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Abstract

Hepatitis C virus (HCV) is a blood-borne pathogen and a major cause of liver disease worldwide. Gene expression profiling was
used to characterize the transcriptional response to HCV H77c infection. Evidence is presented for activation of innate antiviral
signaling pathways as well as induction of lipid metabolism genes, which may contribute to oxidative stress. We also found
that infection of chimeric SCID/Alb-uPA mice by HCV led to signs of hepatocyte damage and apoptosis, which in patients plays
a role in activation of stellate cells, recruitment of macrophages, and the subsequent development of fibrosis. Infection of
chimeric mice with HCV H77c also led an inflammatory response characterized by infiltration of monocytes and macrophages.
There was increased apoptosis in HCV-infected human hepatocytes in H77c-infected mice but not in mice inoculated with a
replication incompetent H77c mutant. Moreover, TUNEL reactivity was restricted to HCV-infected hepatocytes, but an increase
in FAS expression was not. To gain insight into the factors contributing specific apoptosis of HCV infected cells,
immunohistological and confocal microscopy using antibodies for key apoptotic mediators was done. We found that the ER
chaperone BiP/GRP78 was increased in HCV-infected cells as was activated BAX, but the activator of ER stress–mediated
apoptosis CHOP was not. We found that overall levels of NF-kB and BCL-xL were increased by infection; however, within an
infected liver, comparison of infected cells to uninfected cells indicated both NF-kB and BCL-xL were decreased in HCV-
infected cells. We conclude that HCV contributes to hepatocyte damage and apoptosis by inducing stress and pro-apoptotic
BAX while preventing the induction of anti-apoptotic NF-kB and BCL-xL, thus sensitizing hepatocytes to apoptosis.
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Introduction

Hepatitis C virus (HCV) is a positive strand RNA virus that

belongs to the family Flaviviradae. HCV is a blood borne pathogen

which is a major cause of liver disease worldwide, with an

estimated 200 million people infected. It is estimated that 30% of

chronically infected patients eventually develop progressive liver

disease including cirrhosis and end stage liver disease [1]. HCV is

now the leading indication for liver transplantation in North

America [2]. Due the absence of a proofreading activity in the

viral RNA polymerase, HCV has a high mutation rate that

contributes to the genetic heterogeneity of the virus. Six different

genotypes, and at least 52 subtypes have been described [3].

Chronic infection by HCV results in a highly variable disease

course, and despite advances in the molecular virology of HCV,

the factors involved in hepatocyte injury and the progression of

liver disease remain unclear. The complexity of the host response

has been examined by transcriptional profiling of liver biopsy

samples from both chimpanzees and humans. These studies show

that HCV induces genes involved in the interferon response, lipid

metabolism, oxidative stress, and chemokines, as well as markers

of inflammation [4,5]. Such studies are hampered by the

requirement that infected and uninfected hepatocytes come from

different patients and also by the presence of an adaptive immune

response in the patients. Gene expression profiles of human

hepatocytes from SCID/Alb-uPA chimeric mice infected with HCV

patient serum, control these variables [6]. Until recently it has

been thought that HCV is a non-cytopathic virus and that

hepatocyte damage in chronic HCV infection is due to HCV-

specific adaptive immune responses [7,8]. However, in SCID mice

lacking an adaptive immune system, we observed induction of

apoptosis in HCV infected mouse livers, similar to that seen in

liver biopsies from HCV infected patients [6].

During HCV infection, hepatocyte apoptosis could be induced by

immune attack on infected cells or directly by viral infection. It has

been shown that hepatocyte damage can lead to apoptosis, which

plays a role in the recruitment and activation of stellate cells and

macrophages and the subsequent development of fibrosis [9,10].

HCV infected patients have higher levels of immune related death

ligands; TRAIL, TNF-a, FAS, and FASL are all elevated in HCV

infected patients [11–13]. Increased expression of stimulators of

apoptosis in HCV infected patients is tempered by hepatocyte

insensitivity to death ligand mediated apoptosis. In hepatocytes death

receptor mediated caspase-8 activation is weak, and thus they are
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inherently resistant to TNF-a and TRAIL killing [14,15]. Hepato-

cytes are likely type II cells and can be sensitized to death ligand

mediated apoptosis by caspase-8 induction with IFN-a (interferon) or

toxins [16–18]. In addition, hepatocytes can be sensitized to both

TRAIL and TNF-a induced apoptosis by inhibition of NF-kB

activity [19–21]. Conversely, induction of NF-kB has been shown to

inhibit TRAIL, TNF-a, and FAS mediated killing [22–24].

The induction of apoptosis directly by HCV remains contro-

versial. Several HCV proteins have been proposed to have both

pro- and anti-apoptotic effects [25–28]. It has been shown that

expression of either the HCV genome or individual HCV

structural proteins induces endoplasmic reticulum (ER) stress

[27,29] and the unfolded protein response (UPR), which can lead

to apoptosis. However, HCV proteins have also been shown to

modulate the UPR [30,31]. It has also been proposed that HCV

infection induces oxidative stress, which can enhance apoptosis

[6,32]. Expression of HCV core induces oxidative stress and

expression of antioxidant genes [33,34]. In addition, HCV patients

have more DNA lesions produced by oxidative damage [35].

Oxidative stress leads indirectly from DNA damage to p53

induction, which can lead to activation of BAX and apoptosis

[36,37]. However, there are also reports of inhibition of p53

induced apoptosis by NS5A [38–41].

In this study, we used the mouse model for HCV infection in

which severe combined immunodeficiency disorder (SCID) mice

transgenic for an array of urokinase plasminogen activator (uPA)

under control of the albumin (Alb) promoter are transplanted with

human hepatocytes and then infected with HCV [6,42–44]. We

have previously compared HCV induced gene expression in

chimeric mice infected with genotype 1a patient serum to

uninfected controls containing human hepatocytes from the same

donor [6]. There was evidence of activation of innate antiviral

signaling pathways, induction of lipid metabolism genes, as well as

signs of hepatocyte damage and an inflammatory response. To

further reduce variation from HCV quasispecies present in the

mice, in this study we have infected mice with the infectious clone

HCV H77c [45,46]. We confirmed the results of the previous

study that used infectious patient serum, and to determine the

cause of hepatocyte damage, we examined the expression HCV

antigens and key proteins involved in the stress response and

apoptosis using immunohistochemical and fluorescent confocal

microscopy. We found that HCV infection correlated with

increased levels of the ER chaperone GPR78/BiP, a key regulator

of the unfolded protein response. In addition, levels of pro-

apoptotic BAX were increased, while anti-apoptotic NF-kB and

BCL-xL were decreased in HCV infected cells. Taken together

these results indicate that ER stress induced by HCV combined

with lower NF-kB and BCL-xL levels sensitizes hepatocytes to

apoptosis.

