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Abstract

At the site of microbial infections, the significant influx of immune effector cells and the necrosis of tissue by the invading
pathogen generate hypoxic microenvironments in which both the pathogen and host cells must survive. Currently, whether
hypoxia adaptation is an important virulence attribute of opportunistic pathogenic molds is unknown. Here we report the
characterization of a sterol-regulatory element binding protein, SrbA, in the opportunistic pathogenic mold, Aspergillus
fumigatus. Loss of SrbA results in a mutant strain of the fungus that is incapable of growth in a hypoxic environment and
consequently incapable of causing disease in two distinct murine models of invasive pulmonary aspergillosis (IPA).
Transcriptional profiling revealed 87 genes that are affected by loss of SrbA function. Annotation of these genes implicated
SrbA in maintaining sterol biosynthesis and hyphal morphology. Further examination of the SrbA null mutant consequently
revealed that SrbA plays a critical role in ergosterol biosynthesis, resistance to the azole class of antifungal drugs, and in
maintenance of cell polarity in A. fumigatus. Significantly, the SrbA null mutant was highly susceptible to fluconazole and
voriconazole. Thus, these findings present a new function of SREBP proteins in filamentous fungi, and demonstrate for the
first time that hypoxia adaptation is likely an important virulence attribute of pathogenic molds.
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Introduction

Aspergillus fumigatus is a normally benign saprophytic fungus that

may cause an often lethal invasive disease in immunocompromised

patients, invasive pulmonary aspergillosis (IPA) [1,2]. Interestingly,

while IPA can be caused by several Aspergillus species, the majority

of IPA cases are caused by A. fumigatus. This may suggest that A.

fumigatus contains unique attributes that allow it to cause disease

[3]. Yet, the mechanisms utilized by A. fumigatus to survive and

cause disease in immunocompromised hosts are not fully

understood [4]. During infection, A. fumigatus causes significant

damage to host tissue through invasive growth by hyphae and

subsequent recruitment of immune effector cells. Thus, infection

generates significant inflammation and necrosis in lung tissue that

can be visualized by histopathology. These pathologic lesions also

likely represent areas of poor oxygen availability to the pathogen

and host.

At sites of Aspergillus infection, direct measurements of oxygen

tension have not been recorded, however, it is well established that

sites of inflammation contain significantly low levels of oxygen

(hypoxia) [5–7]. Moreover, low oxygen tension has been observed

in many compartments of inflamed as well as normal tissues [5–7].

In inflamed tissues, the blood supply is often interrupted because

the vessels are congested with phagocytes [8,9]. Indeed, immune

effector cells such as neutrophils often function effectively in

severely hypoxic microenvironments and have evolved distinct

mechanisms to deal with the absence of oxygen that are dependent

upon the transcription factor hypoxia inducible factor (HIF) 1.

HIF1 is a heterodimeric transcription factor that consists of a

constitutively expressed HIF1b subunit and an oxygen-tension-

regulated HIF1a subunit. [10]. Increased HIF1a protein stability

and activity of the HIF1 complex, in turn, regulate the

transcription of many hypoxia-responsive genes, including those

encoding many glycolytic enzymes, erythropoietin, adrenomedul-

lin, and growth factors [11,12]. Genetic evidence of the

importance of hypoxic environments in the regulation of immune

responses was recently provided by a study of neutrophil-mediated

lung inflammation [13]. Thus, since immune cells of the host have

evolved mechanisms to function in hypoxia, it follows that invasive

fungal pathogens like A. fumigatus are likely subjected to hypoxia

during fungal pathogenesis.

