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Abstract

The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct
penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma
membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1, that is essential for
penetration. Disruption mutants of pep1 are not affected in saprophytic growth and develop normal infection structures.
However, Dpep1 mutants arrest during penetration of the epidermal cell and elicit a strong plant defense response. Using
Affymetrix maize arrays, we identified 116 plant genes which are differentially regulated in Dpep1 compared to wild type
infections. Most of these genes are related to plant defense. By in vivo immunolocalization, live-cell imaging and plasmolysis
approaches, we detected Pep1 in the apoplastic space as well as its accumulation at sites of cell-to-cell passages. Site-
directed mutagenesis identified two of the four cysteine residues in Pep1 as essential for function, suggesting that the
formation of disulfide bridges is crucial for proper protein folding. The barley covered smut fungus Ustilago hordei contains
an ortholog of pep1 which is needed for penetration of barley and which is able to complement the U. maydis Dpep1
mutant. Based on these results, we conclude that Pep1 has a conserved function essential for establishing compatibility that
is not restricted to the U. maydis / maize interaction.
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Introduction

The initial step of pathogenic development for both necrotrophic

and biotrophic fungal pathogens is the successful penetration of the

plant surface. Penetration can occur directly via specialized

infection structures, called appressoria, which promote the localized

secretion of plant cell wall degrading enzymes or build up turgor

and allow penetration through mechanical force. Alternatively,

fungal pathogens may use natural openings like stomata or wounds

for entry [1]. The infection strategy does not appear to be linked to

the subsequent lifestyle of the fungal pathogen, i.e. necrotrophs like

Botrytis cinerea as well as hemibiotrophs such as Colletotrichum ssp. and

Magnaporthe grisea directly penetrate the plant surface via appressoria

[2–4]. Some biotrophs like most rust fungi invade plant tissue via

stomata, while other biotrophs like the smut fungi and the powdery

mildew fungi form appressoria that allow direct entry into the plant

epidermis [5,6].

Necrotrophic pathogens kill the invaded cell by secretion of

toxic compounds or induction of reactive oxygen species (ROS),

and subsequently feed on dead plant material. In biotrophic

interactions and during the initial stages of hemibiotrophic

interactions the infected plant cell stays alive. In such interactions,

the plant plasma membrane is invaginated and encases the

infecting hyphae, thereby forming a biotrophic interface. This

interface, which can be established by intracellularly growing

hyphae or by specialized structures (haustoria), provides nutrients

to the pathogen and facilitates exchange of signals maintaining the

interaction [5,7]. Compatibility in a biotrophic interaction

requires the pathogen to overcome basal plant defense responses

that are elicited by recognition of conserved pathogen associated

molecular patterns (PAMPs) and which can lead to pathogen

arrest [8]. This initial PAMP-triggered immunity needs to be

overcome by successful pathogens that use secreted effectors to

interfere with these processes, and use such effectors to trigger

susceptibility. Effectors may also be specifically recognized by R

proteins, leading to effector triggered immunity which is often

associated with cell death [8].

Haploid U. maydis cells mate on the leaf surface and the resulting

dikaryon switches to filamentous tip growth. The growing tip cell is

separated from the older parts of the hypha by a septum, and the

older septated hyphal parts appear empty and are often collapsed

[9]. The need of two compatible wild type strains complicates

generation of deletion mutants. Therefore, the solopathogenic

strain SG200 [10], which is a haploid strain engineered to carry

composite mating type loci is frequently used. This strain forms

filaments on the maize surface and causes disease without prior

mating. On the leaf surface, SG200 as well as the dikaryon formed

after mating of two compatible haploid wild type strains, develops

non-melanized appressoria that directly penetrate the host tissue

and establish a biotrophic interaction. Gene-for-gene systems, i.e.

effectors that are specifically recognized by cognate resistance

genes of the plant have not been described in this pathosystem.
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After penetration U. maydis grows intracellularly and during this

stage the hyphae are surrounded by the host plasma membrane

[9,11]. U. maydis does not develop haustoria [12] and the

intracellular hyphae pass from one cell to the next. At later stages

fungal hyphae accumulate in mesophyll tissue and are found

mostly in apoplastic cavities that arise in the developing tumors

[13]. In these tumors plant cells enlarge, undergo mitotic divisions

and the hyphal aggregates differentiate into spores.

The genome sequence of U. maydis revealed that this organism is

poorly equipped with plant cell wall degrading enzymes [10],

which is in line with its biotrophic life style where the infected

plant cells stay alive. However, U. maydis codes for a large set of

novel secreted effectors [14] and many of the respective genes are

arranged in clusters [10]. During biotrophic development, the

majority of these clustered effector genes is upregulated [10]. 12 of

these gene clusters encoding secreted proteins were deleted and

five of the respective mutants were significantly altered in

virulence. Deletion of one cluster resulted in increased virulence,

while mutants of the four other clusters were attenuated in

virulence and showed defects at different stages of pathogenic

development [10]. However, none of these clusters was reported to

be essential for the initial step of biotrophic development, the

penetration of epidermal cells.

Based on these studies it became clear that the repertoire of

effectors with a function during disease was unlikely to be

restricted to effectors whose genes reside in clusters. We have

therefore initiated a systematic analysis of effector genes in U.

maydis which is solely based on two criteria: the protein should

carry a secretion signal and the predicted product should be novel

i.e. should not match data base entries. Here we describe one of

these novel effectors, Pep1 (Protein essential during penetration 1).

Results

Identification of Pep1
The pep1 gene (um01987) resides on chromosome 3 of the U.

maydis genome. pep1 is not part of a gene cluster, i. e. upstream we

find a putative oxidoreductase (um01988) and downstream a sterol

carrier (um01986), two proteins not predicted to be secreted. The

Pep1 protein comprises 178 aa and is expected to be cleaved

behind a putative N-terminal secretion signal (Figure 1A). Pep1

lacks known sequence motifs associated with enzymatic function

and also lacks paralogs in the U. maydis genome as well as

homologs in known published genome sequences.

To study the function of pep1, gene deletions were generated in

the solopathogenic strain SG200 [10]. To elucidate whether Pep1

is needed for growth of U. maydis, SG200 and SG200Dpep1 strains

were grown under conditions of nutrient deprivation, cell wall

stress or oxidative stress. In addition, filamentation was tested on

charcoal containing plates (Figure S1). Under none of the tested

conditions we could detect differences between these four strains,

illustrating that pep1 is not affecting growth under these conditions

(Figure S1). To show that Pep1 is secreted we generated strain

SG200Dpep1oma:pep1-GFP in which pep1-GFP is expressed

from a strong constitutive promoter [15]. Using GFP specific

antibodies, the full-length fusion protein was detected in the

supernatant while supernatants of SG200 did not show a signal

(Figure S4A).

Next, SG200Dpep1 was assayed for pathogenicity. The deletion

of pep1 resulted in complete loss of tumor formation (Figure 1B and

Table S3). To demonstrate that the mutant phenotype resulted

from disruption of pep1, the pep1 gene was introduced in single

copy into the ip locus [16,17] of strain SG200Dpep1. The resulting

strain SG200Dpep1-pep1 was fully pathogenic and showed disease

ratings similar to SG200 (Figure 1B), indicating successful

complementation.

SG200Dpep1 is unable to penetrate maize epidermis
cells

To examine at which stage of pathogenic development

SG200Dpep1 is defective, we followed appressorium formation

on inoculated maize leaves. For proper quantification of

appressorium formation, GFP fluorescence of the AM1 marker,

which is specifically upregulated in the hyphal tip cell forming an

appressorium, was monitored [18]. 24 hpi SG200 and

SG200Dpep1 strains had switched to filamentous growth and

about 20% of SG200 filaments (19.73%65.21; n = 1039) and a

comparable percentage of SG200Dpep1 cells (19.76%62.48;

n = 1643) had developed appressoria. This demonstrates that the

differentiation of appressoria does not require pep1. In addition,

48 hpi we observed that a small percentage of SG200Dpep1 cells

had engaged in multiple penetration attempts (see below,

Figure 3C), which was never observed after infections with

SG200. Furthermore, the multiple penetration attempts seen in

the pep1 mutant suggest a defect in invasion of host tissue.

To analyze this presumed invasion defect in detail, we used

confocal microscopy to visualize the fungus in infected leaf tissue.