Results

Previous studies indicated HCV infection in chimeric mouse

livers was restricted to the human hepatocytes [44]. We confirmed

this by performing immunofluorescent confocal microscopy on

uninfected and HCV H77c infected mouse livers with antibodies

specific for the HCV NS3 protease and human albumin (Figure 1

and S1A–B). Only liver sections infected with HCV H77c stained

with HCV specific antibodies, and this was restricted to hepatocytes

that also were also stained with antibodies specific for human

albumin. Since liver consists of a mix a hepatocytes and adventitial

cells, and albumin only stains hepatocytes, there was the possibility

that some human cells other than hepatocytes also colonized the

mouse liver. Therefore we wished to examine whether any of the

adventitial cells were also human. We performed in situ hybridiza-

tion using probes specific for human Alu repeats on chimeric mouse

livers (Figure 2). Only the hepatocytes were stained, indicating all of

the adventitial cells in chimeric mouse livers were of mouse origin.

This, and the elimination of a small percentage of mouse sequences

that cross-hybridized to the human arrays, ensured that the

transcriptional profiling reflects only the processes occurring in

human hepatocytes.

Transcriptional profiling was performed on mRNA samples

isolated from three HCV-infected animals and from uninfected

controls. All animals contained hepatocytes from a single donor.

The serum HCV titers, liver viral loads, and the length of time

infected are given in Table 1. The experiments included three liver

samples from an animal infected with H77c (+) serum (990), two

samples from an animal inoculated intrahepatically with H77c

RNA (975), and a single experiment with liver tissue from an

animal inoculated intrahepatically with H77c RNA containing a

mutation in the active site of the NS5B polymerase (986). Four

samples from three separate animals were pooled to serve as the

uninfected control. Because each pair of mice contained

hepatocytes from the same donor, changes in gene expression

should mainly be induced by the HCV infection and be

independent of host variation. Consistent with previous studies,

the effect on host gene expression by HCV infection was not

extreme, 766 genes showed a 2-fold or higher change in expression

(P value#0.05) in at least one experiment (Figure 3). The grouping

of experiments by the clustering algorithm suggested that the effect

on host gene expression was very similar among individual pieces

of liver from the same animal. Importantly, the global gene

expression profiles in the animals infected with H77c (+) serum

(990) and H77c RNA (975) were also very similar. This suggests

that the source of HCV inoculum does not significantly impact the

host transcriptional response to infection. Interestingly, the animal

inoculated with H77c RNA encoding an inactive NS5B

polymerase also showed a similar host response. While it was

expected that the mouse inoculated with the replication defective

HCV RNA might show activation of dsRNA and RIG-I signaling

pathways similar to replicating virus [47,48], we expected

substantial differences in the overall host response 47 days after

RNA administration. This mouse showed no detectable HCV

RNA in the serum at the time of sacrifice and no HCV RNA was

detected in the sample used for microarray analysis.

Infection with HCV H77c activated innate antiviral signaling

pathways, as indicated by the induction of interferon-stimulated

genes (ISGs) (Figure 4A). In general, the induction was similar

among all three infected animals. However, there does seem to be

a slightly higher induction of ISGs in the animal (975) inoculated

intrahepatically with wild-type H77c RNA relative to the animal

(990) inoculated with H77c (+) serum, which is likely due to the

high level of naked RNA injected directly into the liver of this

Author Summary

Hepatitis C virus is a common cause of liver disease
worldwide. The details of how HCV causes liver disease are
not well understood. It has been thought that HCV
infection does not kill liver cells directly, but indirectly by
stimulating the immune system to kill HCV-infected liver
cells. In this study we have used a mouse model that
supports HCV infection and replication. These mice do not
have an adaptive immune system. Despite the lack of an
adaptive immune system, we have shown that HCV
infection still leads to the death of infected liver cells. This
study provides new insight into how HCV damages the
liver in chronic HCV carriers.

Apoptosis in HCV Infection
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animal (100 mg, 261013 copies). This increased response relative

the animal inoculated with serum (990) was not observed in the

animal (986) injected with H77c RNA containing inactive NS5B,

indicating that part of the increased response in animal 975 might

be due to replication of the inoculated HCV RNA. In our previous

study of mice infected with HCV-positive patient sera the

magnitude of induction of ISGs varies among mice containing

hepatocytes from different donors. Comparison of the gene

expression data from HCV H77c-infected mice with that from

the initial study indicate the induction of ISGs in the H77c-

infected mice is relatively weak. Consistent with what was

observed in animals with a weak IFN response in the initial study,

regulation of numerous genes associated with lipid metabolism

were observed in the HCV H77c-infected mice (Figure 4B). These

included genes involved in cholesterol and fatty acid biosynthesis,

b-oxidation and peroxisome proliferation. There did not appear to

be any significant differences due to inoculum source. Interest-

ingly, the animal that received replication incompetent H77c

RNA also showed some regulation of these genes, although at a

lower magnitude. The fact that this mouse shows any changes at

all, in the absence of viral replication, may be because injection of

viral RNA from a positive-sense RNA virus likely results in the

synthesis of viral proteins.

Consistent with the up regulation of genes involved in oxidative

stress seen in this and previous expression array studies,

histological analysis revealed signs of hepatocyte damage in the

human hepatocytes of HCV infected chimeric mice (Table 2).

Steatosis was apparent in the majority of the human hepatocytes

regardless of infection. However, there were significant differences

in the histology between the animals inoculated with HCV RNA

and naive animals. Increased hepatocyte ballooning and lobular

inflammation were associated with HCV-infection. Staining of

sections with the antibody F4-80 (anti CD68) revealed that the

lobular inflammation was due to infiltration of monocytes and

macrophages (not shown). A particularly intriguing observation

was the presence of apoptotic hepatocytes in HCV-infected

animals originally detected as caspase-3 activation and quantita-

tion of apoptotic bodies [6]. We also observed apoptosis in H77c-

infected mice by TUNNEL assay (Figure 5D–F). Apoptosis was

absent in the animal inoculated with the replication defective

H77c-AAA mutant. This suggests that apoptosis observed in

HCV-infected mice is dependent upon active HCV replication.

