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Abstract

Viral persistence is associated with hierarchical antiviral CD8 T cell exhaustion with increased programmed death-1 (PD-1)
expression. In HCV persistence, HCV-specific CD8 T cells from the liver (the site of viral replication) display increased PD-1
expression and a profound functional impairment that is not reversed by PD-1 blockade alone. Here, we report that the
inhibitory receptor cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is preferentially upregulated in PD-1+ T cells from
the liver but not blood of chronically HCV-infected patients. PD-1/CTLA-4 co-expression in intrahepatic T cells was
associated with a profound HCV-specific effector dysfunction that was synergistically reversed by combined PD-1/CTLA-4
blockade in vitro, but not by blocking PD-1 or CTLA-4 alone. A similar effect was observed in circulating HCV-specific CD8 T
cells with increased PD-1/CTLA-4 co-expression during acute hepatitis C. The functional response to combined blockade
was directly associated with CTLA-4 expression, lost with CD28-depletion and CD4-independent (including CD4+FoxP3+

Tregs). We conclude that PD-1 and CTLA-4 pathways both contribute to virus-specific T cell exhaustion at the site of viral
replication by a redundant mechanism that requires combined PD-1/CTLA-4 blockade to reverse. These findings provide
new insights into the mechanisms of virus-specific T cell dysfunction, and suggest that the synergistic effect by combined
inhibitory receptor blockade might have a therapeutic application against chronic viral infection in vivo, provided that it
does not induce autoimmunity.
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Introduction

Virus-specific CD8 T cells become progressively exhausted

during chronic viral infection due to increased level or duration of

antigenic stimulation without sufficient CD4 help[1]. Among the

CD28 family of costimulatory molecules, programmed death-1

(PD-1) is an immune inhibitory receptor that is highly expressed

on both exhausted and activated T cells[2]. Interactions between

PD-1 and its ligands PD-L1/PD-L2 can inhibit antigen-specific T

cell proliferation and effector function[2,3]. Importantly, blockade

of PD-1 signaling can restore function to exhausted virus-specific

CD8 T cells with reduced viral load in mice with chronic

lymphocytic choriomeningitis virus (LCMV) infection in vivo[4],

thereby raising the possibility that immune exhaustion can be

reversed with potentially therapeutic antiviral effects. A role for

PD-1 pathway in viral persistence and antiviral T cell exhaustion

has been shown in various chronic viral infections including

hepatitis B virus (HBV), human immunodeficiency virus (HIV),

simian immunodeficienty virus (SIV) and hepatitis C virus

(HCV)[2,5,6,7,8].

In particular, HCV is a highly persistent human pathogen that

infects the liver and causes significant morbidity and mortality due

to chronic liver disease[9]. Patients with chronic HCV infection

harbor dysfunctional antiviral T cells with increased PD-1

expression in circulating blood, and PD-1 blockade can restore

their antigen-specific effector function in vitro [10,11,12,13,14].

However, HCV-specific CD8 T cells in the liver (the site of HCV

infection) display markedly increased PD-1 expression compared to

peripheral blood [10,13,15] and a profound functional impairment

that is refractory to PD-1 blockade alone[13]. Similarly, highly

activated circulating HCV-specific CD8 T cells in acute evolving

hepatitis C show markedly increased PD-1 expression with a deep

functional impairment that is unresponsive to PD-1 blockade. These

results suggested the existence of additional inhibitory mechanisms

that contribute to virus-specific CD8 T cell exhaustion in HCV-

infected patients, particularly in PD-1high cells.
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Since intrahepatic PD-1+ CD8 T cells also express increased

levels of immune inhibitory receptor cytotoxic T lymphocyte-

associated antigen-4 (CTLA-4)[13], we asked if CTLA-4 might

contribute to virus-specific T cell dysfunction in HCV-infected

patients. We show that CTLA-4 is preferentially co-expressed in

PD-1high CD8 T cells (particularly HCV-specific CD8 T cells) in

peripheral blood during acute hepatitis C and in the liver during

chronic HCV infection. PD-1/CTLA-4 co-expression was associ-

ated with marked antigen-specific effector T cell dysfunction that

was dramatically and synergistically reversed by combined PD-1/

CTLA-4 blockade in vitro. The response to combined PD-1/

CTLA-4 blockade was directly associated with CTLA-4 expres-

sion, independent of CD4 T cells including FoxP3+ Tregs and

dependent on CD28 expression. Collectively, these findings

suggest that both CTLA-4 and PD-1 pathways contribute to

HCV-specific T cell exhaustion in a distinct manner in HCV

infection and that combined inhibition of CTLA-4 and PD-1

pathways may have potential therapeutic application in reversing

immune exhaustion.

Results

CTLA-4 expression is increased in PD-1+ HCV-specific CD8
T cells from the liver during chronic HCV infection and in
the blood during acute hepatitis C

In chronically HCV-infected patients (C), CTLA-4 expression

was greater in CD8 T cells from liver infiltrating lymphocytes (LIL)

compared to peripheral blood lymphocytes (PBL) (p,0.0001)

(Figure 1A). This compartmental difference was further amplified

in HCV-specific CD8 T cells both in MFI (p = 0.023) and

percentages (p = 0.005), but not in CD8 T cells specific for influenza

virus (Flu), cytomegalovirus (CMV) or Epstein-Barr virus (EBV)

epitopes (p.0.3) (Figure 1B). These expression patterns mirrored

PD-1 expression, which is also upregulated in intrahepatic HCV-

specific CD8 T cells[10,12,13,16]. Of note, CTLA-4 expression was

low in CD8 T cells from liver explants of two HCV-seronegative

patients with nonalcoholic steatohepatitis and alcoholic liver disease

(Figure S1). In peripheral blood, CTLA-4 expression levels were

uniformly low in total, HCV-specific and non-HCV-specific CD8 T

cells during chronic or resolved (R) HCV infection; this contrasts

with PD-1 expression, which is elevated in circulating HCV-specific

CD8 T cells from chronic compared to resolved patients[13].

CTLA-4 expression was also upregulated in total and HCV-specific

(but not non-HCV-specific) CD8 T cells from the peripheral blood

of patients with acute hepatitis C (Figure 1A/B). Figure 1C shows

the representative PD-1 and CTLA-4 expression for peripheral

blood and intrahepatic CD8 T cells specific for HCV and non-

HCV epitopes detected by HLA-A2/peptide tetramers. Of note,

CTLA-4 was preferentially expressed in PD-1-high, but not PD-1-

intermediate or PD-1-negative CD8 (Figure 1D) and CD4 T cells

(data not shown) with a strong association between PD-1 MFI and

CTLA-4 expression in percentage (R = 0.81, p,0.0001)

(Figure 1E) as well as MFI (R = 0.69, p,0.0001, data not shown).