For a better visualization of the infection process we infected the

maize line ZmPIN1a-YFP that expresses a YFP-tagged version of

the PIN1a protein which locates to the plant plasma membrane

[19]. Fungal hyphae growing on and inside the plant tissue were

detected by cytoplasmic expression of RFP under control of the otef

promoter in the respective strains. At 24 hpi SG200rfp hyphae

were already detected in epidermal cells and were encased by the

plant plasma membrane. Since the fungal cytoplasm moved into

the intracellularly growing hyphae, hyphal sections on the leaf

surface did not contain cytoplasm any more (Figure 2A,B). 24 hpi,

hyphae of SG200Dpep1rfp could not be detected inside epidermal

cells; instead, mutant hyphae were arrested immediately after

penetration of the epidermal cell wall. The plant plasma

membrane was found to be invaginated around mutant hyphal

tips; however, no progression of mutant hyphae into the lumen of

the epidermal cell was observed (Figure 2C,D). To test whether the

Dpep1 phenotype is also evident when haploid wild type strains are

Author Summary

For many fungi that infect plants, successful invasion is
coupled to a series of differentiation steps that are
necessary to breach the plant cuticle. Such fungi form
specialized infection structures which allow direct penetra-
tion of the plant cuticle. The smut fungus Ustilago maydis
establishes a biotrophic interaction with its host plant maize
in which the infected host cells stay alive. During biotrophic
growth, the intracellularly growing hyphae are encased by
the host plasma membrane. We show here that a small
effector protein, which is secreted by fungal hyphae during
penetration, is absolutely essential for fungal entry into
plant cells. When this effector is absent, hyphal cells
penetrate the plant cell wall and invagination of the plant
plasma membrane is observed, but any further fungal
development is arrested. This arrest coincides with the
induction of massive plant defense responses. Thus, this
effector, which is conserved in related fungal species, plays
an essential role in suppression of plant defense responses
and is critical for establishing compatibility. This is the first
example where a single effector protein assumes such a
crucial role for infection-related development in a plant
pathogenic fungus.

Novel Effector of Ustilago maydis
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used instead of the solopathogenic SG200 strain, the pep1 gene was

deleted in the two compatible U. maydis wild type strains FB1 and

FB2 [20]. Maize plants infected with a mixture of FB1 and FB2 as

well as a mixture of the deletion strains FB1Dpep1and FB2Dpep1

were analyzed by confocal microscopy 24 hpi. To visualize

hyphae, they were stained by WGA-AF488, plant structures were

stained with propidium iodide. Similar to SG200Dpep1, the

FB1Dpep1/FB2Dpep1 dikaryon formed appressoria but penetra-

tion of epidermal cells was blocked after a short peg had entered

the host cell (Figure S3). However, in rare cases, thin hyphae were

found to grow into the epidermis cells and these plant cells then

collapsed (Figure S3C,D). Together, this shows that the deletion of

pep1 results in a complete block of pathogenic development at the

stage of host penetration.

SG200Dpep1 induces various plant defense responses
Leaf areas infected with U. maydis SG200 showed visible

symptoms such as chlorosis, anthocyanin accumulation and small,

primary tumors 4 dpi. In rare cases, small necrotic spots

representing small clusters of dead cells developed (Figure 3A;

[21]). In contrast, leaves infected with SG200Dpep1 did not show

chlorosis but displayed large necrotic areas 4 dpi (Figure 1A,

Figure 3A). Already 48 hpi SG200Dpep1 infected plants reacted

with strong cell wall autofluorescence and formation of large

papillae (Figure 3B). In addition, accumulation of H2O2 could be

shown by staining with diamino-benzidine (DAB) at sites where

SG200Dpep1 attempted to penetrate while it was absent around

appressoria of SG200 (Figure 3C; [22]).

To obtain a more comprehensive picture of the plant responses

induced by the Dpep1 mutant, we performed microarray analyses

of infected leaf tissue. In a previous study, the transcriptional

responses of maize after infection with U. maydis strain SG200 have

been described [21]. Using identical experimental conditions, we

now compared expression profiles of SG200 infected leaves to

SG200Dpep1 infected tissue 24 hpi using the Affymetrix maize

genome array. At this stage, SG200 starts to establish the

biotrophic interaction which goes along with a down-regulation

of various defense-related genes [21]. In SG200 infected plants

24 hpi 116 genes were differentially regulated compared to mock-

infections [21]. In contrast, in SG200Dpep1 infected plants 220

maize genes were found to be differentially regulated compared to

mock-infected control tissue at the same time point (Table S1). In

line with this, the expression of 110 maize genes was found to be

significantly different (fold change $2) in SG200Dpep1 infected

tissue compared to SG200 infected tissue (Figure 3D, Table S2). In

particular, defense related genes like PR6b (Zm.791.1.S1_s_at), an

endochitinase (Zm.16805.8.S1_at) and terpene synthase 6

(Zm.14496.1.A1_at) were strongly induced by SG200Dpep1 while

in infections with SG200 the expression of these genes was already

attenuated at this time point [21]. Interestingly, several genes

associated with jasmonate biosynthesis like the lipoxygenase

LOX1 (Zm.3303.1.A1_at) as well as several serine protease

inhibitors that are typically activated by jasmonic acid (JA) [23]

lack transcriptional induction in response to SG200Dpep1.

Induction of JA signaling is a typical feature of compatible

biotrophic interactions [24], i.e. its absence is therefore likely to

Figure 1. pep1 is essential for pathogenic development of U. maydis. A: Predicted structure of Pep1. The protein comprises 178 aa. Signal-P
(http://www.cbs.dtu.dk/services/SignalP/) predicts a putative N-terminal secretion signal (aa 1–26). In the central part of the protein four cysteine
residues are present (C59, 75, 94, 112). The C-terminal part is enriched in glycine residues (aa 141–178). B: Disease rating of Early Golden Bantam
maize plants 12 dpi after infection with U. maydis strains SG200, SG200Dpep1 (Dpep1), SG200Dpep1-pep1 (Dpep1-pep1), SG200pep1:gfp (pep1:gfp)
and SG200Dpep1-pep1:gfpIP (pep1:gfpIP). Numbers indicate the total number of plants infected in three independent experiments. For details of the
disease rating see Materials and Methods.
doi:10.1371/journal.ppat.1000290.g001

Novel Effector of Ustilago maydis
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indicate that the pep1 mutant is incapable of establishing a

biotrophic interaction.

Pep1 is expressed during the biotrophic phase and is
secreted to the apoplast

To follow expression and localization of Pep1 during different

developmental stages, the coding region of gfp was fused to the

C-terminus of Pep1. By homologous recombination, wild type pep1

was replaced by pep1:gfp resulting in strain SG200pep1:gfp. In

addition, a strain was generated in which pep:gfp was introduced

into the ip locus of SG200Dpep1 (SG200Dpep1-pep1:gfpIP). As

shown in Figure 1B, these strains were indistinguishable from

SG200 with respect to causing disease, indicating that the C-

terminal fusion of GFP to Pep1 did not impair its function.

Figure 2. Microscopic analysis of early infection-related development of U. maydis Dpep1 strains. Pathogenic development of SG200rfp
and SG200Dpep1rfp was visualized 24 hpi on maize leaves expressing PIN1-YFP. A: SG200rfp (red) penetrated the epidermis (arrowhead) and shows
hyphal branching inside epidermis cells. Open arrowheads: Empty section of penetrated hyphae on the leaf surface. B: SG200rfp grows intracellularly
in the epidermal layer, being completely encased by the plant plasma membrane (green). C, D: SG200Dpep1rfp hyphae grow on the leaf surface but
fail to invade epidermis cells. Mutant hyphae are arrested immediately upon penetration of the plant cell wall (arrowheads and inserts: hyphal tips of
SG200Dpep1rfp invaginate the plant plasma membrane at attempted sites of penetration). Bars are given.
doi:10.1371/journal.ppat.1000290.g002

Novel Effector of Ustilago maydis
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To follow expression of pep1:gfp during growth, strain

SG200pep1:gfp was modified to additionally express cytoplasmic

RFP under control of the otef promoter. In SG200pep1:gfpR, no

GFP fluorescence could be detected during growth in liquid

culture, whereas RFP was detected in the cytoplasm of all cells

(Figure 4A). When SG200pep1:gfpR was inoculated to maize

leaves, Pep1-GFP expression appeared for the first time in

penetrating hyphae (Figure 4B). During intracellular growth,

Pep1-GFP accumulated in a slightly uneven pattern around

growing hyphae (Figure 4C), at hyphal tips and particularly strong

at hyphal tips during cell to cell passages (Figure 4D,E). In

addition, some intracellular fluorescence was detected which is

likely to reflect Pep1 during processing through the ER

(Figure 4C,D). During tumor formation, i.e. 5–8 dpi, when U.

maydis grows mainly intercellularly, Pep1-GFP could not be

detected any more (not shown). In addition, expression of pep1

was monitored by quantitative RT-PCR. In accordance to the

microscopic observations, pep1 was not detected in axenic culture

while the gene was expressed at the penetration stage 18 hpi

(Figure S2). During biotrophic growth, high expression levels were

detected at all timepoints tested from 2–8 dpi (Figure S2).