The expression of genes associated with cell death was analyzed to

gain further insight into possible mechanisms of apoptosis. While

there was regulation of cell-death related genes in HCV H77c

infected animals, the number of genes affected is small (data not

shown). This is perhaps not surprising given the low percentage of

hepatocytes that are actually undergoing apoptosis. Quantitation

of the TUNEL data in Table 2 (average 723 cells/field) revealed

on average 5% of cells undergoing apoptosis in infected mice.

To further investigate the mechanism of increased apoptosis

associated with HCV infection, we examined FAS expression on

liver sections from infected and uninfected mice and compared

this to liver sections subjected to TUNEL analysis. Similar to what

has been seen in mice infected with patient serum and in patient

biopsies [6], there was increased FAS staining in infected

compared to donor matched uninfected mice (Figure 5A–C). As

can be seen in Figure 5 and at higher magnification in Figure S2,

there was strong FAS reactivity in a majority of the human cells in

infected mice, however TUNEL positive nuclei were seen only in a

small proportion of human cells (Figure 5D–F). Interestingly,

although staining was not as intense, there was an increase in FAS

staining in the mouse inoculated with the H77c-AAA mutant,

without a correlative increase in the TUNEL positive nuclei

(Table 2). This suggests that increased FAS expression is not the

only factor required for induction of apoptosis and TUNEL

reactivity. We next investigated the correlation between HCV

infection, and either FAS expression, or TUNEL reactivity. When

we stained liver sections with FAS- and HCV-specific antibodies

(Figure 6A), we found that expression of FAS does not depend on

the presence of HCV in the cells, but is a host reaction to infection

of neighbouring cells. However, we cannot rule out the possibility

that only a portion of cells in the liver express enough HCV

antigen to be detected using this antibody. When we subjected

Figure 2. In situ hybridization with human specific Alu DNA
oligonucleotides. In situ hybridization using human Alu DNA probes,
with the nuclei were counter stained using methyl green, showing a
lobular region (A), and portal triad (B). Magnification 6400.
doi:10.1371/journal.ppat.1000291.g002

Figure 1. Confocal microscopy of uninfected and HCV H77c infected mouse livers stained with anti-HCV and anti-human albumin.
Confocal microscopy was performed on either uninfected (A) or H77c infected (B–F) liver sections. Sections were either singly stained (A, B) using
mouse monoclonal antibodies against HCV or, to differentiate between the human and mouse hepatocytes, rabbit anti human albumin antibodies in
addition (D–F). Isotype controls (C) were also used to stain a serial section to panel D (See also figure S1 A, B). The nuclei were stained with DAPI
(blue), and mouse antibodies were visualized using secondary goat anti-mouse poly-HRP antibodies followed by tyramide-TMR (red). The rabbit
antibodies were visualized using secondary goat anti-rabbit-alexa 488 (green) antibodies. Junctions between human and mouse cells is shown in two
magnifications in panels E and F.
doi:10.1371/journal.ppat.1000291.g001
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liver sections to a fluorescent TUNEL assay and then stained them

with HCV specific antibodies, we found that all of the TUNEL

positive cells in areas populated by human hepatocytes also stained

with HCV specific antibodies (Figure 6B). The exception was that

some murine Kupffer cells which also contained multiple TUNEL

positive nuclei. Thus, HCV replication seems to be required for

hepatocyte apoptosis. This is unlike FAS expression, which could

be induced by HCV replication in neighbouring cells.

To further investigate the relationship between HCV infected

cells and apoptosis we performed immunohistochemistry and

fluorescent confocal microscopy using antibodies for key proteins

involved in apoptosis. It has been proposed that HCV induces

oxidative stress [6,32]. Oxidative stress can lead to the induction of

p53 and BAX, both of which can translocate to the mitochondria

and induce apoptosis [36,37]. We performed immunohistological

staining for p53 on infected and uninfected liver sections and

found no evidence for p53 induction in either the cytoplasm or

nucleus or its translocation to the mitochondria except in one

infected animal where very few cells appeared to have up-

regulated p53 (data not shown).

Expression of HCV structural proteins has been shown to

induce ER stress [27,49], which can induce the oligomerization

and translocation of BAX/BAK to the mitochondria. To examine

the role of ER stress in HCV induced apoptosis, we compared the

expression of the ER chaperone GRP78 (BiP) in uninfected and

H77c infected mice by immunohistochemistry (Table 3 and

Figure 7A–C) and by fluorescent confocal microscopy (Figure 7D,

E). We found higher levels of BiP in infected mice, and that BiP

expression correlated with HCV infection. Additionally, BiP and

HCV seemed to co-localize, consistent with replication of HCV on

the ER. The ER chaperone BiP is a key sensor in the unfolded

protein response (UPR); it maintains ER membrane signal

proteins in inactive states. It has been shown that BAX and

BAK interact directly with one of these membrane signal proteins,

IRE1, and are essential for IRE1 activation [50]. Extensive or

prolonged ER stress initiates apoptosis through activation of

BAX/BAK. We therefore examined the expression of BAX in

liver sections (Table 3 and Figure 8) and found BAX was also

overexpressed in HCV infected livers. BAX is normally diffusely

expressed throughout the cell, however when activated it

translocates to the mitochondria and appears as a granular

staining pattern. We found that both patterns of staining were

elevated in HCV infected livers (Figure 8A–D). Figure 8D shows

both the intense granular staining pattern as indicated by the black

arrows and the less intense cytoplasmic staining indicated by the

Table 1. Serum and Liver Viral Titers.