Taken together, CTLA-4 expression is induced early with PD-1 in

HCV-specific CD8 T cells during acute hepatitis C but becomes

compartmentalized to the liver with chronic infection.

CTLA-4+PD-1+ CD8 T cells from HCV-infected liver display
markedly increased CD28 expression but not ICOS or B
and T lymphocyte attenuator (BTLA)

Intrahepatic CD8 T cells were further examined for expression

levels of additional CD28 family receptors. As shown (Figure 2A),

CD28 was highly expressed in PD-1+CTLA-4+ subset, compared

to PD-1+CTLA-42 or PD-12CTLA-42 subsets (median 62% vs

49% vs 33%, p,0.0001). By contrast, ICOS and BTLA

expression levels were generally low, although a slight increase

in ICOS expression was observed in PD-1+CTLA-4+ subset

compared to others (median 2.4% vs 0.5% vs 0.1%, p = 0.049).

Thus, intrahepatic CD8 T cells may be subject to inhibitory

signals from PD-1 and CTLA-4 as well as a positive signal from

CD28 with little contribution from ICOS or BTLA.

Intrahepatic CD4 T cells display increased CTLA-4
expression without increased FoxP3 expression

CTLA-4 expression was also increased in CD4 T cells from the

liver compared to peripheral blood (p,0.0001) (Figure S3A).

Since CD4+FoxP3+ Tregs are upregulated in HCV-infected

patients and they co-express CTLA-4[17], we asked whether

FoxP3+ Tregs accounted for increased CTLA-4 expression in

intrahepatic CD4 T cells. However, FoxP3+ Treg frequencies did

not differ between the liver and blood compartments (p = 0.209)

(Figure S3B/C); furthermore, FoxP32CTLA-4+ CD4 T cells

were enriched by 2–3 fold in the liver compared to blood (Figure
S3D). Thus, intrahepatic CD4 and CD8 T cells in HCV-infected

patients display increased CTLA-4 expression without increased

FoxP3+ Treg frequency.

Combined PD-1/CTLA-4 blockade can synergistically
enhance intrahepatic HCV-specific CD8 and CD4 T cell
cytokine response

We previously showed that PD-1 blockade failed to restore

function to highly PD-1+ HCV-specific CD8 T cells from HCV-

infected liver, although it enhanced the functionality of PD-1

intermediate CD8 T cell from blood[13]. As CTLA-4 was

preferentially expressed in PD-1high CD8 T cells (Figure 1D),

we asked if CTLA-4 blockade might reverse their dysfunction,

either alone or combined with aPD-L1. To this end, intrahepatic

and peripheral lymphocytes from HCV-infected patients were

cultured with 15mer peptides spanning the entire HCV NS3 or

Flu matrix protein in the presence of blocking aPD-L1 and/or

aCTLA-4 or isotype control antibodies. On day 7, the cultures

Author Summary

Hepatitis C virus (HCV) is an important human pathogen
with a high rate of persistence associated with chronic liver
disease that can progress to cirrhosis and hepatocellular
carcinoma. Chronic HCV infection occurs in the setting of
impaired antiviral T cells that over-express an inhibitory
receptor PD-1 (programmed death-1 receptor). Recent
studies showed that in vitro inhibition of the PD-1 pathway
via an inhibitory antibody can reverse the functional
impairment in HCV-specific CD8 T cells from blood but not
the liver (the site of viral infection and disease progres-
sion). In this study, we show that a second co-inhibitory
receptor, CTLA-4, is upregulated in HCV-specific CD8 T cells
from the liver and that combined PD-1/CTLA-4 blockade
(but not single blockade of PD-1 or CTLA-4) can
synergistically enhance their function. This functional
enhancement was CD28-dependent but CD4-indepen-
dent. This effect also differed between viruses, tissue
compartments (liver vs. periphery) and clinical status
(acute vs. chronic). We conclude that PD-1, CTLA-4, and
CD28 expression profiles define a novel hierarchy in HCV-
specific CD8 T cell exhaustion than can be synergistically
reversed by combined inhibitory receptor blockade. These
findings have potential immunotherapeutic applications,
provided that no autoimmunity is induced.

PD1 and CTLA4 Blockade Reverses T Cell Exhaustion
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were examined for antigen-specific IFN-c and TNF-a expression

by intracellular cytokine staining. As shown in Figure 3A, there

was little to no HCV-specific CD4 or CD8 T cell cytokine

expression in intrahepatic lymphocytes cultured with aPD-L1 or

isotype control antibodies, although low level responses were

occasionally seen with aCTLA-4 alone. Remarkably, combined

blockade with aPD-L1 and aCTLA-4 resulted in a marked

enhancement of intrahepatic HCV NS3-specific CD8 and CD4 T

cell cytokine production from 4/6 patients. The comparison of

total NS3-specific cytokine responses showed a significant

difference between combined PD-1/CTLA-4 blockade and single

PD-1 blockade (2.3% vs 0%, p = 0.0037 by Mann Whitney U).

However, in blood, HCV-specific CD8 T cell cytokine response

was augmented by aPD-L1 without further enhancement by

aCTLA-4. Thus, combined PD-1/CTLA-4 blockade resulted in

marked HCV-specific cytokine response in LIL but not PBL in

HCV-infected patients: LIL 4/6 patients (67%) vs PBL 0/8

patients (0%), p = 0.015 by Fisher’s Exact. The effect of inhibitory

receptor blockade is shown in representative flow cytometry plots

for intrahepatic CD8 (Figure 3B); notably, the intrahepatic Flu-

specific cytokine response was readily detectable without blockade

and not enhanced by PD-1/CTLA-4 blockade (Figure 3B, right

panels).