Due to autofluorescence of maize cell walls especially at

penetration sites and in tumor tissue [12,21] interference with

the secreted GFP signal cannot be excluded. To overcome this

problem, pep1 under control of its own promoter was fused to the

rfp derivate mcherry [25] and introduced into the ip locus of strain

SG200Dpep1. Maize infections with the resulting strain

SG200Dpep1-pep1M showed that the Pep1-mCherry fusion-

protein was fully functional (not shown). SG200Dpep1-pep1M

was used to infect maize lines ZmPIN1a-YFP and ZmTIP1-YFP

expressing either PIN1-YFP as plasma membrane marker or

TIP1-YFP, an aquaporin localizing to the tonoplast membrane

(http://maize.tigr.org/cellgenomics/index.shtml). The Pep1-

mCherry fusion protein was detected around intracellular hyphae,

Figure 3. Plant responses elicited by infection with SG200Dpep1. A: Macroscopic symptoms on maize leaves 4 dpi with SG200 and
SG200Dpep1. Red arrowheads mark necrotic regions in SG200Dpep1 infected leaf tissue. B: Papilla formation in maize cells attacked by SG200Dpep1.
Upper panel: Cell wall autofluorescence. Lower panel: Bright field projection of the same cell. Bar: 20 mm. C: H2O2 accumulation at penetration sites
was visualized by DAB staining; 48 hpi. Left panel: SG200 appressoria do not induce H2O2 accumulation. Right panel: Penetration attempts of
SG200Dpep1 are accompanied by a local accumulation of H2O2 (red arrowheads). Some SG200Dpep1 hyphae display multiple penetration attempts
(lower right panel). Since SG200Dpep1 cells penetrate the cell wall the DAB stain accumulates in a focal plane below the fungal cell while the hyphae
are still on the leaf surface, which explains the limited sharpness of these images. Bars: 5 mm. D: Hierarchical clustering of differentially regulated
maize transcripts 24 hpi with SG200Dpep1. Colors represent expression levels for each gene being above (red) or below (blue) the mean expression
level (white) in mock infected tissue (a), SG200 infected tissue (b) or SG200Dpep1 infected tissue (c).
doi:10.1371/journal.ppat.1000290.g003
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where it partially co-localized with the PIN1-YFP signal

(Figure 5A). At cell to cell passages of hyphal cells, Pep1-mCherry

was observed to spread between the plasma membranes of

adjacent cells (Figure 5A,B). As we could not discriminate between

Pep1-mCherry being localized in the plant cell wall or in the

apoplastic space, plasmolysis of infected tissue was induced to

enlarge the space around intracellularly growing hyphae. After

plasmolysis Pep1-mCherry showed an even distribution in the now

enlarged apoplastic space. mCherry fluorescence was not observed

in cells which were not colonized by U. maydis (Figure 5C,D).

In addition to life cell imaging, strain SG200Dpep1-pep1:HA

was generated and used for in situ immunolocalization of Pep1.

Similar to what has been observed with Pep1 fused to fluorescence

tags, the protein was detected on the surface of intracellularly

growing hyphae (Figure 6A,B) and had a patchy distribution. The

strongest accumulation of Pep1-HA was observed at sites where

fungal hyphae traversed from one plant cell to the next, consistent

to what has been observed with fluorescently tagged Pep1. Pep-

HA could be isolated from infected maize leaves by immunopre-

cipitation with HA-specific antibodies and was found to be of the

expected size (Figure S4B). To isolate Pep1-mCherry from

infected tissue, strain SG200Dpep1-pep1:MHA was generated in

which Pep1-mCherry carries an additional C-terminal HA tag.

Western blot analysis of the immunoprecipitated protein revealed

a signal at the expected size of the full length fusion protein. In

addition, two smaller fragments were detected (Figure S4B,C).

Pep1 is needed also for hyphal cell to cell passage
Since SG200Dpep1 is blocked already upon penetration of the

leaf epidermis, the mutant could not provide information

concerning a role of Pep1 at later stages of the interaction

between U. maydis and its host. To address this, we infected maize

plants with U. maydis expressing pep1-gfp under control of the otef

promoter (strain SG200Dpep1otefpep1:gfp). The artificial otef

promoter exhibits strong, constitutive expression in haploid

sporidia, penetrating filaments and during the early biotrophic

phase of U. maydis but is shut down during the late biotrophic stage

of U. maydis (G.D., unpublished observation). SG200Dpep1otef-

pep1:gfp was able to penetrate and grow intracellularly,

demonstrating that expression of pep1 under the otef promoter

rescued the penetration defect of the pep1 mutant (Figure 7A,B).

However, tumor formation was only partially rescued; visible

symptoms caused by this strain were mainly anthocyanin

production, chlorosis as well as necrosis and only very small

tumors were observed (Table S3). Microscopic analysis of

SG200Dpep1otefpep1:gfp infected leaves 7 dpi revealed an

accumulation of fungal hyphae inside plant cells. Such hyphae

displayed multiple appressorium-like structures indicating unsuc-

cessful penetration attempts (Figure 7C,D). From these results we

conclude, that pep1 is not only needed for primary penetration of

the leaf epidermis, but plays an essential role for cell-to-cell passage

during the intracellular phase of biotrophic growth.

Pep1 function is conserved in the Ustilago hordei / barley
interaction

After 454 sequencing of the genome of the barley covered smut

fungus Ustilago hordei (J. Schirawski and R. Kahmann, unpublished)

we identified an ortholog of pep1 that shows 61% identity to U.

maydis Pep1. Both proteins have an N-terminal secretion signal as

well as four cysteine residues whose spacing is conserved

Figure 4. Expression and secretion of Pep1. A: Haploid sporidia of strain SG200pep1:gfpR grown in YEPSL express RFP while Pep1-GFP
fluorescence is not detectable. Bar: 5 mm. B: SG200pep1:gfpR penetrating a maize epidermis cell; 24 hpi. The Pep1-GFP signal demarcates the point
of penetration and becomes visible in the intracellular hyphal part (arrow). Bar: 5 mm; C: Intracellular growing hyphae of SG200pep1:gfpR showing
Pep1-GFP secretion around the tip region; 48 hpi. Bar: 2 mm. D: Tip of intracellularly growing hypha of SG200pep1:gfpR during cell to cell passage.
Pep1-GFP strongly accumulates at penetration sites. E: Left panel shows SG200pep1:gfpR during cell to cell passage, 48 hpi. Right panel shows the
rupture of the cell wall of the same cell inflicted by the penetrating fungal hyphae (arrow); Bars: 2 mm. Pictures A, B and C are maximum projections
of confocal stacks. Green: Pep1-GFP; red: RFP; grey: plant cell wall autofluorescence induced by UV-laser. In D a confocal snapshot of a single optical
layer is shown.
doi:10.1371/journal.ppat.1000290.g004

Novel Effector of Ustilago maydis
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(Figure 8A). Calculation of the ratio of synonymous to non-

synonymous substitutions (ds/dn) (http://www.hiv.lanl.gov; [26])

between Pep1 of both organisms revealed a ds/dn ratio of 4.67,

indicating a preference for amino acid conservation. This is

particularly true for the central part of the protein that contains

the conserved cysteine residues (Figure 8B). To investigate whether

Pep1 is also required for penetration in U. hordei, pep1 was deleted

in the compatible U. hordei strains 4875-5 (Mat1) and 8a (Mat2).

