

concentration of 10 mg/ml. The coated glass slide was placed in

the flow chamber, bacteria introduced and incubation for periods

of 4–6 hours allowed bacterial proliferation. Shear stress was

introduced with a syringe pump and images were captured as

described above.

Electron microscopy
For transmission electron microscopy, cells grown on collagen

coated, 0.3 mm pore Transwells (Costar) were infected as

described above and were fixed overnight at 4uC with a 1:1

mixture of 2.5% glutaraldehyde and 2.5% paraformaldehyde in

cacodylate sucrose buffer (0.1 M cacodylate, 0.1 M sucrose, 5 mM

CaCl2, 5 mM MgCl2, pH 7.2). Monolayers were then stained for

1 hour in a solution of 1% OsO4 and placed for 1 hour in 1%

uranyl acetate. After dehydration in a graded series of alcohols,

cells were embedded with polyester filter in Epon. Thin sections

were obtained by using an Ultracut ultramicrotome and analyzed

with JEOL-100CX electron microscope.

For scanning electron microscopy, infected cells were fixed in

2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2) 1 h at

room temperature. Samples were washed three times for 5 min in

0.2 M cacodylate buffer (pH 7.2), fixed for 1 h in 1% (wt/vol)

osmium tetroxide in 0.2 M cacodylate buffer (pH 7.2), and then

rinsed with distilled water. Samples were dehydrated through a

graded series of 25, 50, 75 and 95% ethanol solution (5 min each

step). Samples were then dehydrated for 10 min in 100% ethanol

followed by critical point drying with CO2. Dried specimens were

sputtered with 10 nm gold palladium, with a GATAN Ion Beam

Coater and were examined and photographed with a JEOL JSM

6700F field emission scanning electron microscope operating at

5 Kv. Images were acquired with the upper SE detector (SEI).

SDS-PAGE, antisera, and immunoblotting
Preparation of protein samples, SDS-PAGE separation, transfer

to membranes and immunoblotting were performed using

standard biochemistry techniques [41]. To raise antibodies against

PilV, we amplified a PCR product corresponding to the pilV gene

devoid of its N-terminal sequence encoding the first 26 residues of

the Neisseria gonorrheae PilV preprotein. We used primers PilV

forward primer 59- AGAATTCTACATCCGGCGCGCCCGC-

CTG -39 and PilV reverse primer 59- ATACTGCAGTTAGTC-

GAAGCCGGGGC-39, which contained overhangs correspond-

ing to underlined restriction sites for EcoRI and PstI, respectively.

The PCR product was first cloned into pCRII-TOPO (Invitrogen,

USA) and then excised from pCRII-TOPO with EcoRI and PstI,

and subcloned into pMAL-p4x (New England biolabs, USA)

already digested by EcoRI and PstI. The final construct contains

the coding sequence for maltose binding protein fused

upstream and in-frame with the truncated pilV. The protein

was expressed in E. coli BL21::DE3, purified using maltose-

agarose, digested with factor X and submitted to ion exchange

chromatography. The protein was injected into New Zealand

rabbits (Centre Lago, Vonnas, France). For western blot

detection, anti-PilV serum was diluted 1/2000 in PBS

containing 0.1% Tween20 and 1% milk, secondary antibody

HRP-linked anti IgG antibodies was diluted in the same buffer

1/10000. Detection of immobilized antigens was performed by

chemiluminescence using ECL Plus detection reagents (Amer-

sham biosciences).

Supporting Information

Video S1 Video microscopy analysis of the resistance of

microcolonies formed by a wild type strain of N. meningitidis on

endothelial cells. Endothelial cells forming a confluent monolayer

on a glass slide were infected with a GFP expressing strain for a

period of 3 h and placed in a flow chamber under. Unbound

bacteria were removed in the presence of low intensity shear stress

(0.04 dynes/cm2). Shear stress was increased to 10 dynes/cm2.

Bacteria forming a microcolony of average size were followed

using a time-lapse video microscopy. The video is accelerated 20

times; real time duration is 1 min. The arrow indicates time and

direction of application of flow.

Found at: doi:10.1371/journal.ppat.1000314.s001 (1.06 MB

MOV)

Video S2 Analysis of the resistance of microcolonies formed by a

wild type strain of N. meningitidis on endothelial cells treated with

6 mM MbCD.

Found at: doi:10.1371/journal.ppat.1000314.s002 (0.87 MB

MOV)

Video S3 Effect of shear stress on colonies formed by the pilV

strain.

Found at: doi:10.1371/journal.ppat.1000314.s003 (1.13 MB

MOV)
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