Mouse Serum titera (copies/ml) Average Liver load (copies/mg Human RNA) Length of Infection

Naı̈ve:

005 undetectable undetectable Age match 30 days

963 undetectable undetectable Age match 30 days

992 undetectable undetectable Age match 47 days

996 undetectable undetectable Age match 47 days

986-AAA undetectable undetectable 47 days

638-1a Patient serum 4.76105 1.66105 25 days

975-RNA 1.36106 5.36104 47 days

985-RNAb 1.96102 1.86102 47 days

990-H77c serum 9.56106 3.86105 47 days

aThe detection limit for this assay is 255 copies/ml.
bAlthough the serum titer was below the limit of detection at the time of death, animal 985 was infected because at days 21 and 33 post infection the titers were 16103

and 7.76103, respectively.
doi:10.1371/journal.ppat.1000291.t001

Figure 3. Global gene expression profiles of HCV (H77c 1a)-
infected mice. Two-dimensional hierarchical clustering was performed
using Resolver System software with an agglomerative algorithm,
complete link heuristic criteria, and Euclidian correlation metric. Each
column represents gene expression data from an individual experiment
(either individual HCV-infected mouse or individual liver sample) and
the cluster represents genes that showed a .2-fold change (P
value,0.05) in at least 1 experiment. Genes shown in red were up-
regulated; genes shown in green down-regulated and genes in black
indicate no change in expression in HCV-infected tissue relative to a
pool (3 individual animals) of donor-matched uninfected tissue. Animal
990 was infected with H77c (+) serum. Animal 975 received 100 mg of
H77c RNA by intrahepatic injection while animal 986 received 100 mg of
H77c RNA containing the GDD-AAA mutation in the NS5B coding
region.
doi:10.1371/journal.ppat.1000291.g003

Apoptosis in HCV Infection

PLoS Pathogens | www.plospathogens.org 5 February 2009 | Volume 5 | Issue 2 | e1000291



red arrows. The large granular staining pattern correlated with

HCV infection (Figure 8F). It is worth noting that not all cells that

stained positive for HCV also showed activated BAX. The

number of cells staining for activated BAX approximately

correlated with the number of TUNEL positive nuclei. The

elevation of both BiP and BAX in the absence of increased levels

of p53 suggests that ER rather than oxidative stress leads to BAX

activation, however additional mechanisms of BAX activation by

oxidative stress cannot be eliminated.

In cells under ER stress, BiP preferentially binds to malfolded

proteins, releasing IRE1, PERK, and ATF6, activating down-

stream effectors which induce transcription of alarm and

adaptation genes including BiP itself and GADD153 (CHOP)

[51]. When the UPR is overwhelmed, apoptosis is induced by a

number of molecules including CHOP, which translocates to the

nucleus and blocks transcription of BCL-2, [52] an inhibitor of

BAX/BAK. To examine whether the ER stress found in infected

livers overwhelmed the unfolded protein response, indicated by

translocation of CHOP to the nucleus, we performed immuno-

fluorescent confocal microscopy with anti-CHOP and anti-HCV

antibodies (Figure 9). Because we found very few nuclei that

stained positively for CHOP and these did not correlate with the

staining by HCV specific antibodies, in Figure 9 both panels are

from infected mice; panel A shows a predominately infected area,

and panel B shows a predominantly uninfected area with only a

few infected cells. CHOP can be elevated in both infected and

uninfected cells indicating that HCV infection does not overwhelm

the UPR. This may explain why we do not see expression of ER

stress genes in the microarray analysis.

In addition to pro-apoptotic proteins, we also examined key

inhibitors of apoptosis. Both CHOP and NF-kB are both activated

by ER stress [53,54], but have opposing effects; CHOP is pro-

apoptotic while NF-kB is anti-apoptotic. NF-kB is activated in

response to a myriad of other stimuli, at least one of which is

inhibited by HCV [55]. BCL-xL inhibits the apoptosis induced by

BAX, and its transcription is activated by NF-kB [56]. Overall,

when HCV infected livers were compared with uninfected livers,

the levels of both NF-kB and BCL-xL appeared to be elevated in

the infected liver, consistent with expression analysis, which

indicated that NF-kB levels are elevated by HCV infection.

Figure 4. Expression of IFN-inducible and lipid metabolism genes in human liver tissue from HCV-infected mice. The gene sets were
IFN-inducible (A), or involved in lipid metabolism (B). Two-dimensional hierarchical clustering was performed using Resolver System software with an
agglomerative algorithm, complete link heuristic criteria, and Euclidean correlation metric. Each column represents gene expression data from an
individual experiment (either individual HCV-infected mouse or individual liver sample). Genes were selected as at least 2-fold regulated (P
value,0.05) in at least 1 experiment. Genes shown in red are up-regulated and genes shown in green are down-regulated in HCV-infected tissue
relative to donor-matched uninfected tissue, while black indicates no change in gene expression. Animal 990 was infected with H77c (+) serum.
Animal 975 H77c RNA by intrahepatic injection while animal 986 received H77c RNA containing the GDD-AAA mutation in the NS5B coding region.
doi:10.1371/journal.ppat.1000291.g004
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However, when HCV infected cells are compared to uninfected

cells within HCV infected livers, we found that total levels of NF-

kB p65 expression was lower in HCV infected cells than in

surrounding uninfected cells (Figure 10A–B and E and S4).

Quantitation of total p65 fluorescence from uninfected and

infected cells in 6 fields from infected livers revealed that p65

levels in infected cells were approximately half that in uninfected

cells. The average fluorescence of uninfected cells in a field was

arbitrarily set to 1. Consistent with reduced expression of NF-kB,

the expression of BCL-xL was also lower in cells that stained with

HCV specific antibodies (Figure 10C–D and F). Quantitation of

total BCL-xL levels in infected livers also revealed that levels of

BCL-xL in infected cells were approximately half of that in

infected cells.

Discussion

The course of HCV pathophysiology is extremely variable, as a

result of complex interactions between viral variants and the host’s

innate and adaptive immune systems. We have used SCID/Alb-

uPA mice that have chimeric human and mouse livers to examine

the processes that occur in hepatocytes in response to HCV

infection. Previous studies have shown that the transcriptional

response HCV infection in mice is similar to that of humans and

chimpanzees, with the exception of immune cell markers, which

are absent in SCID mice. To further simplify the host response to

infection, we infected mice with RNA from the HCV clone H77c

[45,46]. We found the same induction of interferon response genes

and changes in expression of genes involved in lipid metabolism

Table 2. Immunohistological Evaluation of Liver Sections.

