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Abstract

Invasion of host cells by the malaria parasite involves recognition and interaction with cell-surface receptors. A wide variety
of parasite surface proteins participate in this process, most of which are specific to the parasite’s particular invasive form.
Upon entry, the parasite has to dissociate itself from the host-cell receptors. One mechanism by which it does so is by
shedding its surface ligands using specific enzymes. Rhomboid belongs to a family of serine proteases that cleave cell-
surface proteins within their transmembrane domains. Here we identify and partially characterize a Plasmodium berghei
rhomboid protease (PbROM1) that plays distinct roles during parasite development. PbROM1 localizes to the surface of
sporozoites after salivary gland invasion. In blood stage merozoites, PbROM1 localizes to the apical end where proteins
involved in invasion are also present. Our genetic analysis suggests that PbROM1 functions in the invasive stages of parasite
development. Whereas wild-type P. berghei is lethal to mice, animals infected with PbROM1 null mutants clear the parasites
efficiently and develop long-lasting protective immunity. The results indicate that P. berghei Rhomboid 1 plays a
nonessential but important role during parasite development and identify rhomboid proteases as potential targets for
disease control.

Citation: Srinivasan P, Coppens I, Jacobs-Lorena M (2009) Distinct Roles of Plasmodium Rhomboid 1 in Parasite Development and Malaria Pathogenesis. PLoS
Pathog 5(1): e1000262. doi:10.1371/journal.ppat.1000262

Editor: Kirk Deitsch, Weill Medical College of Cornell University, United States of America

Received June 20, 2008; Accepted December 12, 2008; Published January 16, 2009

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public
domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: This work was supported by Johns Hopkins Malaria Research Institute, The Bloomberg Family Foundation, and grant R01 AI 1031478 from the National
Institute of Allergy and Infectious Diseases.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: srinivasanp@niaid.nih.gov

¤ Current address: Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes
of Health, Rockville, Maryland, United States of America

Introduction

For successful development and transmission, Plasmodium has to

invade multiple cell types both in the mammalian host and in the

mosquito vector. Much of our knowledge about the molecular

mechanisms of invasion comes from the study of P. falciparum

merozoite invasion of red blood cells (RBCs). RBC invasion

involves an initial attachment followed by re-orientation and entry

of the parasite into the host cell [1]. There are two main classes of

parasite surface molecules, the GPI-anchored proteins such as the

merozoite surface protein family (MSP) [2] and transmembrane

domain-containing proteins such as AMA1 [3,4], erythrocyte

binding-like family (EBL) [5,6] and reticulocyte binding-like family

proteins (RBL) [7,8]. A few host-cell receptors to which these

ligands bind have been identified [9–12].

In the mosquito, motility plays an important role in ookinete

and sporozoite invasion. Motile ookinetes form within the

mosquito blood meal and invade the midgut epithelium. After

exiting on the basal side facing the hemocoel they differentiate into

sessile oocysts [13]. Subsequently, sporozoites released from

mature oocysts invade the salivary glands from where they are

delivered to the vertebrate host by a mosquito bite. These

sporozoites travel through the blood stream until they reach the

liver, where they invade and infect hepatocytes. All three invasive

forms (ookinetes, sporozoites in the mosquito and sporozoites in

the mammalian host) utilize the same actin-based motor for entry

into the host cell. Thrombospondin-related anonymous protein

(TRAP) family homologues constitute one class of protein required

for motility and host cell invasion [14–16]. The extracellular

domains of TRAP interact with host-cell receptors, while the

cytoplasmic tail links to the actin-myosin cytoskeleton [17]. As the

parasite glides, the parasite surface ligand-receptor complexes

translocate towards the posterior end. Dissociation of these

interactions by proteolytic processing is thought to be important,

as this enables the parasite to move forward [18–20]. In another

Apicomplexan parasite-Toxoplasma-the TRAP homologue MIC2 is

cleaved within its transmembrane domain releasing the receptor-

binding domain from the parasite surface [18] and Plasmodium

merozoite TRAP (MTRP) also appears to be cleaved in a similar

manner [16].

Rhomboid-family (ROM) proteins are serine proteases that

cleave their substrates within their membrane domain [21,22].

Multiple rhomboid-family proteins have been identified in the

genomes of Plasmodium and Toxoplasma [23]. Cleavage requires the

presence of helix-destabilizing residues within the membrane

domain of substrates [24]. Indeed, Apicomplexan surface proteins

such as EBL and RBL proteins, AMA1, TRAP and their

homologues contain such helix-destabilizing residues [23]. Assays

in cultured mammalian cells identified possible substrates for both

Toxoplasma and Plasmodium falciparum rhomboid proteins [25,26].

Toxoplasma ROM5 localizes to the posterior end of the parasite and

can cleave MIC2 within its transmembrane domain [25,27].
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Plasmodium does not have a ROM5 homologue but ROM4 is able

to cleave EBA175 [28], an EBL family protein involved in binding

to erythrocytes [10]. Processing of EBA175 within its membrane

domain appears to be essential for parasite invasion [28].