Four days post infection of barley seedlings, growth of wild type

and mutant strains was analyzed by confocal microscopy. After

penetration, the U. hordei wild type strains displayed directed

growth towards the vascular bundles (Figure 8C). The U. hordei

Dpep1 strains also managed to enter epidermal cells (Figure 8D,E),

but proliferation inside the plant tissue was never observed.

Instead, the attacked epidermis cells underwent cell death which

could be visualized by propidium iodide staining of disintegrated

cells (Figure 8D,E).

To test whether U. hordei pep1 can substitute for U. maydis pep1,

the coding region of uh-pep1 was expressed in SG200Dpep1 under

control of the um-pep1 promoter. The resulting strain was fully

pathogenic towards maize (Figure 8F), which illustrates that the

two proteins are exchangeable.

Cysteine residues are essential for Pep1 function
Pep1 does not contain conserved motifs which would allow a

prediction of its mode of action. However, especially the C-

terminus of U. maydis Pep1 is enriched in glycine residues. To test a

putative function of this region, a truncated allele of pep1

(pep1D141–178) was generated. This truncated pep1 allele was

inserted in single copy in SG200Dpep1 and shown to restore wild

type pathogenicity (Figure 9A). Pep1 contains four conserved

cysteine residues in the central part of the protein which might be

involved in formation of disulfide bridges. Mutant alleles of pep1

were generated in which each cysteine residue of Pep1 was

exchanged to serine. Mutant alleles containing substitutions in one

cysteine residue (pep1CS59; pep1CS75), the first two cysteins

(pep1CS59,CS75) and all four cysteine residues (pep1CS59,75,94,112) were

expressed in SG200Dpep1. When single cysteine residues (C59 or

C75) were substituted, pathogenicity of the respective strain was

reduced (Figure 9A). The reduction was much more pronounced

when C59 was mutated compared to the allele containing the C75

substitution. However, in both cases some tumors developed,

indicating residual Pep1 activity (Figure 9A). Substitution of both

C59 and C75 led to a complete loss of pathogenicity similar to

Pep1 in which all four cysteins were replaced by serine

(Pep1CS59,75,94,112) (Figure 9A). To disclose the reason for this

essential role of the cysteine residues, a pep1CS59,75:gfp fusion was

introduced in U. maydis strain SG200. The resulting strain

SG200pep1:gfpCS59,75 which carries the endogenous pep1 gene

and in addition pep1:gfpCS59,75 was used for maize infections.

Microscopic analysis 2 dpi showed that the mutated Pep1 protein

was expressed, but was found exclusively inside fungal hyphae

(Figure 9B–D). This could indicate the mutant Pep1CS59,75-GFP

being destabilized and therefore degraded immediately after

secretion. However, when comparing secreted Pep1-GFP to

Pep1CS59,75-GFP, the mutant protein was significantly enriched

inside fungal cells. In addition, accumulation of the protein at the

hyphal tip was absent in case of Pep1CS59,75-GFP (Figure 9D,E).

We take this to indicate that the cysteine residues are necessary for

secretion of Pep1.

Discussion

We have shown that Pep1, a novel secreted effector protein of

Ustilago maydis, is essential for successful invasion of maize plants.

Expression of Pep1 was not observed under axenic culture

conditions and the first stage where the protein could be detected

coincided with penetration. The deletion of pep1 did not impair

saprophytic development and also the overexpression of pep1 did

not cause any alterations in growth, morphology or stress

resistance. However, when pep1 was deleted U. maydis was unable

to invade plant cells and failed to establish a compatible

interaction with the host plant. In SG200Dpep1, infection-related

development like filamentation and appressorium formation were

unaffected. Since Dpep1 mutant hyphae were found to invaginate

the plant plasma membrane after appressorium formation, this

must indicate that lysis of the plant cell wall itself is still possible

when Pep1 is absent. This was even more evident when plants

were infected with a mixture of compatible FB1Dpep1 and

FB2Dpep1 strains. In this case the dikaryon formed short

penetration pegs and this was associated with the collapse of the

invaded cell. Similarly, the dikaryon of U. hordei Dpep1 strains

initially penetrated the epidermal cell but was arrested,in the

penetrated cell that underwent cell death. The finding, that the U.

hordei pep1 can fully complement U. maydis pep1 mutants shows

complete functional conservation of Pep1 in the both pathosys-

tems. The slight difference in arrest point between U. maydis and

U. hordei mutants is likely to be caused by different responses or cell

wall composition of the two host plants. This is also supported by

the observation that U. maydis is arrested in the first epidermal cell

when non-host barley plants are infected (G.D., unpublished). It is

Figure 5. Secretion of Pep1-mCherry into the maize apoplast.
A, B: SG200pep1M growing intracellularly in epidermal cells of maize
line ZmPIN1a-YFP, 48 hpi. A1, A2 and A3 show the same hyphae with
PIN1-YFP (green), Pep1-mCherry (red) and the merged yellow signals
indicating co-localisation (arrowheads) around fungal hyphae, respec-
tively. At sites of cell-to-cell passages, Pep1-mCherry is spreading from
the fungal hyphae (A2, insert; B). Bars: 5 mm. C, D: SG200pep1M
growing intracellularly in epidermal cells of maize line ZmTIP-YFP,
48 hpi. Plasmolysis was induced by 1 M NaCl, collapse of vacuoles
results in enlarged apoplastic spaces. In cells colonized by
SG200pep1M, this space is filled by Pep1-mCherry (+) which is not
the case in cells not colonized by the fungus (2). Bars: 15 mm.
doi:10.1371/journal.ppat.1000290.g005
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obvious, that both U. maydis and U. hordei Dpep1-mutants are not

defective in the ability to penetrate plant cell walls but fail to

establish a biotrophic interaction immediately after entry into the

host plant.

Colonization of epidermal cells by biotrophic fungi requires the

establishment of a biotrophic interface which mediates nutrient

uptake and provides the contact zone where suppression of defense

responses by the fungus takes place [7]. In infections with U. maydis

strain SG200 early plant defense responses are induced and these

are downregulated upon penetration [21]. In the absence of pep1

this downregulation was not observed, i.e. of the 37 defense related

genes which were significantly repressed in the interaction with

SG200 24 hpi [21], 23 genes were found to be highly induced

24 hpi in SG200Dpep1 infected maize tissue. Another major

difference concerned genes associated with JA signaling. These were

strongly upregulated after infection with SG200 but not in response

to SG200Dpep1 [21]. Similarly, two Bowman-Birk type trypsin

inhibitors were highly induced after infection with SG200 but

induction was absent after infection with SG200Dpep1. For

Bowman-Birk type trypsin inhibitor genes in rice it has been

Figure 6. Immunolocalization of Pep1-HA in U. maydis infected maize tissue. A, B: Confocal projections showing immunolocalization of
Pep1-HA in maize tissue infected by SG200Dpep1-pep1HA. Pep1-HA is detected around intracellular hyphae (h), predominantly accumulating at sites
of cell to cell passage (arrowheads). Bars are given.
doi:10.1371/journal.ppat.1000290.g006
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demonstrated that they are transcriptionally induced by JA but

repressed by salicylic acid (SA) [27]. This suggests that the typical

transcriptional response to biotrophic pathogens that coincides with

elevated JA levels and a repression of SA signaling [24] is not

established after infections with SG200Dpep1. Moreover, produc-

tion of ROS, papilla formation and the transcriptional induction of

PR genes observed in response to SG200Dpep1 are typical for non-

host responses in incompatible plant-pathogen interactions [28].

To understand the function of secreted effector proteins it is

necessary to establish where they localize. Most extensive work on

localization and function has been done on bacterial effectors

which are translocated into the host cell via the type III secretion

systems [29]. Remarkable advances have also been made in the

oomycete field where many effectors carry a RXLR-EER motif

that mediates translocation of effectors into the plant cell while a

second group of effectors that lack this motif function in the

apoplast [30–33]. The described secreted fungal effectors follow

similar principles, i.e. they either have an apoplastic function or

act inside the plant cell. However, the group of fungal effectors

which are translocated to plant cells lack common motifs. Among

these are M. grisea AVR-Pita, Uromyces fabae RTP1 and the flax rust

effectors AvrM, AvrL657, AvrP123; AvrP4 [34–37]. From these

proteins only RTP1 was directly detected inside host cells by

immuno-localization [36].Transfer of the other fungal effectors

was inferred from their ability to trigger cell death when expressed

in the cognate resistant line or their interaction with a cytoplasmic

resistance gene in yeast two-hybrid assays [7]. Apoplastic fungal

effectors like Cladosporium fulvum effectors Avr2, Avr4 and Ecp6

have been directly isolated from apoplastic fluid of infected tomato

plants and several oomycete effectors were detected in isolated

apoplastic fluid after antibodies had been raised [38–41].