Mouse Fata Balloonb Gradec Stagec FASd LABe Caspased Tunelf

Naive:

005 0 0 0(P0 L0) 0 2 0.2 0 362

963 2 1 0(P0 L0) 0 1 0 0 863

992 3 0 2(P0 L2) 0 3 0 2 m 863

996 2 0 2(P0 L2) 0 2 0 2 m 1162

986-AAA 2 2 3(P0 L3) 0 3 0 0 1064

638-1a Patient serum 0 3 2(P0 L2) 0 4 0.4 2 m 1862

985-RNA 3 3 3(P0 L3) 0 3 1.6 3 m, h 50614

975-RNA 2 3 3(P0 L3) 0 4 4 3 m, h 26613

990-H77c serum 3 2 2(P0 L2) 0 4 0.4 2 m 50613

aThe degree of fatty change was scored as 0 (,5%), 1 (6–33%), 2 (34–66%) 3 (.66%).
bHepatocyte ballooning was scored on a scale of 0–4 where 0 is none and 4 is many.
cGrade and Stage were scored using the Batts and Ludwig criteria.
dFAS and caspase staining was scored semi-quantitatively where 0 = none, 1 = focal weak, 2 = diffuse weak; 3 = diffuse weak and focal strong; 4 = diffuse strong. For

caspase staining, m is macrophages and h is hepatocytes.
eThe lobular apoptotic body count is an average of 5 fields counted at magnification 6100.
fThe number of Tunel positive nuclei is an average of 15 fields at magnification 6200.
doi:10.1371/journal.ppat.1000291.t002

Figure 5. Immunohistochemical analysis of FAS expression and TUNEL reactivity. Liver sections from PBS injected (A and D), replication
deficient RNA injected (B and E) and HCV H77c infected (C and F) donor matched chimeric mice were stained using rabbit anti-FAS (A–C), developed
using the Vecastain ABC kit and counterstained using haematoxylin. Isotype controls were negative and are shown in Figure S1C–D. TUNEL (D–F) was
performed using the Apoptag Plus Peroxidase In Situ Apoptosis Detection kit and the nuclei were counterstained with methyl green. Magnification
6100. Arrows indicate TUNEL reactive nuclei. In panel F, arrows indicate only some of the TUNEL reactive nuclei.
doi:10.1371/journal.ppat.1000291.g005
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seen in earlier studies. This has been postulated to lead to the

generation of oxidative stress [6,57], and it has been shown that

both oxidative stress and ER stress can lead to apoptosis

[27,29,58,59]. As well, apoptosis is one of the factors in the

induction of fibrosis, which can culminate in cirrhosis [9,10,60,61].

Interestingly, in the absence of an adaptive immune system, there

was evidence for the induction of apoptosis in HCV infected mice.

This was restricted to HCV infected cells despite increased FAS

expression on both infected and uninfected human hepatocytes of

infected animals. This generalized FAS expression may be a

consequence of the interferon response occurring throughout the

liver [6] since FAS/FASL are among those mediators of apoptosis

that are also interferon response genes [62].

We therefore examined processes leading to apoptosis that we

thought were likely to be affected by HCV in infected cells.

Oxidative stress generated by HCV induced lipid metabolism, and

ER stress generated by HCV replication and protein translation in

and on the ER were both potential candidates. Hepatocytes are

type II cells that contain low levels of caspase 8 and therefore

require activation of the mitochondrial apoptosis amplification

pathway to initiate apoptosis. This can be blocked by over

expression of BCL-2 or BCL-xL. Mitochondria seem to be the site

where the antiviral interferon response and apoptotic signals are

integrated; recently it has been shown that the mitochondrial

signaling molecule interferon promoter stimulating factor-1 (IPS-1)

is cleaved during apoptosis and cleavage can be blocked by

overexpression of BCL-xL [63]. In addition, both the response to

oxidative stress and the response to ER stress converge at the

mitochondrion; p53 activated by oxidative stress stimulates the

oligomerization of BAX [36], and BiP responding to ER stress

releases IRE-1 to which BAX is bound. BAX has been shown to

be required for both IRE-1 activation and for apoptosis initiated

by ER stress [50,51]. Since oxidative stress can lead to p53

induction, Bax activation and apoptosis [36,37], we examined p53

localization and levels and found that they were not affected by

HCV infection. This may be due to NS5A mediated inhibition of

the mitochondrial translocation, apoptosis inducing, and DNA

binding activities of p53 [38–41]. ER stress can lead to induction

of the UPR, and activation of BiP, CHOP, BAX and apoptosis.

Consistent with the generation of ER stress by HCV we found that

induction of the ER chaperone BiP and pro-apoptotic BAX

correlated with HCV expression, but there was little translocation

of CHOP/GADD153 to the nucleus, which indicated that the

UPR was not overwhelmed.

In hepatocytes, it appears that NF-kB is one of the key

determinants of whether apoptosis is induced in response to death

ligands [19–24,64]. In evading of the interferon response, HCV

Figure 6. Confocal microscopic analysis of HCV antigen
expression and either FAS expression or TUNEL reactivity.
Staining for FAS (A) or TUNEL reactivity (B) was performed as described
in Materials and Methods, using primary mouse anti-HCV and either
rabbit anti-human FAS (A), or for TUNEL, FITC labeled dUTP and
terminal deoxynucleotidyl transferase (B). The secondary antibodies
were goat anti mouse poly-HRP, and for FAS staining, goat anti rabbit
Alexa-488 (green). HRP was developed using the TSA plus fluorescence
system with tyramide-TMR (red). Nuclei were stained using DAPI (blue).
Arrows indicate TUNEL reactive nuclei.
doi:10.1371/journal.ppat.1000291.g006

Table 3. Immunohistochemical Evaluation of Liver Sections
Stained with Bip/GRP78 or Bax.

Mouse BiP/GRP78 BAX
Punctate
BAXb

Cell numbera

(Intensity)
Cell numbera

(Intensity) Cell number

Naive:

005 1 (1) 1 (1) 1

963 2 (2) 1 (1) 1

992 1 (1) 2 (1) 2

996 1 (3-infiltrate) 0 (0) 0

638-1a Patient
serum

2 (2) 2 (2) 2

986-AAA 1 (3-infiltrate) 2 (1) 0

985-RNA 3 (1) 3 (3) 3

975-RNA 2 (2) 2 (2) 3

990-Serum 3 (2) 2 (2) 2

aStaining was scored semi-quantitatively where 0 is no staining 1 (1–15%), 2
(16–30%), and 3 (31–50%), and the intensity of staining was scored on a scale
of 0–3, where 0 is no staining and 3 is intense staining.

bActivated BAX has a distinct punctate staining which is easily distinguished
form inactive BAX, 0 is no staining, 1 (1–5%), 2 (5–10%), and 3 (10–15%).
Activated Bax has a uniform intense staining and so no intensity score was
given.

doi:10.1371/journal.ppat.1000291.t003
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inhibits the activation of NF-kB; inhibition of the TLR-3 and RIG

I pathways by cleavage of TRIF and IPS-1/MAVS/VISA/Cardif

by the HCV NS3/4A protease, inhibits NF-kB and IRF-3

phosphorylation preventing nuclear translocation in response to

RIG-1 activation by viral RNA [65–68]. In addition, there are a

number of other reports that HCV modulates NF-kB activity [69–

72]. Consistent with the reports of inhibition of NF-kB we found

that total levels of NF-kB p65 were lower in HCV infected cells.