Here we report on experiments investigating the role of

Plasmodium berghei rhomboid 1 (PbROM1) during parasite

development in the vertebrate host and the mosquito vector.

Our data suggests a role for PbROM1 throughout Plasmodium

development and indicate a role in invasion of host cells. We also

find that a null PbROM1 mutant is efficiently cleared from mice

and that these animals are protected from a subsequent lethal

challenge of wild-type P. berghei. These findings identify a unique

target for interfering with both disease causing and disease

transmitting forms of the parasite.

Materials and Methods

Parasite maintenance and mosquito infections were performed

as described previously [29]. We used Anopheles stephensi mosqui-

toes, Plasmodium berghei ANKA 2.34 parasites and female Swiss

Webster mice in all our studies.

PbROM1 antibody production and immunofluorescence
assays

Antibodies were raised in rabbit against the N-terminal 52

amino acids of PbROM1 expressed in bacteria as a fusion protein

using the pBAD expression system (Invitrogen). P. berghei schizonts,

merozoites and sporozoites were fixed in ice-cold methanol and

incubated for 1 h with the anti-PbROM1 antibody diluted 1:500.

Midgut and salivary gland sporozoites were obtained by gently

homogenizing the infected tissues and centrifuging to remove cell

debris. A anti-AMA1 monoclonal antibody (28G2) that recognizes

the highly conserved cytoplasmic tail [30] was also used to label

schizonts and merozoites, while a anti-CSP monoclonal antibody

(3D11) that recognizes the repeat region [31] was used to label

midgut and salivary gland sporozoites. Slides were then incubated

for 1 h with Alexa Fluor 488-conjugated anti-rabbit IgG and

rhodamine-conjugated anti-mouse or anti-rat IgG secondary

antibodies. After washing, images were visualized in a Leica

upright fluorescent microscope with a 1006objective and images

were captured with a SPOT camera.

Immunoelectron microscopy
Sporozoite-infected salivary glands were fixed in 4% parafor-

maldehyde (Electron Microscopy Sciences, PA) in 0.25 M HEPES

(pH7.4) for 1 h at room temperature, followed by 8% parafor-

maldehyde in the same buffer overnight at 4uC. The fixed glands

were permeabilized, frozen and sectioned as previously described

[32]. Sections were immunolabeled with rabbit anti-PbROM1

antibodies (1:20 in PBS/1% fish skin gelatin), then with anti-rabbit

IgG, followed by 10 nm protein A-gold particles (Department of

Cell Biology, Medical School, Utrecht University, the Nether-

lands) before examination with a Philips CM120 Electron

Microscope (Eindhoven, the Netherlands) under 80 kV.

Generation of PbROM1 disruptants
For targeted disruption of the PbROM1 gene, a disruption

plasmid was constructed by PCR amplification with primers,

PbROM1(2)F-59CCATACATTAGCAGAGTATAGGGA39 and

PbROM1(2)R-59ACTTGCAC CCACTTTTATTGTAC39 using

P. berghei genomic DNA as template. Cloning into the P. berghei

transfection vector [33] resulted in plasmid pROM1. This plasmid

was linearized at the unique NdeI site and transfected into P.berghei

schizonts as described [34]. To confirm disruption of the PbROM1

gene, integration-specific PCR was performed using specific primer

combinations, P1-59CGAGCAACAATGTCTGAC39, P2-

59GAGTTCATTTTACACAATCC39 and P3-59TAATAC-

GACTCACTATAGGGAGA39. Disruption was also confirmed

by RT-PCR using primers PbROM1F-59TTATTACG-

GAGTGTTTCTTC39 and PbROM1R-59CGGAGAAATACA-

TAGATTA39 P.berghei circumsporozoite gene primers CSF-

59GTACCATTTTAGTTGTAGCGTC39 and CSR-59CATCG-

GCAAGTAATCTGTTG39 were used as positive control.

Phenotypic analysis of PbROM1 disruptants
The ability of the parasites to differentiate into gametocytes and

form male gametes (exflagellation) was assessed as described

previously [35]. An. stephensi mosquitoes were fed on infected mice

and the ability of the disruptant parasites to form ookinetes (24 h)

and oocysts (day 15) was examined microscopically. To assess

ookinete numbers, individual midguts were dissected 24 h after

feeding. Ookinete numbers were calculated after examining a

Giemsa-stained smeared preparation of the midgut contents and

counting both ookinetes and red blood cells. We assumed that

each mosquito ingested 2 ml [36] and that mouse blood has 46109

RBCs/ml [37]. Mature oocysts were counted on day 15 by direct

light microscopic examination of dissected midguts. Sporozoites

were isolated from midgut oocysts and salivary glands and counted

on day 25–26 using a hemocytometer.

Gliding motility assay
Sporozoites isolated from salivary glands were incubated for

15 minutes at 37uC in chamber slides coated with BSA. The

supernatant was gently aspirated and sproozoite trails were fixed

with 4% paraformaldehyde. The trails were visualized by labeling

them with anti-CSP (mAb 3D11) antibody and rhodamine

conjugated anti-mouse secondary antibody.