Combined PD-1/CTLA-4 blockade can synergistically
enhance intrahepatic HCV-specific CD8 T cell expansion

The effect of combined PD-1/CTLA-4 blockade on HCV-

specific CD8 T cell function was more directly examined in HLA

A2+ patients using HLA-A2/peptide tetramers. As shown in

Figure 4A, aPD-L1 alone did not enhance intrahepatic HCV

NS3 1073-specific CD8 T cell expansion compared to isotype in

patient C57, and a 2-fold enrichment was observed with aCTLA-

4. However, combined PD-1/CTLA-4 blockade induced a

dramatic increase in the HCV NS3 1073 tetramer+ CD8 T cell

Figure 1. CTLA-4 expression is increased in intrahepatic HCV-specific CD8 T cells. (A) %CTLA-4+ in CD8 T cells from 29 chronic (C), 6 acute
(A) and 4 resolved (R) hepatitis C patients and 10 HCV-seronegative controls (N). Median: C (blood 1.6%, liver 6.4%); R 1.3%; N 0.9%; A 10.6%. (B)
CTLA-4 expression in tetramer+ CD8 T cells specific for HLA-A2-restricted HCV (NS3 1073, NS3 1406, NS5 2594) and non-HCV (Flu, CMV and EBV)
epitopes from 11C, 3R and 4A patients. Median CTLA-4 MFI: C (blood: HCV 77, non-HCV 61; liver: HCV 151, non-HCV 43). Median %CTLA-4+: C (blood:
HCV 1.4%, non-HCV 0.9%; liver: HCV 22.2%, non-HCV 0.6%); R (HCV 0.6%, non-HCV 0%); A (HCV 14.0%, non-HCV 2.9%). Red horizontal bars indicate
median value. P-values were determined by Mann-Whitney U test. (C) Representative flow cytometry plots. (Top): Staining characteristics of tetramer+

CD8 T cells. (Middle): PD-1/CTLA-4 staining of gated tetramer+ CD8 T cells (dot plots). (Bottom): PD-1 and CTLA-4 cutoff strategy based on the isotype.
(D) Representative FACS plots showing preferential CTLA-4 expression in PD-1-high cells (left) and cutoff strategy based on the isotype (left) in
intrahepatic CD8-gated T cells demonstrated with PE-conjugated aPD-1 mAb. (E) Correlation between PD-1 and CTLA-4 expressions in HCV-specific
tetramer+ CD8 T cells ex vivo from HCV-seropositive subjects. Red circles: HCV-specific CD8 T cells from HCV-infected liver and peripheral blood of
acute HCV patients.
doi:10.1371/journal.ppat.1000313.g001
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frequency compared to isotype control or single blockades with

aPD-L1 or aCTLA-4. In peripheral blood, aPD-L1 enhanced

HCV-specific CD8 T cell expansion as expected while aCTLA-4

provided only an additive effect (Figure 4B). As for antigen-

specific effector function, the frequency of tetramer+ CD8 T cells

with HCV-specific IFN-c production, CD107a mobilization and

perforin expression increased with aCTLA-4 and combined aPD-

L1/aCTLA-4 but not with aPD-L1 alone; in peripheral blood, the

functional enhancement also occurred with aPD-L1 alone.

Overall, the combined PD-1/CTLA-4 blockade enhanced the

expansion and effector function of liver-derived HCV tetramer+

CD8 T cells compared to isotype control in 2/3 patients

(Figure 4C). By contrast, intrahepatic CMV-specific CD8 T

cells displayed little to no PD-1 or CTLA-4 expression ex vivo and

were highly functional without further enhancement by PD-1/

CTLA-4 blockade (Figure 4D). Collectively, these results show

that combined PD-1/CTLA-4 blockade can restore proliferative

capacity and effector function to deeply exhausted intrahepatic

HCV-specific CD8 T cells in a synergistic manner.

Combined PD-1/CTLA-4 blockade can reverse HCV-
specific CD8 T cell dysfunction during acute hepatitis C

The effect of PD-1/CTLA-4 blockade was examined in 2 HLA-

A2+ patients (A29, A35) with acute hepatitis C characterized by

markedly elevated serum alanine aminotransferase (sALT) activ-

ities and viral titers. As shown (Figure 5A/B), circulating HCV-

specific CD8 T cells displayed increased PD-1 (A29: 95%; A35:

92%) and CTLA-4 (A29: 28%; A35: 14%) expression. As we

previously reported[13], HCV-specific CD8 T cells expanded

poorly in vitro when stimulated in the presence of aPD-L1 alone.

With aCTLA-4 alone, small increases in HCV tetramer+ CD8 T

cell frequencies were observed in both patients, with proliferation

Figure 2. PD-1+CTLA-4+ CD8 T cells from HCV-infected liver highly express CD28 but not ICOS or BTLA. (A) CD28 expression by
percentage and MFI in total CD8 T cells from blood and in liver-derived CD8 T cell subsets (PD-12CTLA-42, PD-1+CTLA-42, PD-1+CTLA-4+) ex vivo from
18 chronic HCV patients. Median values (red horizontal lines): %CD28+ in intrahepatic PD-12CTLA-42 vs. PD-1+CTLA-42 vs. PD-1+CTLA-4+ subsets
(33% vs. 49% vs. 62%, p,0.0001 by the Kruskal Wallis test). (B) BTLA and ICOS expressions by percentage and MFI in total CD8 T cells from blood and
in liver-derived CD8 T cell subsets (PD-12CTLA-42, PD-1+CTLA-42, PD-1+CTLA-4+) ex vivo from 5 chronic HCV patients. Median values (red horizontal
lines): %BTLA+ (intrahepatic CD8 subsets: 0.1% vs. 0.4% vs. 0.3%, p = 0.364); %ICOS+ (intrahepatic CD8 subsets: 0.1% vs. 0.5% vs. 2.4%, p = 0.049); ICOS
MFI (intrahepatic CD8 subsets: 43 vs. 50 vs. 78, p = 0.021). The p-values were calculated by the Kruskal Wallis test. Flow cytometry plots on the right
show the characteristic PD-1 and CTLA-4 expression in intrahepatic CD8 T cells (left) and the relative CD28, BTLA and ICOS expression in PD-1+CTLA-
4+ (Red), PD-1+CTLA-42 (Green) and PD-12CTLA-42 (Blue) CD8 T cell subsets relative to isotype control (gray shade) in the histograms on the right.
doi:10.1371/journal.ppat.1000313.g002

PD1 and CTLA4 Blockade Reverses T Cell Exhaustion
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directly measured by CFSE dilution in A35 (Figure 5B).

However, a marked enhancement of HCV-specific CD8 T cell

expansion occurred with combined PD-1/CTLA-4 blockade,

mirroring the scenario with intrahepatic T cells. Notably, HCV-

specific CD8 T cell dysfunction during acute infection did not

persist after spontaneous (A29) or treatment-induced (A35) viral

clearance (data not shown), suggesting that PD-1 and CTLA-4

inhibitory pathways can downregulate immune function upon

active antigenic encounter, but without necessarily defining the

ultimate virological outcome.