Furthermore consistent with the transcriptional regulation of BCL-

xL by NF-kB, we found that total levels of BCL-xL were lower in

HCV infected cells. In conclusion, we propose a model (Figure 11)

where HCV induces both ER stress and oxidative stress in infected

cells, and activates pro-apoptotic Bax while it prevents induction of

anti-apoptotic BCL-xL thus sensitizing HCV infected cells to

apoptosis which may be mediated by death receptors and ligands,

for example FAS and TRAIL (TNFSF10-Figure 4B). A combi-

nation of induction of pro-inflammatory chemokines (Figure 4A)

and cross talk between human and mouse chemokines and their

receptors may lead to a situation similar to that in patients;

inflammation, which in turn stimulates release of pro-inflamma-

tory cytokines and effector molecules such as TNF-a and FasL

(which in these mice may be released by macrophages and NK

cells), creating the circle of hepatocyte damage and repair that is a

hallmark of HCV infection.

Materials and Methods

Transplantation and infection of chimeric SCID/Alb-uPA
mice

All mice were housed VAF and treated according to Canadian

Council on Animal Care guidelines. Experimental approval came

from the University of Alberta Animal Welfare Committee, and

human hepatocytes were obtained following informed consent of

all donors with ethics approval from the University of Alberta

Faculty of Medicine Research Ethics Board. Animals were

transplanted with freshly isolated human hepatocytes [42,44,73].

Eight weeks after transplantation mice with human a-1antitrypsin

(hAAT) levels [42] greater than 100 mg/mL were injected

intrahepatically (ih), with 50 mg of in vitro transcribed H77c RNA

[45] into each of 2 red liver nodules (presumed to be human

hepatocytes). As a negative control, mice were injected ih with

non-replicative H77c RNA in which NS5B polymerase active site

residues GDD (amino acids 2736–2738) have been changed to

AAA (H77c-AAA). Passage of H77c virus was done by ih

inoculation of naive mice with 50 mL of serum obtained from

mice infected by H77c RNA. One mouse was infected by ih

inoculation with patient serum for histochemical comparison.

Serum samples were taken at various time points after inoculation

and HCV RNA was quantified. Animals were infected for 25 or 47

days and dissection of mouse livers, isolation of RNA, genomic

DNA, and ratio of human to mouse cells in each sample was

performed as previously described [43]. The serum HCV titers,

liver viral loads and the length of time infected are given in

Table 1. The plasmid for in vitro transcription was pCV H77c and

was a gift from Dr. Jens Bukh.

Microarray expression format and data analysis
The purity of human hepatocytes was greater than 70% in all

samples used for microarrays. Microarray format, protocols for

probe labeling, and array hybridization are described at http://

expression.microslu.washington.edu. Briefly, a single experiment

comparing two mRNA samples was done with four replicate

Human 1A (V2) 22K oligonucleotide expression arrays (Agilent

Technologies) using the dye label reverse technique. This allows for

Figure 7. Immunohistochemical and confocal microscopic analysis of BiP/Grp78 expression. BiP expression was examined by either
immunohistochemistry (A–C) or confocal microscopy (D–E). Liver sections from PBS injected (A and D), replication deficient RNA injected (B) and HCV
H77c infected (C and E) donor matched chimeric mice were stained using goat anti-BiP/Grp78 alone (A–C) and developed using the Vecastain ABC
kit. Magnification 6100. Isotype controls are shown in Figure S1 E–F and are negative. For confocal microscopy (D and E), primary antibodies were
goat anti-BiP/Grp78 with mouse anti-HCV, and the secondary antibodies were donkey anti-goat alexa 488 (green), and donkey anti-mouse biotin
followed by avidin-HRP (Vector laboratories). The peroxidase was developed as before using tyramide-TMR (red). Nuclei were stained using DAPI
(blue).
doi:10.1371/journal.ppat.1000291.g007
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the calculation of mean ratios between expression levels of each

gene in the analyzed sample pair, standard deviation and P values

for each experiment. Spot quantitation, normalization and

application of a platform-specific error model was performed using

Agilent’s Feature Extractor software and all data was then entered

into a custom-designed database, Expression Array Manager, and

then uploaded into Rosetta Resolver System 4.0.1.0.10 (Rosetta

Biosoftware, Kirkland, WA) and Spotfire Decision Suite 7.1.1

(Spotfire, Somerville, MA). Data normalization and the Resolver

Error Model are described on the website http://expression.

microslu.washington.edu. This website is also used to publish all

primary data in accordance with the proposed MIAME standards.

Selection of genes for data analysis was based on a greater than 95%

probability of being differentially expressed (P#0.05) and a fold

change of 2 or greater. The resultant false positive discovery rate

was estimated to be less than 0.1% (Walters, unpublished data). We

have previously assessed the degree of cross hybridization in

chimeric samples and eliminated the small percentage of genes that

did cross react from subsequent analysis [43].

Immunohistochemistry, immunofluorescence and
confocal microscopy

In situ hybridization using FITC labeled Alu DNA probes

(InnoGenex, San Ramon, CA, USA) was performed according to

the manufacturer’s specifications, and developed using the supersen-

sitive polymer HRP-ISH system (BioGenex). TUNEL was performed

using the Apoptag Plus Peroxidase In Situ Apoptosis Detection kit

(Chemicon International, Temecula, CA, USA) according to the

manufacturer’s specifications. The number of Tunel positive nuclei is

an average of 15 fields at 2006magnification.

Haematoxylin and eosin, reticulin, Mason’s trichrome, and

periodic acid/Shiffs staining were performed according to

standard procedures [74]. The sections were graded for inflam-

matory activity and staged for fibrosis according to the modified

Batts and Ludwig scoring system [75]. The degree of fatty change

was scored as 0 (,5%), 1 (6–33%), 2 (34–66%) or 3 (.66%).