TRAP processing assay
Sporozoites were isolated from salivary glands on ice and

partially purified by passing through glass wool to remove

Author Summary

Malaria is one of the major infectious diseases and is
responsible for the death of more than a million people,
mostly children under the age of five. Plasmodium, the
causative agent of malaria, is transmitted by female
Anopheles mosquitoes. Successful development of the
parasite requires efficient recognition, attachment, and
invasion of host cells. Several parasite cell-surface mole-
cules have been implicated in these processes and may
require proteolytic processing in order for the parasite to
complete invasion. Rhomboid family proteins are serine
proteases that cleave within the transmembrane region of
their substrates. Here, we use a genetic approach to study
the function of Plasmodium berghei rhomboid 1 (PbROM1).
PbROM1 is expressed in both vertebrate and mosquito
stages of parasite development, and the protein is present
in secretory organelles that contain other parasite
molecules required for invasion. We find that PbROM1 is
required for efficient infection of both the mosquito and
the vertebrate host. Interestingly, we also find that mice
infected with ROM1(2) parasites clear the infection
efficiently and are protected upon subsequent wild-type
parasite challenge. Our study suggests a role for PbROM1
throughout parasite development and identifies ROM1 as
a target for disease intervention.

Plasmodium Rhomboid 1 and Malaria
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mosquito debris. Protease inhibitors N-tosyl-L-lysine chloromethyl

ketone (TLCK, 20 mM stock in water) and phenylmethylsulfonyl

fluoride (PMSF 100 mM stock in ethanol) were obtained from

Sigma. 30000 sporozoites were incubated at 4uC or 37uC in the

presence or absence of protease inhibitors for 1h. EDTA was used

to rule out nonspecific processing by metalloproteases. Parasite

lysates were run on a SDS-PAGE and transferred onto PVDF

membrane. These were probed with anti-TRAP antibodies that

recognize the repeat region of the protein, followed by peroxidase-

conjugated secondary antibody. To determine TRAP processing

in PbROM1(2) parasites, 30000 wild-type and PbROM1(2)spor-

ozoites were analyzed by SDS-PAGE as mentioned above.

Mice infections with sporozoites
Sporozoites isolated from salivary glands were counted using a

hemocytometer and mice were injected intravenously with 150, 1000

or 10000 sporozoites. Infection efficiency was assayed by monitoring

the pre-patent period of blood stage infection after sporozoite

injection. Prepatent period is the time elapsed between mouse

infection and when the first infected red blood cell (RBC) was

observed upon examination of at least 25,000 RBCs. For quantifying

efficiency of liver infection, mice were injected intravenously with

either 103 wild-type or 103 PbROM1(2) sporozoites. Animals were

sacrificed 36–40 h after sporozoite injection and total RNA was

prepared using Trizol reagent. P. berghei 18S rRNA was quantified

using primers (PbrRNA1-59TGGGAGATTGGTTTTGACGT

TTATGT39 and PbrRNA2-59 AAGCATTAAATAAAGCGAA-

TACATCCTTAC39) as described [38] and the results were

normalized using mouse GAPDH. Results from 4 mice per group

are expressed as mean6s.d. of rRNA copy number.

Parasite challenge
Mice were infected with either PbROM1(2) sporozoites or

infected RBCs as described above. Parasitemia was checked every

day until at least 30 days after the last PbROM1(2) parasites was

detected. To confirm complete parasite clearance, 36107 RBCs

from these animals were injected into naı̈ve mice and these

animals were observed for 30 days to ensure that no infection

resulted. After complete remission, the PbROM1(2) infected mice

were challenged by intravenous (iv) or intraperitoneal (ip) injection

of 105 wild-type P. berghei iRBCs. A second challenge was

performed either 33 days or 7 months after the first challenge

and a third 9 months after the first. Parasitemia was followed as

described above. Protection is defined as the number of animals

that survive the challenge.

Results

PbROM1 is conserved in all Plasmodium species
Plasmodium berghei ROM1 (PbROM1) was initially identified in a

subtractive hybridization screen for genes expressed during

parasite development in the mosquito [29]. PbROM1 encodes a

protein predicted to have seven transmembrane domains carrying

a conserved, membrane-embedded Asparagine, Glycine-X-Serine

and Histidine ‘‘rhomboid’’ motif (Figure S1). At least seven

rhomboid genes were identified in the genome of various

Plasmodium species [23]. Though PbROM1 homologues are highly

conserved among rodent (92% identity) and human malaria

species (55% identity), sequence identity among rhomboid genes of

a given species is very limited (,20%, data not shown). This points

to independent evolution of different rhomboid genes and suggests

that each rhomboid protein plays distinct functions in the parasite

life cycle.