Figure 3. Intrahepatic HCV-specific T cell dysfunction can be reversed synergistically by combined PD-1/CTLA-4 blockade. (A) Effect
of inhibitory receptor blockade on HCV-specific IFN-c and TNF-a production by CD8 and CD4 T cells from liver and blood. The bar graphs show the
frequency of CD8 (upper graphs) and CD4 (lower graphs) T cells with HCV-specific intracellular IFN-c and/or TNF-a expression in liver-derived (left
panel, n = 6) and blood-derived (right panel, n = 8) lymphocytes isolated from chronic HCV patients and cultured for 7 days in vitro with 15mer
overlapping peptides spanning the entire HCV NS3 protein (pNS3) in the presence of isotype control or blocking antibodies. The 7-day cultures were
further stimulated for 6 hours with media alone or with pNS3 before intracellular IFN-c and TNF-a staining. The %IFN-c2TNF-a+ (blue bar), %IFN-
c+TNF-a+ (red bar) and %IFN-c+TNF-a2 (yellow bar) T cells are stacked together in each case to show total cytokine+ cells. (B) Representative flow
cytometry plots showing HCV NS3 and Flu-specific IFN-c and TNF-a production in vitro in liver-derived CD8 T cells from chronic HCV patient C21
following 7 days of culture with NS3 or Flu-derived peptides in the presence of isotype or blocking antibodies. Flow cytometry plots on the far left
shows the PD-1 and CTLA-4 expression in liver-derived CD8 T cells directly ex vivo.
doi:10.1371/journal.ppat.1000313.g003
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The functional response to combined PD-1/CTLA-4
blockade is associated with CTLA-4 expression on HCV-
specific effector CD8 T cells but not FoxP3+ Tregs

The HCV-specific cytokine response to combined PD-1/

CTLA-4 blockade was tightly correlated with CTLA-4 expression

in CD8 T cells directly ex vivo (R = 0.83, p = 0.0026) (Figure 6A); a

similar positive trend was noted with PD-1 expression, although

this did not reach a statistical significance (R = 0.36, p = 0.20).

Notably, the HCV-specific cytokine response during combined

PD-1/CTLA-4 blockade did not correlate with the Foxp3+ Treg

frequency directly ex vivo. Moreover, the functional restoration by

PD-1/CTLA-4 blockade persisted after CD4-depletion that

resulted in complete loss of CD4+FoxP3+ Tregs (Figure 6C);

these data indicate that the functional response to inhibitory

receptor blockade is independent of CD4+FoxP3+ Tregs. Among

tetramer+ CD8 T cells, increased PD-1 expression associated with

poor augmentation in antigen-specific expansion with the addition

of aPD-L1 (data not shown), as previously reported[13]. However,

the addition of aCTLA-4 to aPD-L1 resulted in marked expansion

of tetramer+ CD8 T cells in direct correlation with CTLA-4

expression ex vivo (Figure 6B), suggesting that aCTLA-4 acts

directly on effector CD8 T cells expressing CTLA-4.

Functional restoration by combined PD-1/CTLA-4
blockade is CD28-dependent

Since CD28 is over-expressed in PD-1+CTLA-4+ CD8 T cells

(Figure 2A) and mediates positive costimulatory signaling for T

cell activation [18,19], we asked if the functional response to PD-

1/CTLA-4 blockade is mediated by CD28+ T cells. To this end,

the effect of PD-1/CTLA-4 blockade on the HCV-specific CD8 T

cell IFN-c response was examined in CD4-depleted lymphocyte

subsets with and without CD28-depletion in 3 patients (2 chronic

HCV patients with liver-derived lymphocytes, 1 acute HCV

patients in peripheral lymphocytes). As shown (Figure 7A), the

HCV-specific CD8 T cell IFN-c response was markedly enhanced

by combined PD-1/CTLA-4 blockade even in CD4-depleted cells.

Figure 4. Effect of PD-1/CTLA-4 blockade on intrahepatic and peripheral HCV-specific tetramer+ CD8 T cell function. Flow cytometry
plots showing HCV 1073-specific CD8 T cell phenotype directly ex vivo and antigen-specific functions following 7 days of antigenic stimulation in the
presence of isotype or blocking antibodies, using liver-derived (A) and blood-derived (B) lymphocytes from chronic patient C57. (Top panels):
frequency of HCV 1073-specific CD8 T cells determined by cognate HLA-A2 tetramer staining. (Middle panels) far left: PD-1 and CTLA-4 expression ex
vivo in gated tetramer+ CD8 T cells (dot plots). Remaining right panels: HCV-specific IFN-c production and CD107a mobilization in gated tetramer+

CD8 T cells on day 7. (Bottom panels): Perforin expression in tetramer+ (blue line) and total CD8 T cells (gray shaded) on day 7. (C) Fold increase in the
expansion and effector functions of liver-derived (left) and blood-derived (right) HCV-specific CD8 T cells by aPD-L1 alone (white bar), aCTLA-4 alone
(gray bar) and combined aPD-L1/aCTLA-4 blockade (black bar) relative to the isotype control for 3 chronic patients. The frequencies of functional
tetramer+ CD8 T cells in each culture were calculated by multiplying %tetramer+ CD8 T cells with %IFN-c+/tetramer+ CD8 T cells, %perforin+/tetramer+

CD8 T cells or %CD107a+/tetramer+ CD8 T cells. (D) Flow cytometry plots showing CMV-specific CD8 T cells directly ex vivo and their antigen-specific
functions following 7 days in vitro cultures from chronic patient C99.
doi:10.1371/journal.ppat.1000313.g004

PD1 and CTLA4 Blockade Reverses T Cell Exhaustion
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However, this response was lost with CD28-depletion in all 3

patients, suggesting that the functional response to combined

blockade in CD28-dependent.

The role of CD28 in the functional response to PD-1/CTLA-4

blockade was further examined in an HLA-A2+ patient with acute

hepatitis C using an HLA-A2/peptide tetramer. As shown in

Figure 7B, circulating HCV 1073 tetramer+ CD8 T cells in this

patient showed 28% CD28 expression in addition to increased

PD-1 (97%) and CTLA-4 (21%) expression ex vivo. Further subset

analysis of HCV 1073 tetramer+ CD8 T cells based on PD-1/

CTLA-4 expression showed that CD28 was preferentially

expressed in PD-1+CTLA-4+ (50%) compared to PD-1+CTLA-

42 (19.5%) or PD-12CTLA-42 (12.2%) subsets (far right

histogram on Figure 7B), similar to intrahepatic CD8 T cells

(Figure 2A). As shown in the upper panel (Figure 7C), combined

PD-1/CTLA-4 blockade markedly enhanced HCV-specific CD8

T cell proliferation in CD4-depleted lymphocytes. With CD28-

depletion, this proliferative response was largely lost, even though

HCV tetramer+ CD8 T cells remained detectable (Figure 7C).