Pep1 secretion from intracellularly growing hyphae could be

shown by generating biologically active GFP and mCherry fusions

and this did not require overexpression. Secretion of Pep1 and

accumulations at sites where hyphae passage from cell to cell was

confirmed by immunolocalisation of HA-tagged Pep1 protein.

However, it was impossible to determine in which plant

compartment Pep1 resides because of the tight encasement of

the intracellular hyphae by plant plasma membrane. This problem

could be solved by inducing plasmolysis, which allowed to detect

Pep1:mCherry now in the drastically enlarged apoplastic space

around intracellular hyphae. By immunoprecipitation full length

HA-tagged Pep1 could be isolated from infected plant tissue. This

contrasts the situation in tomato where it was not possible to

recover affinity-tagged secreted effectors from infected plant after

overexpressing the genes via a PVX system [42]. In addition,

immunoprecipitations of a mCherry-HA tagged Pep1 allowed to

demonstrate that a significant amount of full-lengh fusion protein

could be isolated from infected plant tissue. However, some

material being significantly smaller than mCherryHA (which is

therefore unlikely to show fluorescence) was detected. Another

fragment of about 35 kD is indicative of processing/degradation

within the Pep1 part of the fusion protein. This was not observed

when immunoprecipitating Pep1-HA and therefore we consider it

likely that this form was generated during protein extraction. Since

this clearly shows that no cleavage of full length mCherryHA from

Pep1 occurs inside the plant tissue, we conclude that the observed

fragments, even if they were present in the infected tissue, should

not affect the Pep1-localization shown by fluorescence microscopy.

Collectively, the presented data suggest an apoplastic localization

of Pep1.

The elicitation of plant defense responses typically results in the

massive accumulation of PR proteins in the apoplast [43]. Many of

these PR proteins have enzymatic functions and ß-1,3 glucanases or

proteases can directly harm the pathogen or degrade secreted

effectors with the result of disabling the pathogen. For several fungal

and oomycete effectors it has been demonstrated that they target

such PR proteins: The C. fulvum effector protein Avr2 has been

shown to inhibit the apoplastic tomato proteases RCR3 and PIP1

[40,44]; and Phytophtora infestans secretes several inhibitors for

apoplastic proteases of tomato [38,45,46]. A different function has

been shown for Avr4, which prevents hydrolysis of fungal cell walls

by plant chitinases [47]. While the role of individual protease

inhibitors for disease progression has not been analyzed in

Phytophtora, silencing of avr2 and avr4 leads to decreased virulence

of C. fulvum on tomato [48,49]. Similarly the C. fulvum effector Ecp6

(whose function is unknown) is required for full virulence [39].

In contrast to these effectors which are virulence factors, Pep1 is

essential for compatibility. When absent, U. maydis and U. hordei fail

to establish a biotrophic interface. pep1 mutants are recognized by

their respective host plants and elicit defense responses that are so

strong that a host now acts as if it was a non-host. This, however,

does not suffice as an explanation for host specificity. In this case

we would have expected that all smuts that express pep1 should

cause disease on the same host plants (which is not the case).

Therefore, we propose that pep1 affects compatibility on an early

level that precedes the action of host specificity factors.

Which is the molecular function of Pep1? At present, we can

only speculate about its mode of action. Pep1 of U. maydis, which is

predicted to comprise 152 aa after signal peptide cleavage, is

unrelated to proteins or functional domains of described database

entries. This makes it unlikely that Pep1 has an enzymatic

function. A glycine-rich domain of 37 aa at the C-terminus was

deleted without affecting biological activity. This domain is

considerably less conserved between U. maydis Pep1 and U. hordei

Pep1 than the central domain. Given the apoplastic localization

and the importance of the four cysteine residues for secretion of

Pep1 we consider a compact structure of Pep1 that requires

disulfide bridge formation most likely. Fungal and Oomycete plant

Figure 7. Intracellular growth of a strain expressing pep1 under
control of the otef promoter 7 dpi. A, B: Hyphae of SG200Dpe-
p1otef:pep1-gfp grow intracellularly, demonstrating functionality of
Pep1-GFP driven by the otef promoter. C, D: Insufficient expression of
Pep1-GFP leads to intracellular entrapment of fungal hyphae, that show
multiple, unsuccessful attempts to leave the infected cell (arrowheads).
Bars: 5 mm.
doi:10.1371/journal.ppat.1000290.g007
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Figure 8. Pep1 is conserved among U. maydis and U. hordei. A: Sequence alignment of U. maydis Pep1 (Um) and U. hordei Pep1 (Uh). Identical
amino acids are highlighted in green. Red boxes: conserved cysteine residues; black box: putative N-terminal secretion signal; blue box: poorly
conserved glycine-rich C-terminal region. B: Cumulative plot of synonymous (red line) / non-synonymous (green line) substitutions in Pep1 from U.
maydis and U. hordei. Calculation was done using the SNAP software tool (http://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html). Whereas the
N-terminal and C-terminal parts of the proteins show a high ratio of non-synonymous substitutions, the central part of Pep1 (hatched box) shows a
preference for sequence conservation. C–E: Confocal maximum projections of U. hordei 4 dpi in Golden Promise barley plants. C: Hyphae of strains
4875-5 crossed with 8a inside the leaf tissue. Hyphae (stained by WGA-AF488; green) show directed growth towards a vascular bundle (stained by
propidium iodide, red). D, E: Infection by U. hordei Dpep1 strains 4 dpi (8aDpep164875-5Dpep1) reveals successful penetration into epidermal cell,
collapse of the invaded epidermis cell and no further proliferation in the plant tissue. Hyphae were stained by WGA-AF488 (green); dead plant cells
are stained by propidium iodide (red). Bars correspond to 25 mm. F: Disease rating of Early Golden Bantam maize plants 12 days after infection with
U. maydis strains SG200, SG200Dpep1 (Dpep1), SG200Dpep1-pep1 (Dpep1-umpep1) and SG200Dpep1-uhpep1 (Dpep1-uhpep1). Abbreviations of
the respective strain designations are given in brackets. Numbers indicate the total number of plants infected in three independent experiments. The
categories for the disease rating are given above. For details of the disease rating see Materials and Methods.
doi:10.1371/journal.ppat.1000290.g008
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pathogens have been shown to secrete a broad range of putative

enzyme inhibitors to counteract plant hydrolases and many of

these are cysteine-rich and attain their compact structure through

disulfide bridge formation [33]. Among these are small cysteine-

rich apoplastic proteins like Avr2, the EPI and EPIC proteins of

Phytophtora that all target specific pathogenesis related plant

proteases [38,44,46,49]. Another small effector of P. sojae

specifically targets ß-1,3-glucanases of soybean [50]. Due to

selective pressure, both, the genes encoding the plant enzymes and

the genes encoding the fungal/oomycete inhibitors exist in large

Figure 9. Functional analysis of Pep1. A: Disease rating of Early Golden Bantam maize plants 12 dpi with U. maydis strains SG200, SG200Dpep1-
pep1 (Dpep1-pep1), SG200Dpep1-pep1CS59 (pep1CS59), SG200Dpep1-pep1CS75 (pep1CS75), SG200Dpep1-pep1CS59,75 (pep1CS59,75), SG200Dpep1-
pep1CS59,75,94,112 (pep1CS), and SG200Dpep1-pep1D141–178 (pep1D141–178). Abbreviations of the respective strain designations are given in brackets.
Numbers indicate the total number of plants infected in three independent experiments. The categories for the disease rating are given above. For
details of the disease rating see Materials and Methods. B–E: Intracellularly growing hyphae of strain SG200-pep1:gfpCS59,75 (B–D) and strain
SG200pep1:gfp (E), 48 hpi. Pep1CS59,75-GFP (D) is not secreted at the hyphal tip and accumulates inside the hyphae compared to Pep1-GFP (E). B, C:
Confocal pictures showing an overlay of GFP signal (green) and bright field projection (grey). D, E: Confocal pictures showing an overlay of GFP signal
(green) and UV-laser induced cell wall autofluorescence (grey). Bars correspond to 5 mm.
doi:10.1371/journal.ppat.1000290.g009
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gene families. These features were proposed to provide robustness

to the systems but at the same time limit the effects of individual

genes due to redundancy [33]. With respect to Pep1 these criteria

do not apply, i.e. paralogous genes for pep1 are neither found in U.