PbROM1 is expressed in multiple invasive stages
Microarray analysis indicates that PfROM1 is expressed in both

mosquito and vertebrate forms of the parasite [39]. We have

produced an antibody to the first 52-amino acids of PbROM1 and

used it to investigate protein expression and subcellular localiza-

tion. The protein is expressed in both blood- and mosquito-stage

parasites. PbROM1 protein has a punctate distribution in

segmented (mature) schizonts and localizes to the apical end of

free merozoites (Figure 1A). A number of organelles such as

Figure 1. Localization of PbROM1 protein in merozoites and sporozoites. PbROM1 protein expression was assayed by indirect
immunofluorescence (IFA). (A) IFA of fully segmented schizonts and free merozoites, double labeled with anti-PbROM1 (green) and anti-AMA1 (red)
antibodies. (B) IFA of midgut and salivary gland sporozoites double labeled with anti-PbROM1 (green) and anti-CSP (red) antibodies. Little or no
PbROM1 protein can be detected in midgut sporozoites while the protein is distributed in a punctuate pattern throughout salivary gland sporozoites.
DAPI is shown in blue in the merged panels. The dotted line separates the fields of two separate images. PbROM1, P. berghei rhomboid 1, AMA1,
apical membrane antigen 1, CSP, circumsporozoite protein. (Scale bars, 3 mm).
doi:10.1371/journal.ppat.1000262.g001

Plasmodium Rhomboid 1 and Malaria
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rhoptries and micronemes are found in the apical tip of the

merozoite. These organelles secrete parasite proteins involved in

host recognition and invasion. AMA1 (apical membrane antigen 1)

is a micronemal protein required for invasion of RBCs and is also

found on the surface of merozoites (Figure 1A). Immunoelectron

microscopy confirmed the apical localization of PbROM1 and

.85% of the gold label were found in micronemes (Figure 2A and

2B). PbROM1 expression is limited to schizonts and free

merozoites and is not detectable in ring or trophozoite stages

(data not shown). This is in agreement with the microarray

analysis of P. berghei asexual stages in which PbROM1 is induced

only in mature schizonts [40].

In mosquito stages, the PbROM1 transcript was initially

identified among RNAs from mosquito midguts infected with

mature oocysts [29]. Despite this, little or no protein was detected

in sporozoites from these oocysts (Figure 1B). In contrast,

PbROM1 protein is detected in sporozoites after invasion of

mosquito salivary glands (Figure 1B). Immuno-electron microsco-

py more precisely localized PbROM1 in such sporozoites

(Figure 2C and 2D). The protein is present along the entire

length of the sporozoite both on the surface as well as in

micronemes. We examined 65 parasite cryosections to quantify the

distribution of PbROM1 in different cellular locations. Most of the

gold particles were present on the sporozoite plasma membrane

(76.4%) and in the micronemal membrane (17.7%) while the

remaining particles were located over other parasite organelles

(3.3%) and the mosquito salivary duct (2.6%).

PbROM1 gene disruption
To gain insights on PbROM1 function we disrupted the gene by

homologous recombination and investigated the effects of gene

loss on parasite development. Gene disruption was achieved by

inserting a DNA fragment encoding a drug resistance marker into

the open reading frame of PbROM1 (Figure 3A). Gene disruption

was confirmed by insertion-specific PCR that identifies the

disrupted locus from the wild-type locus (Figure 3B). In addition,

disruption was confirmed by the absence of the transcript in

PbROM1(2) sporozoites (Figure 3C).

PbROM1 is required for efficient transition of ookinetes
into oocysts but is not required for sporozoite invasion of
salivary glands

We examined the possible function of PbROM1 in ookinetes by

feeding PbROM1(2) parasites to mosquitoes. Ookinete efficiency

of midgut invasion was assessed by counting the resulting number

of oocysts. Disruption of the PbROM1 gene did not affect

ookinete formation (Figure 4A and Table S1). However, in 6/7

experiments we found strong reduction in oocyst numbers

(Figure 4B and Tables S2 and S3). These results suggest that loss

of PbROM1 function impairs the ability of ookinetes to form

oocysts. Subsequent development of PbROM1(2) parasites

appears to be normal. The number of sporozoites formed by

PbROM1(2) oocysts was similar to wild-type oocysts and no

differences of salivary gland invasion could be detected (Figure 4C

Figure 2. Immuno-electron microscopic localization of PbROM1 in salivary gland sporozoites. (A,B) Immunogold labeling of merozoites.
PbROM1 is detected in the apical end (arrows) of merozoites within secretory organelles, predominantly within micronemes (Mi). The insert in panel B
shows a microneme from another merozoite labeled with gold particles. (C,D) Immunogold labeling with anti-PbROM1 antibody of P. berghei-
infected mosquito salivary gland sporozoite cryosections. The protein is detected on the parasite plasma membrane (PM) as well as on the
membrane of micronemes (Mi) (see text for distribution statistics). The typical folded posterior end seen in sporozoites is marked with asterisk. DG:
dense granule, SD: salivary duct, N: Nucleus, R: Rhoptries. (Scale bars, 250 nm).
doi:10.1371/journal.ppat.1000262.g002

Plasmodium Rhomboid 1 and Malaria
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and Table S4). This result is consistent with the apparent lack of

ROM1 protein expression in midgut sporozoites (Figure 1B).