While hypoxic adaptation has not been studied in the context of

A. fumigatus pathogenesis, circumstantial evidence suggests that

hypoxia plays a key role in the pathophysiology of IPA. For

example, it has been postulated that the low rate of Aspergillus

recovery from clinical specimens is due to adaptation by the

fungus to hypoxic microenvironments found at sites of infection
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[14,15]. Furthermore, there are often significant differences in the

in vivo and in vitro test results of antifungal drug efficacies. These

differences have been postulated to be linked to the occurrence of

hypoxia in vivo as demonstrated by recent in vitro antifungal drug

efficacy tests conducted in hypoxia [16,17]. Consequently, it seems

probable that pathogenic molds such as A. fumigatus must possess

mechanisms to adapt to hypoxic microenvironments found in vivo

during infection.

In fact, switching from aerobic respiration to various forms of

anaerobic respiration to deal with low oxygen levels has been

implicated as an important virulence attribute in several

prokaryotic pathogens [18,19]. However, in eukaryotic pathogens,

mechanisms of how these organisms respond and adapt to hypoxia

are largely unknown. Most of our knowledge on how fungi

respond to hypoxia comes from studies in the model yeast

Saccharomyces cerevisiae. Under aerobic conditions, heme biosynthesis

activates the transcriptional regulator Hap1p [20]. Hap1p induces

genes involved in respiration and oxidative stress-responses, but

also activates the transcriptional repressors Rox1p and Mot3p,

that down-regulate genes required for hypoxia adaptation [21].

However, in hypoxic conditions, Rox1p and Mot3p are expressed

and this leads to transcriptional induction of genes involved in

hypoxia adaptation [22]. Thus, hypoxic gene expression in yeast

requires transcription factors that utilize Rox1p-binding sequenc-

es, low oxygen-response elements (LORE), and other regulatory

elements within promoters [23,24]. Since S. cerevisiae is a facultative

anaerobe, it is not surprising that homologs of these key hypoxia

gene regulators have not been found in obligate aerobic

filamentous fungi such as A. fumigatus.

Recently, a novel mechanism of hypoxia adaptation mediated

by a highly conserved family of transcription factors, sterol

regulatory element-binding proteins (SREBPs), was characterized

in fission yeast, Schizosaccharomyces pombe [25]. SREBPs are a unique

family of membrane bound transcription factors first identified in

mammals as regulators of cholesterol and lipid metabolism [26–

30]. Hughes et al. [25] proposed a model in S. pombe where

SREBP (Sre1) and a sterol cleavage activating protein (SCAP,

Scp1) monitor-oxygen dependent sterol synthesis as an indirect

measure of oxygen supply. Importantly, Sre1 was found to be

required for adaptation to hypoxia and regulated approximately

68% of the genes transcriptionally induced greater than 2-fold in

response to anaerobic conditions [31].

Orthologs of Sre1 and Scp1 were recently identified and

characterized in the human fungal pathogenic yeast, Cryptococcus

neoformans [32,33]. As in fission yeast, the SREBP pathway

mediated by Sre1 and Scp1 in C. neoformans was crucial for

adaptation to hypoxia and sterol biosynthesis. Importantly, these

mutants also failed to proliferate in host tissue, failed to cause fatal

meningoencephalitis, and displayed hypersensitivity to the azole

class of antifungal drugs [32,33]. In the yeast S. cerevisiae and

Candida albicans, orthologs of SREBPs do not appear to exist.

However, two similar genes, Upc2 and Ecm22, appear to serve

similar functions as SREBPs. Conserved functions of these genes

include their involvement in the ability of yeast to grow in hypoxia

as well as regulation of sterol biosynthesis and resistance to

antifungal drugs [34–40]. Taken together, these observations

demonstrate an important link between sterol biosynthesis,

hypoxia adaptation, azole drug resistance, and the virulence of

pathogenic yeasts.

In this study, we report the identification and first character-

ization of a Sre1 homolog, SrbA, in an opportunistic pathogenic

mold, A. fumigatus. Our results suggest that while certain aspects of

SREBP function are conserved in yeast and filamentous fungi,

significant differences exist that are unique to molds. Thus, our

results further expand the spectrum of important functions

mediated by SREBPs in eukaryotes, emphasize the importance

of this pathway in human fungal pathogenesis, and suggest

possible clinical significance of SREBPs related to antifungal drug

efficacy.