Taken together, our results show that both PD-1 and CTLA-4 can

co-inhibit HCV-specific CD8 T cell function and that this effect

can be reversed by combined PD-1/CTLA-4 blockade. We

further show that this functional effect is mediated by CD28+ CD8

T cells, independently from CD4+ FoxP3+ Tregs.

Discussion

CTLA-4 is an immune inhibitory receptor within the CD28

family of costimulatory molecules[18,20,21]. Induced in activated

T cells and constitutively expressed in FoxP3+ Tregs[22,23],

CTLA-4 shares its ligands B7-1 and B7-2 with CD28 but binds

them with differential kinetics[19,24,25]. CTLA-4 inhibits T cell

activation by engaging specific signaling pathways and by

outcompeting the positive costimulatory receptor CD28[20,26].

A critical immune regulatory role for CTLA-4 is evident from the

massive and fatal lymphoproliferation that occurs in CTLA-4-

deficient mice[27,28]. Antibody-mediated blockade of CTLA-4

signaling can augment antigen-specific CD8 T cell responses in a

CD4-independent manner, promoting anti-tumor and autoim-

mune effects[21,29]. CTLA-4 also contributes to immune

regulation and pathology in animal models of bacterial or parasitic

infection[30,31]. CTLA-4 may play a more variable role in viral

infections. For example, in LCMV-infected mice, the disruption of

CTLA-4 signaling fails to modify the course of infection or

antiviral T cell responses in vivo[32,33], unlike PD-1 blockade[4].

By contrast, increased CTLA-4 expression on HIV-specific CD4

(but not CD8) T cells is strongly associated with disease

progression and reversible immune dysfunction in HIV-infected

patients[34]. Little is known about the relevance of CTLA-4 in

HCV infection. We show here that CTLA-4 (together with PD-1)

contributes to HCV-specific T cell dysfunction in HCV-infected

liver that can be dramatically reversed by combined CTLA-4 and

PD-1 blockade.

There are several notable findings in our study. For example,

CTLA-4 was upregulated in deeply exhausted, HCV-specific PD-

1high CD8 T cells at the site of viral replication (i.e. liver). The

increased CTLA-4 and PD-1 expression was functionally relevant,

since intrahepatic HCV-specific CD8 T cells regained their

function with combined PD-1/CTLA-4 blockade, although not

with single-blockade of PD-1 or CTLA-4. Overall, combined PD-

1/CTLA-4 blockade strongly enhanced the HCV-specific CD8 T

cell response in vitro in 6/9 patients from the liver (4/6 HLA-A22;

2/3 HLA-A2+), compared to the peripheral blood response which

was enhanced in none of the 11 chronically infected patients

(p = 0.0016). The combined blockade enhanced antigen-specific T

cell cytokine production (e.g. IFN-c and TNF-a) and cytolytic

potential (e.g. perforin expression and CD107a degranulation) as

well as their expansion. Thus, PD-1/CTLA-4 blockade promoted

a polyfunctional HCV-specific T cell response, perhaps acting

beyond the inhibition of cellular apoptosis which is increased in

highly PD-1+ CD8 T cells in the liver or during acute hepatitis

Figure 5. PD-1/CTLA-4 blockade can rejuvenate circulating PD-1+CTLA-4+ HCV-specific CD8 T cells during acute hepatitis C. (Left
panels): Flow cytometry plots showing peripheral HCV-specific tetramer+ CD8 T cells during acute hepatitis C in patients A29 (A) and A35 (B) ex vivo.
Gated tetramer+ CD8 T cells (dot plots) exhibit increased PD-1 and CTLA-4 expression. (Right panels): Flow cytometry plots showing HCV-specific
tetramer+ CD8 T cell frequency following 7 days of culture with antigenic peptide in the presence of isotype or blocking antibodies for A29. In A35,
HCV-specific tetramer+ CD8 T cell proliferation was directly monitored in CFSE dilution assay (gating on CD8 T cells) in which the events on the left
upper quadrant represent tetramer+ CD8 T cells that expanded with CFSE-dilution.
doi:10.1371/journal.ppat.1000313.g005
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Figure 6. The functional response to PD-1/CTLA-4 blockade associate directly with CTLA-4 expression but not FoxP3+ Tregs. (A)
Correlation between HCV specific effector cytokine response to combined PD-1/CTLA-4 blockade and ex vivo %CTLA-4+/CD8 but not %PD-1+/CD8
and %FoxP3+/CD4. The y-axis represents the sum of CD8 T cells with HCV-specific IFN-c+TNF-a+, IFN-c+TNF-a2 and IFN-c2TNF-a+ expression during
combined PD-1/CTLA-4 blockade from 14 HLA-A22 patients (6 intrahepatic and 8 peripheral blood responses). R and p-values by the Spearman rank
correlation test. (B) Positive correlation between fold expansion of HCV-specific tetramer+ CD8 T cells with combined PD-1/CTLA-4 blockade (relative
to PD-1 blockade alone) and ex vivo %CTLA-4+ in HCV-specific tetramer+ CD8 T cells in 7 HLA A2+ HCV-infected patients. R- and p-values by the
Spearman rank correlation test. (C) (Left): Liver infiltrating lymphocytes from chronic patient C07 are examined for CD4, CD8 and FoxP3+ T cell subsets
before (upper) and after (lower) depletion of CD4 T cells by CD4 Dynabeads (Dynal Inc), resulting in .99% depletion of CD4 T cells including FoxP3+

CD4 T cells. (Right): Undepleted and CD4-depleted liver infiltrating lymphocytes were cultured for 7 days with overlapping HCV NS3-derived 15mer
peptides (pNS3) in the presence of isotype or blocking antibodies before direct staining for T cell subsets (CD4, FoxP3) and following additional
6 hours of stimulation with media alone (negative control) or pNS3 peptides to examine HCV-specific intracellular IFN-c and TNF-a expression in CD8
T cells. Combined PD-1/CTLA-4 blockade promoted markedly enhanced HCV-specific cytokine response in undepleted and CD4-depleted cultures
regardless of FoxP3+ Tregs.
doi:10.1371/journal.ppat.1000313.g006
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C[35,36]. Interestingly, while combined blockade enhanced both

HCV-specific T cell IFN-c and TNF-a production (Figure 3), the

increase was particularly evident for TNF-a, suggesting that PD-

1/CTLA-4 blockade may promote a cytokine profile that differs

from a preferential (albeit weak) IFN-c rather than TNF-a
production by dysfunctional HCV-specific CD8 T cells in chronic

hepatitis C[11]. The combined PD-1/CTLA-4 blockade also

enhanced intrahepatic HCV-specific CD4 T cell function, an

important consideration given the relevance of CD4 T cells in

immune regulation[37,38].