PbROM1(2) sporozoites infect the liver less efficiently
To investigate whether PbROM1 plays a role in liver infection,

we injected mice intravenously with an equal number of WT and

PbROM1(2) sporozoites. The efficiency of infection was dose

dependent and mice infected with PbROM1(2) parasites showed

a consistent delay in the pre-patent period by one day or more

compared to mice infected with wild-type sporozoites (Table 1).

Efficiency of infection was also assessed by quantifying parasite

loads in livers infected with equal numbers of mutant or wild-type

sporozoites. Livers of mice infected with the mutant sporozoite

had a 68% lower parasite load compared with mice infected with

wild-type sporozoites (Figure 4D). This suggests that PbROM1 is

required for efficient hepatocyte infection.

PbROM1 is not required for gliding motility
To determine if the defect observed in hepatocyte infection is

due to a defect in motility, we performed a sporozoite gliding

assay. PbROM1(2) sporozoites are motile as observed by

circumsporozoite protein trails on glass slides (Figure 5C).

PbTRAP, the parasite adhesin essential for gliding motility [41],

is proteolytically processed by a serine protease (Figure 5A

[42,43]). This processing appears to occur independent of

ROM1 (Figure 5B). This suggests that the reduction in parasite

numbers may not be due to impairment in motility but rather a

defect in invasion and/or a subsequent defect in development.

PbROM1 disruptant parasites are impaired in blood stage
infection

Parasitemia develops slower in animals infected with

PbROM1(2) parasites compared to WT infected animals

(Figure 6A and 6B). This phenotype is observed in animals

infected by injection of sporozoites (Figure 6A) as well as when

bypassing liver invasion by injecting infected RBCs (iRBCs)

(Figure 6B). This slow-growth phenotype is specific to PbROM1

disruptants as another rhomboid (ROM3) disruptant and an

oocyst capsule protein disruptant [44] have growth kinetics similar

to wild-type parasites (data not shown).

Figure 3. PbROM1 gene disruption. (A) Schematic representation of the targeting strategy. The wild-type PbROM1 genomic locus (WT) was
targeted with an NdeI-linearized plasmid (pROM1) containing the 59 and 39 truncations of the PbROM1 open reading frame and the TgDHFR positive
selection marker. Upon a single crossover event, the region of homology is duplicated, resulting in two truncated, nonexpressed PbROM1 copies in
the integrated locus [PbROM1(2)]. The homologous regions in the disruption plasmid are shaded gray. Arrowheads indicate primer pairs used to
confirm gene disruption. Hatched areas represent the region of the ORF that is outside the homologous region. (B) Integration-specific PCR analysis.
Genomic DNA was prepared from wild-type P. berghei and drug resistant parasite clones and PCR was performed using the primer pairs indicated in
panel A. The presence of the 1.2 kb integration-specific PCR product (P3/P2) but not the 1.7 kb WT locus-specific PCR product (P1/P2) in the
PbROM1(2) lanes confirm gene disruption. Note that WT lanes show the presence of the wild-type locus (P1/P2) as expected but not the integration
locus (P3/P2). (C) RT-PCR confirmation of PbROM1 disruption. Salivary gland sporozoites from PbROM1(2)-infected mosquitoes did not express
PbROM1, as expected. PbCS was used as a positive control and can be seen expressed in both WT and PbROM1(2) sporozoites.
doi:10.1371/journal.ppat.1000262.g003

Plasmodium Rhomboid 1 and Malaria
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PbROM1(2)-infected mice have greatly enhanced
lifespan

Mice infected with PbROM1(2) parasites survive better than

those infected with WT parasites (Figure 6C). Animals infected

with PbROM1(2) parasites reach peak parasitemia of .35%,

similar to WT parasites. At such high parasitemia, animals

infected with WT parasites succumb to the infection. On the other

hand, more than 80% of animals infected with PbROM1(2)

parasites survive and eventually clear the parasites from their

blood stream.

PbROM1(2) infection protects mice from challenge with
a lethal dose of wild-type parasites