maydis nor in U. hordei. We have not analyzed allelic variation,

however, the degree of sequence conservation and the preference

of synonymous nucleotide substitutions over non-synonymous

substitutions in the central domain is remarkably high. This likely

indicates that this domain adopts a defined structure that cannot

be altered by mutation without affecting the function of the

protein. And finally, the phenotype of pep1 deletion is dramatic,

reinforcing the absence of redundant functions. Thus, if Pep1 is an

enzyme inhibitor, we would predict that it should have little or no

specificity, i.e. interacts with many enzyme isoforms. Fungal

effectors like the C. fulvum protease inhibitor Avr2 which

specifically interacts with two plant proteases shows strong

diversifying selection, and this is likely the consequence of

preventing recognition [44]. This contrasts the situation in Pep1

where we find a high conservation of the central domain which is

essential for Pep1 function. Alternatively, Pep1 could act as a kind

of chaperone protecting/activating other secreted effectors or

facilitate the establishment of the fungal/host interface by binding

toxic compounds or interfere with plant signaling. Solving the

molecular structure of Pep1 and identification of interacting

molecules will help to disclose its function and the processes it

interferes with. As two-hybrid screens were unsuccessful, presum-

ably due to incorrect folding of the protein (G.D., unpublished),

biochemical approaches are now under way. The understanding

of how Pep1 affects plant defense responses is likely to provide

fundamental new insights into the initial steps that are required for

the establishment of a compatible, biotrophic interaction between

fungi and their host plants.

Materials and Methods

Fungal strains and growth conditions
U. maydis SG200 [10] and its derivatives (Table 1) were grown at

28uC in YEPSL (0.4% yeast extract, 0.4% peptone, 2% sucrose)

and used in plant infections as described [22]. Disease symptoms

were scored 12 dpi as described previously [10]. Symptoms caused

by SG200Dpep1 mutants were classified into the additional

category ‘‘chlorosis/necrosis’’. For growth assays, U. maydis strains

were grown for 48 hours on plates containing CM agar

supplemented with 1% glucose and various stress-inducing

compounds whose concentrations are indicated (Figure S1). To

induce filamentous growth, strains were cultured on PD agar

containing 1% activated charcoal. U. hordei strains 4875-5 and 8a

as well as their derivatives (Table 1) were grown under the same

experimental conditions as U. maydis. For infection of barley plants

(Golden Promise), cultures of the compatible strains were grown

until an OD600 of 1.0 in YEPSL, and mixed prior to needle

infection of barley plants 10 days post sawing.

Plant lines
Barley plants of the variety Golden Promise were obtained from

the IFZ (Giessen, Germany). Maize lines of the variety Early

Golden Bantam were obtained form Olds Seeds (Madison). Maize

lines ZmPIN1a-YFP and ZmTIP1-YFP were provided from Cold

Spring Harbor Laboratory.

Strain constructions
All U. maydis strains generated in this study are derived from the

solopathogenic strain SG200 and the wild type isolates FB1 and FB2

(Table 1; [10,20]). For the deletion of pep1 (Gene bank accession:

XP_758134) a PCR-based approach using hygromycin as resistance

marker [51] was used. 1 kb of each flanking region of pep1 were

amplified by PCR using primers 59-TTGGTGGACAGTCAC-

GAGCATTC-39 and 59-TTCGGCCATCTAGGCCAC TCTGC-

TCGCCAGCATATCAC-39 for the left border and primers 59-

CACGGCCTGAGTGGCCCAACTGCTTTCTGCCCTTTG-39

and 59-TTTCA GGGCAGCTCAGAGTG-39 for the right border.

PCR products were digested with SfiI and ligated to the hph cassette of

pBS-hhn [51]. For integrations into the ip locus of U. maydis, plasmids

derived from p123 were used [52]. For cytoplasmic rfp expression

under control of the otef promoter, p123-rfp [53] was introduced into

the ip locus of strains SG200, SG200Dpep1 and SG200pep1:gfp,

respectively. To substitute pep1 by pep1:gfp, 1 kb of U. maydis genomic

sequence containing the coding region of pep1 was amplified by PCR

as left border using primers 59-GCAAGCCTAGCAATCTTCGA-

TAGC-39 and 59-CACGGCCGCGTTGGCCCCGGTGGC-

GATCGAGCGCATGCCAAACATGCTACCGATTCC-39, di-

gested with SfiI and ligated to the gfp:hph cassette of plasmid

pUMa317 [54]. As right border, 1 kb including the terminator region

of pep1 was amplified by primers 59-CACGGCCT-

GAGTGGCCGCTGCGACGTCGTTGATGATGAC-39 and 59-

CTCCACTCAAGACTCACAGACT-39, digested with SfiI and

ligated to the gfp:hph cassette of plasmid pUMa317. For complemen-

tation of SG200Dpep1, the pep1 gene with its complete promoter

region was amplified using primers 59-GCAAGCTTACGACG-

GATGCGCTATCGTCAC-39 and 59-TAGCGGCCGCCTGG

CGAGCAGAGTCATCATCAAC-39 and ligated into the HindIII

and NotI sites of vector p123 resulting in p123-pep1. To complement

SG200Dpep1 with pep1 pep1D141–178, the truncated pep1 coding

region with its complete promoter region was amplified using primers

59-GCAAGCTTACGACGGATGCGCTATCGTCAC-39 and 59-

TTGCGGCCGCTTGGCTTGAACCGCATCGTAAGC-39 and

ligated into the HindIII and NotI sites of vector p123 which resulted

in plasmid p123- pep1D141–178. To introduce pep1:gfp into the ip locus,

plasmid p123-pep1:gfp was constructed by amplifying the pep1 gene

using primers 59-GCAAGCTTACGACGGATGCGCTA TCG-

TCAC-39 and 59-CACCCATGGCGGTGGCGATCGAGCGCA-

TGCCAAACA TGCTACCGATTCC-39, and ligating the PCR

product via HindIII and NcoI into p123. To express pep1:gfp under

control of the otef promoter, the coding region of pep1 was amplified

using primers 59-ATGGATCCGATGATG ACCACACTGGTG-

CAAAC-39 and 59-CACCCATGGCGGTGGCGATCGAGC GC-

ATGCCAAACATGCTACCGATTCC-39. The PCR product was

digested with BamHI and NcoI and ligated to the respective sites in

p123 resulting in plasmid p123-otefpep1:gfp. The C-terminal HA-tag

was introduced by amplification of the pep1 with primer 59-

GCAAGCTTACGACGGATGCGCTATCGTCAC-39 and prim-

er 59-TAGCGGCCGCTCAGGCATAGTCGGGGACGTCGT-

AGGGATAGCCGCCCGACATGCCAAACATGCTACCGAT-

TC-39 which contains the HA-tag encoding sequence. This PCR

product was digested with HindIII and NotI and ligated into p123

resulting in plasmid p123-pep1HA. To fuse pep1 with mcherry, plasmid

p123-mcherry was constructed by excision of the gfp coding region

from p123 using NcoI and NotI and substitution by mcherry derived

from plasmid pCRII-mcherry (kindly provided by G. Steinberg).

Similarly, for mcherry::HA constructs, mcherry was amplified by primer

59-CTCCATGGTGAGCAAGGGC-39 and primer 59-CTGCG-

GCCGCTTAAGCGTAATCTGGAACATCGTATGGGTACT-

TGTAC AGCTCGTCCATGCCGC-39 that contains the HA

sequence and introduced into the NcoI and NotI sites of p123 and

subsequently fused to pep1 as described for p123-pep1:gfp. To

express U. hordei pep1 in SG200Dpep1, the coding region of uhpep1 was

amplified with primers 59-TTGATATCAACGATGAAGCTCAC

ACTCAACACCG-39 and 59-TTGCGGCCGCTCAGAGCC-
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CAACCATCTTACC-39 genomic DNA of U. hordei strain 4875-5.