Although HCV persistence is associated with increased levels of

circulating CD4+FoxP3+ Tregs that constitutively express CTLA-

4[17,39,40,41], the level of functional restoration in CD8 T cells

by PD-1/CTLA-4 blockade correlated directly with the frequency

of CTLA-4+ CD8 T cells but not FoxP3+CD4+ Tregs ex vivo.

Furthermore, while the functional response to combined blockade

differed between the liver and blood, FoxP3+ Treg frequencies did

not differ between the two compartments ex vivo or following in vitro

culture with PD-1/CTLA-4 blockade (data not shown). Finally,

the response to combined blockade persisted after CD4 T cells

(including CD4+FoxP3+ Tregs) were depleted. These results

suggest that PD-1/CTLA-4 blockade targets effector T cells

directly in a manner independent of CD4 T cells including

FoxP3+ Tregs[42].

PD-1 and CTLA-4 inhibit T cell activation through distinct

mechanisms that converge on Akt: PD-1 inhibits CD28-mediated

activation of phosphatidylinositol 3-kinase (PI3K) and CTLA-4

activates the type II serine/threonine phosphatase PP2A, both

leading to the inhibition of Akt phosphorylation[43]. By

competing with CD28 for B7-1 and B7-2[24,44], CTLA-4 can

reduce CD28-mediated PI3K activation, further enhancing the

negative signaling through PD-1. Since PD-L1 also interacts with

B7-1[45], both aPD-L1 and aCTLA-4 can increase the

accessibility of B7-1 to CD28. In our study, HCV-specific CD8

T cells co-expressing PD-1 and CTLA-4 (e.g. from HCV-infected

liver) were deeply exhausted and resistant to PD-1 blockade alone,

whereas combined PD-1/CTLA-4 blockade had a synergistic

effect in restoring their function. However, the two negative

regulators may act redundantly to inhibit T cell function in this

setting, such that both must be blocked to regain normal functions.

The PD-1+CTLA-4+ phenotype with a functional response to PD-

1/CTLA-4 blockade also occurred in circulating HCV-specific

CD8 T cells during acute hepatitis C. By contrast, circulating

HCV-specific CD8 T cells from chronic HCV patients (e.g. with

intermediate PD-1 expression without CTLA-4 co-expression)

were functionally augmented by PD-1 blockade alone. These

findings suggest that the CTLA-4 and PD-1 pathways are induced

early in HCV infection to co-regulate HCV-specific CD8 T cell

Figure 7. The functional restoration by PD-1/CTLA-4 blockade is CD28-dependent. (A) Loss of HCV-specific CD8 T-cell IFN-c response by
CD28 depletion. LIL or PBL from 3 HLA-A2-negative patients with chronic (C08, C275) and acute (A36) hepatitis C were depleted of CD4 without or
with additional CD28 depletion before in vitro culture for 7 days with HCV NS3-derived overlapping 15mer peptides in the presence of isotype or PD-
1/CTLA-4 blockade. Cultured cells were examined for HCV-specific IFN-c production in a 45 hour IFN-c ELISPOT assay. (B) CD28 expression in HCV-
specific NS3 1073-specific tetramer+ CD8 T-cells relative to PD-1 and CTLA-4 expression ex vivo. (left) Peripheral HCV 1073-specific tetramer+ CD8 T
cells from an HLA-A2+ acute HCV patient (A47) display CD28 expression in 28%. (middle) Gated HCV 1073-specific tetramer+ CD8 T cells show the
characteristic PD-1 (97.3%) and CTLA-4 (20.5%) expression. (right) Increased CD28 expression in gated PD-1+CTLA-4+ (Red; 50.0%) HCV tetramer+ CD8
T cells compared to PD-1+CTLA-42 (Green; 19.5%) and PD-12CTLA-42 (Blue; 12.2%) subsets and isotype control (gray shade) in histogram. (C) Effect
of CD28-depletion on antigen-specific expansion in the presence of PD-1 and/or CTLA-4 blockade is shown by CFSE-dilution for HCV NS3 1073-
specific tetramer+ CD8 T cells from patient A47. CD4 depleted PBL with and without CD28-depletion were CFSE-labeled and stimulated for 7 days in
vitro with HCV NS3 1073 peptide in the presence of isotype or blocking antibodies before flow cytometric analysis. Note that HCV tetramer+ CD8 T
cells remain detectable with CD28 depletion in the bottom graphs.
doi:10.1371/journal.ppat.1000313.g007
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function in a redundant manner that differs between tissue

compartments over the course of infection.

Notably, CD28 was highly expressed in intrahepatic PD-

1+CTLA-4+ CD8 T cells compared to CTLA-42 CD8 T cells.

CD28 expression may be induced to counter the inhibitory signals

mediated by PD-1 and CTLA-4. Conversely, CTLA-4 may be

induced in CD28+PD-1+CD8 T cells to downregulate the active

inflammation at the site of viral replication. In either case,

increased CD28 expression may enable greater functional

enhancement upon PD-1/CTLA-4 blockade due to unhampered

positive signaling through CD28. Indeed, the functional response

to PD-1/CTLA-4 blockade was abolished in HCV-specific CD8 T

cells by CD28-depletion in our study. Along these lines, direct

CD28 costimulation enhanced HCV-specific CD8 T cell IFN-c
response in HCV-monoinfected patients but not in HIV/HCV-

coinfected patients with reduced CD28 expression on CD8 T cells

in one study[46]. Since loss of CD28 expression is a marker of T

cell senescence and functionality[47], detection of CD28 expres-

sion in PD-1+CTLA-4+ CD8 T cells provides an additional marker

for reversible functional exhaustion. Collectively, these costimula-

tory receptors may define a dynamic and complex functional

hierarchy for antigen-specific CD8 T cells at various stages and

types of viral infections that may respond to distinct therapeutic

modulation. If this is correct, combined blockade could have

potential therapeutic implications in chronic viral infection,

provided it does not trigger autoimmunity.