Mice that had cleared PbROM1(2) parasites from their

bloodstream were challenged by intravenous injection of 105

WT iRBCs at least 30 d after the last circulating parasite was

detected. Peak parasitemia in 12/14 mice after WT challenge

ranged between 0.004%–2.6% (Figure 6D). Importantly, all the

animals were able to successfully clear the wild-type parasites

Figure 4. PbROM1 is required for efficient infection of mosquito midgut and mouse hepatocytes. (A) PbROM1 is not required for ookinete
formation. Individual midguts from mosquitoes fed either on WT- or ROM1(2)-infected mice were analyzed for ookinete numbers. ROM1(2) parasites
differentiated into ookinetes as efficiently as wild-type parasites (P.0.05, unpaired t test). (B) PbROM1(2) ookinetes are impaired in the ability to form
oocysts. In six out of seven experiments, mosquitoes fed on mice infected with ROM1(2) parasites formed significantly fewer oocysts compared to
four out of five experiments using mice infected with WT parasites. Experiments labeled ROM1(2)4, ROM1(2)5 and ROM1(2)6 were performed using
an independent clone. Oocysts were counted on day 15 after blood feeding (*: P,0.05, ANOVA, Tukey’s multiple comparison test). (C) PbROM1 is not
required for efficient invasion of mosquito salivary glands. Sporozoites were isolated from midguts and salivary glands of mosquitoes (day 25–26)
infected with WT and ROM1(2) parasites and counted on a hemocytometer. To estimate the efficiency of sporozoite infection of salivary glands, total
midgut sporozoites were normalized for prevalence (mosquito infectivity) and mean oocysts per mosquito (day 15) for each experiment (P .0.05,
unpaired t test). Bars show mean6SEM. (D) ROM1 is required for efficient infection of the mouse liver. The same number (1000) of WT or ROM1(2)
salivary gland sporozoites were injected intravenously into mice and the efficiency of liver infection was measured 36 h later by quantitative PCR of P.
berghei 18S rRNA normalized using mouse GAPDH (P,0.05, unpaired t test). Parasite load in livers of mice infected with mutant sporozoites was 68%
lower than in livers infected by wild-type sporozoites.
doi:10.1371/journal.ppat.1000262.g004

Table 1. Prepatent period of blood infection is longer for
mice infected with PbROM1(2) sporozoites

Parasite population Rate of infection Prepatent period

WT-150 7/8 5.1

WT-1000 7/7 4.8

WT-10000 3/3 3.3

ROM1(2)-150 0/8

ROM1(2)-1000 6/8 5.7

ROM1(2)-10000 6/6 4.8

Mice were injected intravenously with the indicated number of wild-type (WT)
or PbROM1(2) salivary gland sporozoites. Rate of infection is expressed as the
number of mice infected/total number of mice injected with sporozoites. Pre-
patent period is the number of days between sporozoite injection and the
appearance of blood stage parasites upon examination of at least 25,000 RBCs.
doi:10.1371/journal.ppat.1000262.t001

Plasmodium Rhomboid 1 and Malaria
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(Table 2). This protective immunity lasts for at least 7–9 months

after the initial PbROM1(2) parasite exposure (Table 2). It is

possible that the reduced RBC invasion efficiency of PbROM1(2)

merozoites may trigger this protective immune response.

Discussion

Invasion requires the specific recognition and attachment of

parasite surface ligands to host cell receptors and subsequent

processing of the bound ligands to facilitate detachment and entry

into the host cell. This can be achieved by proteolytic processing of

protein ectodomains [19] or in some cases by processing within the

protein’s transmembrane domain [18]. Plasmodium AMA1, EBL,

RBL and TRAP proteins function in host-cell interaction and all

have potential rhomboid cleavage sites within their predicted

transmembrane domains. Recent studies using an in vitro

mammalian cell-based assay indicate that Plasmodium ROM1 and

ROM4 are able to cleave AMA1, EBL, RBL and TRAP members

within their membrane-spanning domains [26,28]. This suggests

an important function for rhomboid proteins in invasion of host

cells. In the present study we undertook a genetic approach to

investigate the role of Plasmodium berghei rhomboid 1 (PbROM1)

during the parasite development in the mammalian host and the

mosquito vector.

Microarray analysis of P. falciparum genes identified PfROM1 as

being expressed in both the mosquito and the asexual forms of the

parasite [39]. Similarly, P. berghei ROM1 is also expressed in the

mosquito and in its mammalian host [29,40]. In agreement with

the mRNA expression data, we find PbROM1 protein to be

expressed in schizonts, in free merozoites and in sporozoites after

salivary gland invasion. Though PbROM1 transcripts can be

found in ookinetes (Figure S2), we could not detect the protein by

indirect immunofluorescence. This may be due to the low

abundance of the protein in this parasite form. The difference in

PbROM1 protein expression between midgut and salivary gland

sporozoites suggests post-transcriptional gene regulation. Incom-

pletely spliced PbROM1 transcripts can be found in mature

oocysts and sporozoites isolated from these oocysts (Figure S2).

Furthermore, the ROM1 mRNA may be translationally regulated.

Post-transcriptional regulation has been observed for a number of

genes, especially in the sexual stages and plays an important role in

Plasmodium development [29,45,46].

Our genetic analysis indicates that PbROM1 functions in both

the vertebrate and mosquito stages. This is based on the

observation that PbROM1(2) ookinetes form fewer oocysts,

sporozoites isolated from infected mosquitoes infect the mouse

liver less efficiently and the growth kinetics of the asexual forms is

significantly delayed. Hence the phenotype of PbROM1(2)

parasites points to ROM1 roles during cell invasion. However, a

role in intracellular development cannot be formally excluded. We

believe this to be less likely for several reasons. First, the mutant

parasites fully complete development after invasion of the

mosquito midgut epithelium, mouse liver and mouse RBCs.