The PCR product was digested with EcoRV and NotI and ligated with

EcoRV / NotI digested PCR product of primers 59-ACCGCTG-

CGACGTCGTTGATGATG-39 and 59-GTCGAGAGTCCT-

CAG GATGGTTC-39 that facilitate an inverse amplification of

p123-pep1 without the U. maydis pep1 coding region.

Nucleic acid manipulations, quantitative real time PCR
and DNA microarrays

Standard molecular techniques were used [55]. Transformation

of U. maydis and isolation of genomic DNA was performed as

described previously [56]. All generated constructs were se-

quenced prior to U. maydis transformation. Isolated U. maydis

transformants were tested for single integration events in the

desired loci by southern analysis. To substitute cysteine residues in

pep1 by serine, single point mutations were introduced in plasmid

p123-pep1 using the ‘‘Quick Change Multi’’ site directed

mutagenesis kit (Stratagene, La Jolla, USA). Introduced mutations

were confirmed by sequence analysis.

For the Affymetrix microarray experiments, maize plants (Early

Golden Bantam) grown in a phytochamber were infected with

SG200Dpep1 as described previously and samples of infected

tissue were colleted 24 hpi, 1 h before the end of the light period

and directly frozen in liquid nitrogen [21]. Samples were collected

in three independently conducted experiments by sampling 30

plants per experiment. For RNA isolation, material from the 30

plants was pooled, ground in liquid nitrogen and RNA was

extracted with Trizol (Invitrogen, Karlsruhe, Germany) and

purified using an RNeasy kit (Qiagen, Hilden, Germany).

Affymetrix Gene chipR maize genome arrays were done in three

biological replicates, using standard Affymetrix protocols (Mid-

i_Euk2V3 protocol on GeneChip Fluidics Station 400; scanning

on Affymetrix GSC3000). Expression data were submitted to

GeneExpressionOmnibus (http://www.ncbi.nlm.nih.gov/geo/)

(Accession Number: GSE12892). Data analysis was performed using

Table 1. Strains used in this study.

Strain Genotype Reference

Ustilago maydis:

SG200 a1mfa2 bW2bE1 [10]

FB1 a1 b1 [20]

FB2 a2 b2 [20]

SG200rfp a1mfa2 bW2bE1 ipr[Potef-rfp]ips [53]

SG200pep1:gfp a1mfa2 bW2bE1 um-pep1-egfp:hph This study

SG200Dpep1 a1mfa2 bW2bE1 Dum-pep1::hph This study

FB1Dpep1 a1 b1 Dum-pep1::hph This study

FB2Dpep1 a2 b2 Dum-pep1::hph This study

SG200Dpep1rfp a1mfa2 bW2bE1 Dum-pep1::hph ipr[Potef-rfp]ips This study

SG200Dpep1otef:pep1 a1mfa2 bW2bE1 Dum-pep1::hph ipr[Potef-um-pep1]ips This study

SG200Dpep1otef:pep1-gfp a1mfa2 bW2bE1 Dum-pep1::hph ipr[Potef-um-pep1-egfp]ips This study

SG200Dpep1oma:pep1-gfp a1mfa2 bW2bE1 Dum-pep1::hph ipr[Poma-um-pep1-egfp]ips This study

SG200Dpep1-pep1 a1mfa2 bW2bE1 Dum-pep1::hph ipr[Pwt-um-pep1]ips This study

SG200Dpep1-pep1:gfpIP a1mfa2 bW2bE1 Dum-pep1::hph ipr[Pwt-um-pep1-egfp]ips This study

SG200pep1:gfpR a1mfa2 bW2bE1 um-pep1-egfp:hph ipr[Potef-rfp]ips This study

SG200Dpep1-pep1M a1mfa2 bW2bE1 Dum-pep1::hph ipr[Pwt-um-pep1-mcherry]ips This study

SG200Dpep1-pep1HA a1mfa2 bW2bE1 Dum-pep1::hph ipr[Pwt-um-pep1-HA]ips This study

SG200Dpep1-pep1MHA a1mfa2 bW2bE1 Dum-pep1::hph ipr[Pwt-um-pep1-mcherry-HA]ips This study

SG200Dpep1-uhpep1 a1mfa2 bW2bE1 Dum-pep1::hph ipr[Pwt-uh-pep1]ips This study

SG200Dpep1-pep1CS59 a1mfa2 bW2bE1 Dum-pep1::hph ipr[Pwt-um-pep1CS59]ips This study

SG200Dpep1-pep1CS75 a1mfa2 bW2bE1 Dum-pep1::hph ipr[Pwt-um-pep1CS75]ips This study

SG200Dpep1-pep1CS59,75 a1mfa2 bW2bE1 Dum-pep1::hph ipr[Pwt-um-pep1CS59,75]ips This study

SG200Dpep1-pep1CS59,75,94,112 a1mfa2 bW2bE1 Dum-pep1::hph ipr[Pwt-um-pep1CS59,75,94,112]ips This study

SG200-pep1:gfpCS59,75 a1mfa2 bW2bE1 ipr[Pwt-um-pep1CS59,75:egfp]ips This study

SG200Dpep1-pep1D141–178 a1mfa2 bW2bE1 Dum-pep1::hph ipr[um-pep1D141–178]ips This study

Ustilago hordei:

4875-5 a12b1 [58]

8A a2b2 ATCC 90511

4875-5Dpep1 a1b1 Duh-pep1::hph This study

8ADpep1 a2b2 Duh-pep1::hph This study

P: promoter; a1 and a2: mating type loci of U. maydis or U. hordei, mfa2, bW2, bE1: mating type genes; ips: ip allele encoding sensitivity to carboxin; ipr: ip allele encoding
resistance to carboxin; hph: hygromycin B phosphotransferase.
doi:10.1371/journal.ppat.1000290.t001
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Affymetrix GCOS1 1.4, bioconductor (http://www.bioconductor.

org/) and dChip1.3 (http://biosun1.harvard.edu/complab/dchip/),

as described (Doehlemann et al., 2008b). We considered changes

.2-fold with a difference between expression values .100 and a

corrected p-value,0.001 as significant.

Expression of pep1 was analyzed by qRT-PCR. RNA samples

were isolated with Trizol as described above. To isolate U. maydis

cells during the penetration stage 18 hpi from the maize leave

surface, infected leaves were coated by liquid latex. The latex was

dried and then peeled from the leaves. Peeled latex, containing the

fungal structures extracted from the leaf surface was then used for

RNA-isolation as described above. For cDNA synthesis, the

SuperScript III first-strand synthesis SuperMix assay (Invitrogen,

Karlsruhe, Germany) was employed, using 1 mg of total RNA.

qRT-PCR was performed on a Bio-Rad iCycler using the

Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen,

Karlsruhe, Germany). Cycling conditions were 2 min 95uC,

followed by 45 cycles of 30 sec 95uC / 30 sec 61uC / 30 sec

72uC. Control gene primers for amplification of the U. maydis

peptidylprolyl isomerise (ppi) were rt-ppi-for: 59-ACATCGT-

CAAGGCTATCG-39 and rt-ppi-rev: 59- AAAGAACACCG-

GACTTGG-39. To amplify a pep1 PCR-fragment, primers rt-

pep1-for: 59- CACTGACGACGACACCT-39 and rt-pep1-rev:

59- TGCTACCGATTCCTCCT-39 were used.

Microscopy
Fungal hyphae were stained with WGA-AF 488 (Molecular

Probes, Karlsruhe, Germany). Plant membranes were visualized

using Propidium Iodide (Sigma): Samples were incubated in

staining solution (1 mg/ml Propidium Idodide, 10 mg/ml WGA-

AF 488; 0.02% Tween20) for 30 min and washed in 16 PBS

(pH 7.4). Visualization of H2O2 by DAB was performed as

described [22]. Confocal images were recorded on a TCS-SP5

confocal microscope (Leica, Bensheim, Germany); using WGA-AF

488: excitation at 488 nm and detection at 500–540 nm. Autofluo-

rescence of cell wall material was excited at 405 nm and detected at

415–460 nm. For mCherry fluorescence of hyphae in maize tissue,

an excitation of 561 nm and detection at 580–630 nm was used.