There are distinct differences between our study and those in

human HIV or murine LCMV infections[4,34]. In peripheral

blood of HIV-infected patients, increased CTLA-4 expression with

a functional response to CTLA-4 blockade was limited to HIV-

specific CD4 but not CD8 T cells. This difference may be

explained by the reduced CTLA-4 and CD28 expression in HIV-

specific CD8 T cells[34], since the functional response to

combined PD-1/CTLA-4 blockade depended on both CTLA-4

and CD28 expression in our study. Alternatively, HIV-specific

CD8 T cells might exhibit compartmental differences (e.g.

between blood and tissue compartments) similar to HCV. In

LCMV-infected mice, LCMV-specific CD8 T cells displayed

increased CTLA-4 and PD-1 expression, but responded only to

PD-1 but not CTLA-4 blockade in vivo. Furthermore, HIV-specific

and LCMV-specific T cells were functionally augmented by aPD-

L1, without a synergistic response to combined aPD-L1/aCTLA-

4[4,34]. Thus, PD-1 may play a more universal role in antiviral T

cell exhaustion whereas the effect of CTLA-4 may differ between

viral infections, T cell subsets and even anatomical locations.

In conclusion, both CTLA-4 and PD-1 contributes to HCV-

specific T cell exhaustion in a redundant manner in human HCV

infection, particularly in HCV-infected liver; this intrahepatic

virus-specific T cell dysfunction can be synergistically reversed by

combined PD-1/CTLA-4 blockade in vitro in a CD4-independent

and CD28-dependent manner. These findings provide new

insights to the mechanisms that regulate virus-specific T cell

dysfunction and suggest that immune exhaustion at the site of

antigen expression may be reversed by combined inhibitory

receptor blockade.

Materials and Methods

Study subjects
All subjects were recruited with informed consent approved by

the Institutional Review Boards. All investigations have been

conducted according to the principles expressed in the Declaration

of Helsinki. Patients were recruited at the Philadelphia Veterans

Affairs Medical Center (PVAMC) and the Hospital of the

University of Pennsylvania. A total of 47 patients with chronic

hepatitis C without HIV coinfection (group C) were examined,

including 33 cirrhotic patients undergoing liver transplantation

and 14 patients with chronic stable HCV infection. Control groups

included 10 healthy HCV-seronegative subjects (group N), 4

HCV-seropositive but RNA-negative patients with spontaneous

resolution of HCV infection without prior antiviral therapy

(group R) and 6 patients with acute hepatitis C (group A)

diagnosed by acute serum alanine amino-transferase (sALT)

elevation with documented HCV-seroconversion and/or viremic

fluctuations greater than 10-fold without prior liver disease as

described previously[48]. The patient characteristics are shown in

Table 1.

Fluorescent antibodies and reagents
All fluorescent monoclonal antibodies (mAbs) were purchased

from BD Bioscience (San Jose, CA) except for: (i) aFoxP3 and

aCD28 from eBioscience (San Diego, CA); (ii) FITC-labeled aPD-

1 (aCD279; clone EH12.2H7) from BioLegend (San Diego, CA);

and, (iii) PE-labeled aPD-1 from the Dana Farber Cancer Institute

Table 1. Patient groups.

Acute (A) Chronic (C) Recovered (R) HCV-negative Controls (N)

Stable Transplanted

n = 6 n = 14 n = 33 n = 4 n = 10

Sex (M/F) 6/0 14/0 29/4 4/0 6/4

HLA-A2+ 4 7 15 3 3

Genotype 1 5 13 32 (-) (-)

Age (years)* 37 55 54 53 48

HCV RNA (IU/ml)* 4,995,000 940,500 530,000 0 0

ALT (IU/ml)* 1234 40 71 24 28

Albumin (g/dl)* 4.1 4.2 2.4 4.6 4.2

Bilirubin (mg/dl)* 6.3 0.7 2.8 0.8 0.5

Platelets (6103/mm3)* 166 237 72 240 264

*Median values.
doi:10.1371/journal.ppat.1000313.t001
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(Boston, MA). Of note, PD-1 and CTLA-4 expression in all

subjects was examined using FITC-labeled aPD-1 (clone M1H4,

BD) and PE-labeled aCTLA-4 (aCD152; clone BNI3, BD). In

selected subjects, the patterns of PD-1 (low/intermediate/high)

and CTLA-4 expression in CD8 T cells were compared using

FITC-labeled aPD-1 from BioLegend or PE-labeled aPD-1 from

the Dana Farber Caner Institute combined with APC-labeled

aCTLA-4 (BD). Dead cells were excluded with 7-AAD. For

functional blockade, aPD-L1 mAb (clone 29E.2A3.C6) from the

Dana Farber Cancer Institute[13,49] and aCTLA-4 mAb (clone

BNI3; BD)[34] were used.

Peptides and HLA class I tetramers
The HCV-specific T cell response was measured using a pool of

105 overlapping 15mer peptides spanning the entire NS3 protein

derived from HCV genotype 1a[13,39,48,50]. Similarly, the T cell

response to influenza virus was examined using 49 overlapping

15mer peptides spanning the conserved matrix M1 protein

(residues 1–252) based on the human A/PR/8/34 (H1N1)

virus[51]. For HLA-A2+ subjects, the following peptides corre-

sponding to optimal CD8 epitopes were synthesized for antigenic

stimulation and tetramer synthesis as described previously [13]: (i)

HCV NS3 1073 (CINGVCWTV), NS3 1406 (KLVALGINAV)

and NS5B 2594 (ALYDVVSKL); (ii) influenza matrix

(GILGFVFTL); (iii) EBV BMLF1 (GLCTLVAML); and, (iv)

CMV pp65 (NLVPMVATV).

Immunophenotyping by flow cytometry
Cells were stained with fluorescent antibodies according to the

manufacturer’s instructions; events were acquired with a FACS-

Calibur or FACSCanto (Becton Dickinson, San Jose, CA) and

analyzed with FlowJo software (Tree Star Inc., San Carlos, CA).

Compensations were established using single color controls. As

CTLA-4 is more readily detected in the cytoplasm due to rapid

internalization[19,34,52], CTLA-4 expression was assessed by

intracellular staining following permeabilization[34]. Cutoffs for

CTLA-4 expression was defined by isotype control where 99.9%

of the events were negative. Figure S2 further confirms the

preferential CTLA-4 expression on PD-1high CD8 T cells with

corresponding isotype and unstained controls.