Second, WT and ROM1(2) ookinetes (Table S1), sporozoites

(Table S2) and blood-stage merozoites (data not shown) develop

equally well. Third, the ROM1 protein localizes to merozoite and

sporozoite micronemes (an organelle that secrete proteins involved

in invasion), in addition to the sporozoite surface. Together, these

observations point to a role for ROM1 in host cell invasion.

Mice infected with PbROM1(2) parasites survive longer and

are able to clear the infection efficiently. Those that clear the

infection develop long-lasting immunity against a subsequent

lethal wild-type P. berghei challenge. The immunity developed by

PbROM1(2)-infected mice could be a result of slower infection,

which provides the animal with an opportunity to mount a better

immune response. Another interesting possibility is that parasite

proteins normally processed by PbROM1 during invasion

modulate the immune response. The absence or reduced levels

of these cleaved proteins would allow the animals to develop

immunity against the parasite. Interestingly, the Toxoplasma gondii

ROM1 orthologue has also been shown to be required for efficient

growth and invasion of host cells [47]. In addition to its role in

invasion, TgROM1 also appears to play a role in intracellular

replication as they form fewer parasites within the parasitophorous

Figure 5. PbTRAP is not a substrate for PbROM1. (A) PbTRAP is cleaved by a serine protease. Total cell lysate from 36104 salivary gland
sporozoites was loaded in each lane of a 4–25% denaturing SDS-PAGE. Western blot was performed using an anti-PbTRAP-repeat rabbit polyclonal
antibody. The TRAP fragment recognized by the anti-repeat antibody but not by antibody against the cytoplasmic tail is indicated with an asterisk.
Ctrl, control; E, empty lane. (B) PbTRAP processing in PbROM1(2) sporozoites. Experiments with 36104 sporozoites/lane were conducted as described
for experiments in panel A with wild-type (WT) and mutant parasites. (C) Gliding motility of PbROM1(2) sporozoites. PbROM1(2) salivary gland
sporozoites were placed in a 2-well chamber slide coated with BSA and incubated at 37uC for 30 min. After fixation with paraformaldehyde CSP trails
were detected with an anti-CSP antibody (3D11) and a rhodamine-conjugated anti-mouse secondary antibody. *, sporozoite at the leading end of the
trail.
doi:10.1371/journal.ppat.1000262.g005
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Figure 6. PbROM1(2) blood-stage parasites grow slower. Mice infected with the mutant parasite survive longer and become
protected from a WT parasite challenge. Swiss Webster mice were injected intravenously with 1,000 wild-type (WT) or PbROM1(2) salivary
gland sporozoites (Spz) (A) or intraperitonealy with 105 infected RBCs (iRBC) (independent clone (B)) and parasitemia was measured daily and
expressed as mean of two consecutive days. Three to four mice were used for each group and parasitemia is expressed as mean6SEM. The dotted
line represents the point beyond which parasitemia in WT and ROM1(2) differed significantly (P,0.05, repeated measures ANOVA). (C) Survival of
mice infected with either wild-type (WT) or PbROM1(2) sporozoites. Swiss Webster mice were injected intravenously with the indicated number of either
WT or PbROM1(2) sporozoites and animal survival was monitored daily. PbROM1(2) infected mice survive significantly longer than WT infected mice
(P,0.0001). Numbers in parenthesis indicate the number of mice assayed. (D) Mice that clear PbROM1(2) infection are protected from WT parasite
challenge. Mice (M) from three experiments (E) such as the ones described in panel A and B that had survived PbROM1(2) infection and cleared the
parasites were re-infected by either a) intravenous (i.v) injection of 104 wild-type sporozoites (E1), b) intra-peritoneal injection of 106 infected RBCs
(E2), or c) intra-venous injection of 106 infected RBCs (E3) at least 30 days after the clearance of the original PbROM1(2) infection. Seven out of 14
mice developed very mild parasitemia (0.004%–2.6%) that was subsequently completely cleared. These mice were also protected from a subsequent
2nd and a 3rd WT parasite challenge (Table 2).
doi:10.1371/journal.ppat.1000262.g006

Table 2. PbROM1(2) parasites generate protective immunity

Expt PbROM1(2) infection No. parasites 1st challenge (105) 2nd challenge (105) 3rd challenge (105)

Infected Protected Infected Protected Infected Protected

1 Sporozoite 104 3/4 (30d) 4/4 (30d) 4/4 (60d) 4/4 (60d) 4/4 (9m) 4/4 (9m)

2 iRBC (i.p) 106 1/3 (30d) 3/3 (30d) 3/3 (60d) 3/3 (60d) 3/3 (9m) 3/3 (9m)

3 iRBC (i.p) 106 3/7 (30d) 7/7 (30d) 5/7 (7m) 7/7 (7m)