GFP fluorescence was excited with a 488 nm laser, emission was

detected at 495–530 nm. YFP fluorescence of tagged plant proteins

was excited at 495 nm and detected at 510–550 nm.

Immunoprecipitation of Pep1 from maize leaves
For immunoprecipitation of Pep1-HA and Pep1-mCherry-HA

from infected maize tissue, infected areas of 60 plants were excised

3 dpi after infection with the respective U. maydis strains and

directly frozen in liquid nitrogen. Frozen leaves were ground in

liquid nitrogen, mixed with extraction buffer and centrifuged for

30 min at 28100g. All samples were adjusted to a protein

concentration of 2.4 mg/ml in a volume of 7,5 ml and mixed

with 10 ml HA-matrix (Roche) for 16 h at 4uC on a shaker.

Elution was performed according to the HA-Kit protocol (Pierce).

Immunodetection of Pep1
Overnight cultures of U. maydis strains SG200 and SG200Dpe-

p1oma:pep1-gfp were harvest by centrifugation, washed once and

were resuspended in 50 ml NM media containing 0,5% glucose to

an OD600 nm of 0,20 and grown at 28uC to an OD600 nm of 0.80.

Cells were harvest by centrifugation, the supernatant was collected

and percipitatetd by TCA. Then the pellets were washed seven

times with 80% icecold acetone and resuspendet in 30 ml SDS

loading buffer. All protein samples were separated by SDS-PAGE

and transferred to a nitrocellulose membrane. After electroblot-

ting, filters were saturated with 5% non-fat dry milk in TBS

(20 mM Tris-HCl, 137 mM NaCl, pH 7.6), 0.1% Tween for 1 hr

at room temperature (RT). For detection of Pep1-GFP, a

monoclonal GFP specific antibodies (Clontech, Mountain View,

USA) was used (1:10000). To detect HA-tagged proteins, a

monoclonal mouse-anti-HA antibody (Sigma-Aldrich) (dilution

1:7500) was used. As secondary antibody an anti-mouse

peroxidase conjugate (1:10000) (Sigma-Aldrich) was used. For

chemiluminscence detection, ECL Plus Western Blot detection

reagent (GE Healthcare) was used. For in situ detection of Pep1-

HA, maize leaves were harvested three days after infection with

SG200pep1HA. Infected tissue was treated as described previously

[57]. For detection of the HA-tag, a monoclonal mouse-anti-HA

antibody (Sigma-Aldrich, dilution 1:7500) was used. As secondary

antibody, anti-mouse conjugated with AF488 (Molecular Probes)

was used in a 1:5000 dilution. Confocal microscopy of the samples

was done as described above. Control samples were maize leaves

infected with SG200 and these were treated identical to

SG200pep1HA infected tissue to verify Pep1-HA detection. In

another control, SG200 infected leaves were used for detection of

maize tubulin (mouse-anti-tubulin; Sigma-Aldrich, dilution

1:7500). In both control samples, plant structures showed the

same background, but no fluorescence of fungal hyphae was

detected (Figure S5).

Supporting Information

Figure S1 Growth of U. maydis SG200, SG200Dpep1 and

SG200Dpep1otef:pep1 on growth media providing different

stresses. Precultures of U. maydis were grown in YEPSL to an

OD600 of 1.0. Cells were washed in water and recalibrated to an

OD600 of 1.0 and diluted 10-fold each in four steps. From these

suspensions droplets of 6 ml each were dropped on the different

media. After 48 hours incubation at 28uC pictures were taken. A:

PD agar containing 1% Charcoal; B: CM agar supplied with

Calcofluor (100 mg/ml); C: CM agar supplied with 2 mM H2O2;

D: CM agar supplied with Congored (50 mg/ml); E: Ammonium

Minimal Medium; F: Nitrogen Minimal medium. I) SG200 II)

SG200Dpep1 III) SG200Dpep1-pep1 IV) SG200Dpep1-otef:pep1.

Found at: doi:10.1371/journal.ppat.1000290.s001 (7.83 MB TIF)

Figure S2 Expression of pep1 during pathogenic development of

U. maydis. Quantitative real-time PCR on pep1 expression of U.

maydis strain SG200. Sporidia grown in axenic culture did not

show detectible expression of pep1. In SG200 cells that were

extracted from the maize leaf surface (18 hpi) pep1 transcript was

detected. High levels of pep1 expression were detected in maize leaf

tissue taken at different time points after infection with SG200.

The strongest expression of pep1 was observed during the early

biotrophic phase (2 dpi) and during late stages of infection (6 and

8 dpi).

Found at: doi:10.1371/journal.ppat.1000290.s002 (5.94 MB TIF)

Figure S3 Microscopic analysis of U. maydis FB1/2Dpep1

mutants after inoculation on maize plants. Confocal projections

showing fungal hyphae stained with WGA-AF488 (green) and

plant cells stained with propidium-iodide (red) 24 hpi. A:

FB16FB2 crossings have penetrated the leaf surface (white

arrowhead) and grow intracellularly. Hyphae on the leaf surface

are collapsed (open arrowheads) after plant penetration. B–D: At

the same time-point, the FB1Dpep16FB2Dpep1 dikaryon was

arrested immediately upon penetration similar to SG200Dpep1

(Figure 2). In addition, short hyphae of FB1Dpep16FB2Dpep1

(left panel, C1 and D1 and insert) can be found in collapsed

epidermis cells (overlay: right panel, C21 and D2). Bars are given.

Found at: doi:10.1371/journal.ppat.1000290.s003 (7.99 MB TIF)
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Figure S4 Western detection of Pep1-GFP, Pep1-HA and Pep1-

mCherry-HA. Western blot of Pep1-GFP secreted from U. maydis

strain SG200Dpep1oma:pep1-gfp. SG200: In culture-supernatant

of SG200 cells, no Pep1-GFP was detected by an anti-GFP serum.

Pep1-GFP: In culture-supernatant of SG200Dpep1oma:pep1-gfp,

Pep1-GFP was detected in full-length. B: Immunoprecipitation of

Pep1-HA and Pep1-mCherry-HA (Pep1-MHA): HA tagged Pep1

and Pep1-mCherry were immunoprecipitated from maize tissue

infected with U. maydis strain SG200Dpep1-pep1HA and

SG200Dpep1-pep1MHA, respectively (3 dpi) using monoclonal

HA-specific antibodies. SG200: From SG200 infected maize

tissue, no precipitated protein was detected. Red arrows: Full

length fusion protein at the expected size for Pep1-HA and Pep1-

mCherry-HA. C: Schematical description of the Pep1-mCherry-

HA fusion protein. Numbers: Expected molecular weight [kDa] of

the individual parts of the fusion protein. SP: signal peptide

(cleaved off during secretion).

Found at: doi:10.1371/journal.ppat.1000290.s004 (3.43 MB TIF)

Figure S5 Control samples showing specificity of anti-HA serum

used for immunolocalization of Pep1-HA. A: Confocal projection

showing unspecific fluorescence of U. maydis infected maize tissue

treated with HA-specific antiserum (A1). U. maydis hyphae of strain

SG200 (stained by WGA-AF633) were not detected (overlay, A2).

B: Confocal projection showing immunodetection of plant tubulin

in U. maydis infected maize tissue treated with a tubulin specific

antibody (B1). U. maydis hyphae of strain SG200 (stained by WGA-

AF633) were not detected by tubulin specific serum (overlay, B2).

Found at: doi:10.1371/journal.ppat.1000290.s005 (6.44 MB TIF)

Table S1 Maize genes with significant changes in expression in

response to infection with U. maydis strain SG200Dpep1 24 hpi

compared to mock infected plants.

Found at: doi:10.1371/journal.ppat.1000290.s006 (0.08 MB XLS)

Table S2 Maize genes with significant changes in expression in

response to infection with U. maydis strain SG200Dpep1 compared

to infection with strain SG200 24 hpi.

Found at: doi:10.1371/journal.ppat.1000290.s007 (0.05 MB XLS)

Table S3 Disease rating of Early Golden Bantam maize plants

12 dpi with U. maydis strains used in this study.

Found at: doi:10.1371/journal.ppat.1000290.s008 (0.02 MB XLS)
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