Isolation of peripheral blood lymphocytes (PBL) and liver-
infiltrating lymphocytes (LIL)

PBL were isolated by standard Ficoll-Histopaque (Sigma

Chemical Co., St Louis, MO) density centrifugation[39,53]. LIL

were isolated from 20–50 gm of fresh liver explant tissue that was

transported in complete media and processed within 24 hours of

explant (usually 1–3 hours) as described previously[13]; briefly, this

procedure incorporated careful dicing of liver into 5 mm3 pieces,

incubation of the liver slurry at 37uC with 1 mg/ml collagenase

(Type 1a; Roche Molecular) and 1 mg/ml DNase (Sigma Aldrich)

for 30 minutes, further mechanical dissociation using the Seward

Stomacher 400 Lab Blender (Brinkman Instruments, Westbury,

NY), filtration through a 70 mm nylon filter and Ficoll-Histopaque

density centrifugation. Control experiments showed that collage-

nase digestion for 30 minutes did not alter PD-1, CTLA-4, or CD28

expression (data not shown).

Analysis of antigen-specific T cell expansion and effector
function in the presence or absence of PD-1 and/or
CTLA-4 blockade

PBL and LIL (26106 cells/ml/well) were stimulated on day 0

with overlapping HCV NS3 or influenza matrix 15mer peptides

(2 mM) in complete media in the presence of isotype control

antibodies, aPD-L1[13], aCTLA-4[34] or both aPD-L1 and

aCTLA-4 (10 mg/ml for each mAb). Cell cultures were stimulated

with rIL-2 (100 IU/ml) on day 4 and examined by flow cytometry

on day 7 with CD107a, intracellular cytokine or perforin staining

as previously described[13,54]. For intracellular cytokine staining,

expanded PBL and LIL cultures were stimulated for 6 hours with

HCV or Flu peptides in the presence of brefeldin A (10 mg/ml)

before surface staining, permeabilization and intracellular staining

with aIFN-c and aTNF-a. Antigen-specific CD107a mobilization

was quantified by adding FITC-labeled aCD107a before peptide

stimulation. In selected HLA-A2+ subjects with available cells,

PBL and LIL were stimulated with HLA-A2 restricted antigenic

peptides (10 mg/ml) with the blocking conditions described above.

In select experiments, antigen-specific IFN-c+ T cell response

was quantified by IFN-c ELISPOT assay in which cultured

lymphocytes were stimulated for 45 additional hours with

antigenic peptides or control media (200,000 cells/well in

triplicates) as previously described[39,50,53]. HCV-specific IFN-

c+ T cell frequency was calculated by subtracting the mean IFN-c
spot forming units (SFU) in control wells from the mean SFU in

antigen-stimulated wells and expressed as IFN-c SFU/106 cells.

CFSE proliferation assay
Lymphocytes were labeled with 5 mM CFSE (Molecular

Probes, Eugene, OR) as described previously[13,17] before 7

days of culture with antigenic peptides (10 mg/ml) in the presence

of isotype control or blocking antibodies as described above. Cell

cultures were stimulated with rIL-2 (100 IU/ml) on day 4 and

examined by flow cytometry on day 7 for antigen-specific T cell

expansion.

Depletion of CD4 and CD28
CD4 T cells were depleted from PBL and/or LIL using CD4

Dynabeads (Invitrogen, Oslo, Norway) as previously de-

scribed[39]. CD28+ T cells were depleted by sequentially staining

with aCD28-PE (clone CD28.2, BD Pharmingen) and anti-PE

Microbeads before separation by AutoMACS (Miltenyi Biotec Inc)

as previously described [17]. The efficiency of CD4 and CD28

depletion was .97% (data not shown).

Statistics
Clinical and immunological parameters were compared using

the Mann-Whitney U-test, the paired t-test and the Kruskal-Wallis

test. Frequency differences were compared by Fisher’s Exact test

or the Chi-square test as appropriate. Correlations were tested for

significance by the Spearman rank correlation test. P values below

0.05 were considered significant.

Supporting Information

Figure S1 CTLA-4 and PD-1 expression in intrahepatic CD8 T

cells from HCV-seronegative subjects. CTLA-4 and PD-1

expression in gated CD8 T cells from liver explants are shown

for 2 HCV seronegative subjects (NC091, NC109) with nonalco-

holic steatohepatitis (NASH) and alcoholic cirrhosis and 2

representative chronic HCV patients (C97, C08). Bottom plots

show the isotype control staining of the intrahepatic lymphocytes.

Found at: doi:10.1371/journal.ppat.1000313.s001 (1.26 MB EPS)

Figure S2 Preferential CTLA-4 expression in PD-1high CD8 T

cells isolated from blood of an acute hepatitis C patient (A46). The

sample on the far right was stained with aCTLA-4, aPD-1, aCD8

and 7-AAD. Two samples on the left were stained with the same
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antibody cocktail minus anti-CTLA-4 (unstained) or with the

addition of the corresponding isotype antibody.

Found at: doi:10.1371/journal.ppat.1000313.s002 (0.78 MB EPS)

Figure S3 Increased CTLA-4 expression in CD4 T cells is

increased in HCV-infected liver. (A) %CTLA-4+ expression in

CD4 T cells from peripheral blood and liver of 15 chronic (C)

patients and blood of 4 HCV-seronegative controls (N). Median

%CTLA-4+ in CD4 T cells (red horizontal lines): C-blood 6.9%

vs. C-liver 17.9% (p,0.0001 by the Mann-Whitney U-test); N-

blood 5.6%. Of note, examination of intrahepatic CD4 T cells

from 3 HCV seronegative but cirrhotic patients showed similar

level of CTLA-4 expression (10.4%, 4.8%, 1.4%) as those in

normal control PBL. (B) %FoxP3+ in CD4 T cells from blood and

liver of 30 chronic (C) HCV patients. Median %FoxP3+ in CD4 T

cells (red horizontal lines): C-blood 7.6% vs. C-liver 6.3%

(p = 0.209 by the Mann-Whitney U-test). (C) Representative

FoxP3 expression in CD4 and CD8 T cells from blood and liver

of a chronic HCV patient (C97). (D) %FoxP32CTLA-4+ CD4 T

cells in the liver and blood in chronic HCV patients (blood,

unfilled bars; liver, solid bars).

Found at: doi:10.1371/journal.ppat.1000313.s003 (1.12 MB EPS)
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