Swiss Webster mice were infected with PbROM1(2) either by intravenous injection of sporozoites or intravenous or intraperitoneal (i.v or i.p) administration of iRBCs (cf.
Figure 5D). Animals that cleared PbROM1(2) infection (Figure 5D) were used for wild-type parasite challenges at least 30 days after the last observed parasite.
PbROM1(2) parasite clearance was confirmed by transfer of 36107 RBCs from all parasite-free animals to naı̈ve mice. None became infected. These mice were then
challenged intravenously with 105 wild-type P. berghei iRBCs and monitored for infection. All the animals were protected (1st challenge). These animals were also
protected from a second and third challenge. Numbers in parenthesis indicates the number of days (d) or months (m) after the last PbROM1(2) parasite was observed.
Infected, number of animals that had blood stage parasites; Protected, number of animals that cleared the blood-stage infection.
doi:10.1371/journal.ppat.1000262.t002
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vacuole [47]. However, PbROM1 does not appear to play a

significant role in the development neither of sporozoites within

oocysts (Table S4) nor of merozoites within schizonts (data not

shown). However, a role for PbROM1 in parasite replication in

the mouse liver cannot be excluded. The observed differences

between Plasmodium and Toxoplasma could represent a species-

specific difference of ROM1 function.

Even though PbROM1(2) parasites are defective in multiple

invasive stages, they do complete their life cycle successfully in both

the vertebrate and invertebrate hosts. It is possible that in

PbROM1(2) parasites, impairment of proteolytic processing only

delays parasite invasion. Alternatively or in addition, other rhomboid

proteins and/or proteases may take over the function of PbROM1,

albeit with lower efficiency. There is precedent for such redundant

function from in vitro data suggesting that some substrates are cleaved

well by either PfROM1 or PfROM4, while other substrates are

cleaved by both enzymes, albeit at different efficiencies [26]. A

number of candidate substrates for PbROM1 such as AMA1 have

been identified using mammalian cell-based assays [26]. However,

these would have to be validated by in vivo experiments and factors

such as spatial and temporal regulation of the protease and its

substrate(s) are also expected to play a role. Our results suggest that

PbTRAP, the parasite adhesin required for sporozoite motility, is

cleaved by a serine protease. The protease inhibitors used does not

necessarily inhibit only TRAP processing, but would be expected to

inhibit several other serine proteases. However, the assay specifically

measures only TRAP processing. TRAP is processed in the absence

of ROM1 suggesting that it might not be a substrate. Alternatively, as

discussed above, TRAP processing in ROM1(2) parasites could be

due to functional redundancy. Data from in vitro processing assays

suggest that this is unlikely because ROM4 but not ROM1 was able

to cleave TRAP [26].

In conclusion, this study points to distinct roles for Plasmodium

berghei ROM1 throughout parasite development. The lack of an

effective vaccine is attributed to the high degree of antigenic

variation [48] and the ability of the parasite to switch invasion

pathways [49–52]. On the other hand, a common phenomenon in

the different invasion pathways could be the need for processing

and release of the adhesins. For instance, processing of EBA175

within the membrane domain is essential for invasion [28]. As

suggested by our genetic analysis, targeting rhomboid proteins

offers an attractive new approach to the control of malaria.

Supporting Information

Figure S1 Conservation of catalytic residues between Plasmodium

and Drosophila ROM1. The essential Drosophila Asparagine-Serine-

Histidine catalytic triad (rhomboid motif), is conserved in

Plasmodium ROM1 (asterisk). Other surrounding amino acids

shown are also important for rhomboid protein function in

Drosophila. The catalytic residues are predicted to be present within

the transmembrane domains (shaded gray). P. berghei: Plasmodium

berghei; Py: Plasmodium yoelli; Pf: Plasmodium falciparum; Dm:

Drosophila melanogaster. The number of amino acids of each protein

is indicated to the right.

Found at: doi:10.1371/journal.ppat.1000262.s001 (0.03 MB PDF)

Figure S2 Gene structure of PbROM1. The top diagram shows

the canonical intron/exon structure of PbROM1 (exons in blue).

EST sequences available from Genbank and PlasmoDB for

gradient-purified ookinetes (yellow), sporozoites purified from

either infected midguts (orange) or salivary glands (red) and from

developing oocysts (brown) are shown below the PbROM1

structure. Genbank accession numbers are given alongside each

EST. Incompletely spliced forms can be observed in the

developing oocyst (day 10–12) and midgut sporozoites

(CB603492 and DC216124).

Found at: doi:10.1371/journal.ppat.1000262.s002 (0.06 MB PDF)

Table S1 PbROM1 is not required for ookinete formation

Found at: doi:10.1371/journal.ppat.1000262.s003 (0.03 MB PDF)

Table S2 PbROM1 is required for efficient infection of the

mosquito

Found at: doi:10.1371/journal.ppat.1000262.s004 (0.06 MB PDF)

Table S3 One way ANOVA test for assessing statistical

significance of differences in WT and ROM1(2) oocyst numbers

Found at: doi:10.1371/journal.ppat.1000262.s005 (0.05 MB PDF)

Table S4 PbROM1 is not required for sporozoite invasion of

mosquito salivary glands

Found at: doi:10.1371/journal.ppat.1000262.s006 (0.05 MB PDF)
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