Hepatocyte ballooning and macrophages were scored on a scale of

0–4 where 0 is none and 4 is many. The lobular apoptotic body

count is an average of 5 fields counted at 1006magnification.

Figure 8. Immunohistochemical and confocal microscopic analysis of BAX expression. BAX expression was examined by either
immunohistochemistry (A–D) or confocal microscopy (E–F). Liver sections from PBS injected (A and E), replication deficient RNA injected (B) and HCV
H77c infected (C, D and F) donor matched chimeric mice were stained using rabbit anti-BAX alone (A–D) and developed using the Vecastain ABC kit.
Magnification 6100 (A–C). A magnification 6400 view is shown in D with red arrows indicating cells diffuse BAX, and black arrows indicating cells
with punctate BAX. Isotype controls are shown in Figure S3 and are negative. For confocal microscopy, primary antibodies were rabbit anti-BAX with
mouse anti-HCV, and the secondary antibodies were goat anti-rabbit alexa 488 (green), with goat anti-mouse poly-HRP, developed using tyramide-
TMR (red). Nuclei were stained using DAPI (blue). Comparison of a field from an area of liver containing only mouse cells with an HCV infected human
area is shown in Figure S3.
doi:10.1371/journal.ppat.1000291.g008
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Immunohistochemical and immunofluorescent analysis was

performed on 4 mm formaldehyde fixed paraffin embedded

sections that were deparaffinized by incubation in xylene for

5 min, followed by sequential rehydration by incubating twice for

3 min in each of 100%, 95%, and 70% ethanol, followed by a

5 min incubation in distilled water. Antigen retrieval was then

performed by boiling in pH 6.0 10 mM citrate buffer for 15 min

followed by cooling for an additional 15 min.

For immunohistochemical staining with rabbit anti-FAS

antibodies (1:50, Santa Cruz), or rabbit anti-BAX (1:50, Cell

Signaling Technologies), or purified rabbit IgG isotype control,

slides were blocked in normal goat serum, washed, incubated with

the primary antibodies, washed, incubated with 3% peroxide, and

incubated with secondary goat anti rabbit poly-HRP antibodies

(Dako Cytomation). The peroxidase was developed using the DAB

Plus liquid substrate chromogen system (Dako Cytomation). For

staining with goat anti-GRP78/BiP antibodies (1:50 Santa Cruz)

or purified goat IgG isotype control, slides were blocked with

normal donkey serum, incubated with primary antibody, endog-

enous biotin was blocked using the avidin/biotin blocking kit

(Vector laboratories), and the signal was amplified using the ABC

method (Vector laboratories). The peroxidase was developed as

before. Caspase staining was performed as previously described

[6]. FAS staining was scored semi-quantitatively where 0 is no

staining, 1 (1–25%), 2 (26–50%), 3 (51–75%) and 4 (76–100%).

Caspase staining was scored semi-quantitatively as follows:

0 = none, 1 = focal weak, 2 = diffuse weak; 3 = diffuse weak and

focal strong; 4 = diffuse strong. GRP78/BiP staining was scored

semi-quantitatively where 0 is no staining, 1 (1–15%), 2 (16–30%),

and 3 (31–50%). The intensity of the stain was also scored on a

scale of 0–3, where 0 is no staining and 3 is intense staining. Since

activated activated BAX has a distinct punctate staining that can

be easily distinguished form inactive BAX, active and inactive

BAX was scored on separate semi-quantitative scales. Inactive Bax

was scored in the same manner as BiP, and the scale for activated

Bax was 0 is no staining, 1(1–5%), 2 (5–10%), and 3 (10–15%).

For immunofluorescent confocal microscopy, the slides were

deparaffinized, the antigens retrieved as before, and blocked as

before. Additional blocking using mouse IgG (0.1 mg/ml) for

1 hour, followed by incubation with goat anti mouse-IgG (1 mg/

ml) overnight at 4uC was done prior to incubation with mouse anti

HCV NS3/4 diluted 1:50 (TORDJI-22, Abcam), or its isotype

control, and one of rabbit anti-FAS, BAX, GADD (Santa Cruz),

NF-kB p65 (C-20 Santa Cruz), BCL-xL (Cell Signaling Technol-

ogies), or rabbit IgG all diluted 1:50, or rabbit anti human

Albumin diluted 1:1000 (Dako Cytomation). Slides were blocked

with 3% peroxide prior to incubation with goat anti mouse poly

HRP and goat anti rabbit Alexa 488 (diluted 1:100, Molecular

Probes, Eugene, OR, USA). The peroxidase was developed using

the TSA Plus fluorescence system with tyramide-tetramethyl red

(Perkin Elmer). Mounting media (Vectastain-Vector laboratories)

contained 1 mg/ml 4,6-diamidino-2-phenylindole (DAPI). For

BiP/GRP78, the staining procedure was essentially the same,

except slides were blocked with normal donkey serum and avidin/

biotin block (Vector laboratories), the primary antibodies were

goat anti-GRP78/Bip with the mouse anti-HCV, and the

secondary antibodies were donkey anti-goat alexa 488 (Molecular

probes), and donkey anti-mouse biotin, followed by avidin-HRP

(Vector laboratories). The peroxidase was developed as before.

For co-localization of HCV antigens and TUNEL reactivity, the

In Situ Cell Death Detection kit (fluorescein) (Roche) was used,

according to the manufacturer’s specifications. The incubation

with terminal deoxynucleotidyl transferase was carried out prior to

incubation with the primary TORDJI-22 antibody. All subsequent

steps were carried out as before. Nuclei were stained using DAPI.

Confocal microscopy was carried out using a Zeiss scanning

LSM510 microscope with the 351 nm, 488, and 543 nm

excitation lines, and digital images were collected with a 1 mm

optical slice.

Accession numbers
The accession numbers for the genes/proteins discussed in this

manuscript are the following: HCV-H77c AF011751, TNF-a
X20910, FAS M67454, FASL U11821, BiP/GRP78

NM_005347, p53 AF307851, CHOP/GADD153 BC003637,

BAX NM138763, BCL-Xl Z23115, BCL-2 M14745, NF-kB

Figure 9. Confocal microscopy of HCV and CHOP/GADD153 in predominately infected or uninfected areas of HCV infected mice.
Panel (A) shows an area from an HCV infected liver that contains mostly infected cells. Panel (B) shows an area from an HCV infected liver that
contains mostly uninfected cells. Liver sections from HCV H77c infected mice were stained using rabbit anti-CHOP and mouse anti-HCV antibodies,
and the secondary antibodies were goat anti rabbit alexa 488 (green) and goat anti mouse poly-HRP, which was developed using tyramide-TMR (red).
Nuclei were stained using DAPI (blue).
doi:10.1371/journal.ppat.1000291.g009
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p65 Z22751, Caspase-8 U60520, Caspase-3 BC016926, CD68

S57235, RIG-I AF038963, IPS-1-Q7Z434, TLR-3 U88879,

TRIF AB086380, IL28RA AY129153, CMKOR1 BC008459,

IFITM1 J04164, HLA-DRB5 NM_002125, IFIT1 M24594,

IFIT2 M14660, B2M AB021288, HLA-A D3219, HLA-B

M15470, HLA-F AY253269, HLA-G NM_002127, GBP1

BC002666, BIRC4BP X99699, CXCL11 U66096, CXCL10

X02530, CXCL9 X72755, PSMB9 NM_002800, OAS3

AF063613, OAS1 X04371, OASL AF063611, STAT1

NM_007315, G1P3 BC15603, G1P2 BC009507, IFI44 D28915,

IFI27 X67325, ANGPTL4 AF202636, NR4A1 L13740,

BDKRB2 S56772, EPO X02157, PPARGC1A AF106698,

PCK1 NM_002591, ARG2 D86724, APOA5 AF202889, AVP

M25647, CPT1A L39211, MT1A BC029475, FABP5 M94856,

RXRA X52773, SREBF1 BC057388, PLIN AB005293, C11orf11

AB014559, APOF L27050, HPX J03048, CYP1A1 BC023019,

SAA2 M26152, THRSP Y0809, SCD AF097514, PBP

NM_04139, ACSS2 AF263614, GCK AF041014, FDPS J05262,

Figure 10. Confocal microscopy of HCV and either NF-kB p65 or BCL-xL. Liver sections from PBS injected (A and C) and HCV H77c infected
(B and D) chimeric donor matched mice were stained using anti-NF-kB p65 (A and B) or BCL-xL (C and D) antibodies. Panels E and F are from non-
donor matched infected mice stained with anti-NF-kB p65 (E) or BCL-xL (F) Primary antibodies were rabbit anti-NF-kB or rabbit anti BCL-xL with
mouse anti-HCV, and the secondary antibodies were goat anti-rabbit alexa 488 (green), with goat anti-mouse poly-HRP developed using tyramide-
TMR (red). Nuclei were stained using DAPI (blue). Red arrows indicate infected cells and white arrows indicate uninfected cells. The right hand panels
are quantitation of p65 and BCL-xL levels in uninfected and HCV infected cells in HCV infected livers. For p65, 6 fields (61 infected and 59 uninfected
cells) were quantified using Metamorph software. For BCL-xL, 4 fields (44 infected and 43 uninfected cells) were quantified. To compare cells from
several fields, the average of the uninfected cells in a single field was arbitrarily set to 1 and the infected cells in that field were scaled appropriately.
Isotype controls and comparison of a field from an area of liver containing only mouse cells with an HCV infected human area are shown in Figure S4.
doi:10.1371/journal.ppat.1000291.g010
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HMGCR NM_000859, CYP51A1 U51685, SQLE D78130,

HSD17B6 AF016509, C5 M57729, FTFD1 X69141, RDH16

NM_003708, TNFSF10 U37518, SC4MOL U93162, HMGCS1

NM_002130, IRE1 AF059198, PERK AF110146, ATF6

AB015856, hAAT X01683.

Supporting Information

Figure S1 Isotype controls for anti-HCV, FAS, and GRP78/Bip

antibodies. Liver sections from H77c infected mice were stained

using appropriate antibodies (B, D, F) or their isotype controls (A,

C, E) as described in Materials and Methods. Panels A and B are

serial sections stained using mouse IgG or mouse anti-HCV

respectively, while C and D are 4 sections apart and were stained

using rabbit IgG or rabbit anti-FAS IgG respectively, and E and F

are 7 sections apart and stained using goat IgG or goat anti-BiP

respectively.

Found at: doi:10.1371/journal.ppat.1000291.s001 (9.52 MB TIF)

Figure S2 Immunohistochemistry of FAS expression and

TUNEL reactivity. Liver sections from PBS injected (A and D),

Figure 11. HCV sensitizes infected hepatocytes to apoptosis. The pathways that link oxidative and ER stress with apoptosis are shown, as is a
potential interaction between the host cell response and apoptosis. In hepatocytes the levels of caspase 8 are low and induction of apoptosis
requires the mitochondrial amplification loop, the convergence of the stress pathways at the mitochondria and low levels of NF-kB and BCL-xL
sensitize hepatocytes to apoptosis. Proteins that we have shown are elevated in HCV infected cells are shown in red, those that do not change are
shown in yellow and those that are decreased are shown in green.
doi:10.1371/journal.ppat.1000291.g011
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replication deficient RNA injected (B and E) and HCV H77c

infected (C and F) donor matched chimeric mice were stained

using rabbit anti-FAS (A–C), developed using the Vecastain ABC

kit and counterstained using haematoxylin. Isotype controls were

negative and are shown in Supplemental Figure 1C–D. TUNEL

(D–F) was performed using the Apoptag Plus Peroxidase In Situ

Apoptosis Detection kit and the nuclei were counterstained with

methyl green. Magnification 6400.

Found at: doi:10.1371/journal.ppat.1000291.s002 (5.37 MB TIF)

Figure S3 Isotype controls for anti-BAX antibodies and

comparison of Bax expression in an area that is predominantly

mouse. Liver sections from H77c infected mice were stained using

anti-BAX antibodies (B–D) or its isotype control (A) as described in

Materials and Methods. Panels C and D show fields of the liver

that consist of mouse cells (C) and one that is predominantly

human hepatocytes (D).

Found at: doi:10.1371/journal.ppat.1000291.s003 (5.70 MB TIF)

Figure S4 Isotype controls for anti-NF-kB antibodies and

comparison of NF-kB expression in an area that is predominantly

mouse. Liver sections from H77c infected mice were stained using

anti-NF-kB antibodies (B–D) or their isotype controls (A) as

described in Materials and Methods. Panels C and D show fields

of the liver that consist of mouse cells (C) and one that is

predominantly human hepatocytes (D).

Found at: doi:10.1371/journal.ppat.1000291.s004 (4.87 MB TIF)
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