Results

Identification of srbA in Aspergillus fumigatus
In order to determine if hypoxia adaptation is an important

virulence attribute of filamentous fungi, we first conducted

transcriptional profiling experiments using a long-oligo A. fumigatus

microarray (version 3.0) of wild type A. fumigatus grown under

hypoxic (1% O2) conditions compared to fungus grown under

normal conditions (,21% O2). Analysis of this data revealed ten

putative transcription factors that were transcriptionally induced

more than 2-fold in response to hypoxia and thus could possibly

act as a regulators of genes required for hypoxic adaptation in A.

fumigatus (Willger and Cramer, unpublished data). Further

bioinformatic analyses of these genes revealed that only one,

AFUA_2g01260 (induced 5.02 fold in response to hypoxia), had

similarity with a functionally characterized protein, Sre1 from S.

pombe [25]. Sre1 shares similarity with mammalian SREBP

proteins that regulate lipid and cholesterol homeostasis (reviewed

in [29,30]). In addition, a Sre1 homolog has also recently been

described in the human pathogenic yeast, C. neoformans as a

regulator of hypoxia adaptation and fungal virulence [32,33].

AFUA_2g01260 contains 988 amino acid residues, which

displayed low sequence percent identity with Sre1 from S. pombe

(,13%) and C. neoformans (,10%). However, like Sre1 in both

yeasts, the amino terminus (amino acids 1–425) of

AFUA_2g01260 contains a basic helix-loop-helix (bHLH) leucine

zipper DNA binding domain. In addition, AFUA_2g01260 is

predicted to contain at least one, and likely two, transmembrane

domains. The carboxyl terminus of AFUA_2g01260 is also

predicted to contain a conserved domain of unknown function

(DUF2014) that is found in other SREBP homologs. Consequent-

ly, these results suggest that AFUA_2g01260 is likely the SREBP

homolog in A. fumigatus, and we consequently named this gene srbA

Author Summary

The incidence of potentially lethal infections caused by
normally benign molds has increased tremendously over
the last two decades. One disease in particular, invasive
pulmonary aspergillosis (IPA), caused by the common
mold Aspergillus fumigatus, has become the leading cause
of death due to invasive mycoses. Currently, we have a
limited understanding of how this opportunistic pathogen
causes disease in immunocompromised patients. In this
study, we discover a previously unexplored mechanism
required by this mold to cause disease, hypoxia (low
oxygen) adaptation. We report that hypoxia adaptation in
A. fumigatus is mediated in part by a highly conserved
transcription factor, SrbA, a protein in the sterol regulatory
element binding protein family. A null mutant of SrbA was
unable to grow in hypoxia, displayed increased suscepti-
bility to the azole class of antifungal drugs, and was
avirulent in two distinct murine models of IPA. Importantly,
we report the discovery of a novel function of SrbA in
molds related to maintenance of cell polarity. The finding
that SrbA regulates resistance to the azole class of
antifungal drugs presents an opportunity to uncover
new mechanisms of antifungal drug resistance in A.
fumigatus.

Characterization of a SREBP in A. fumigatus
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(sreA is already in use in A. nidulans for an unrelated gene).

Additional BLAST analyses revealed that SrbA is highly conserved

amongst the filamentous fungi with putative orthologs found in

plant pathogens such as Magnaporthe grisea and Alternaria brassicicola

and saprophytic molds such as Neurospora crassa and Aspergillus

nidulans.

SrbA is required for hypoxia adaptation in Aspergillus
fumigatus

To determine whether SrbA is involved in hypoxia adaptation

and fungal virulence in filamentous fungi, we generated a null

mutant of the gene encoding SrbA by replacement of the srbA

coding sequence in A. fumigatus strain CEA17 with the auxotrophic

marker pyrG from A. parasiticus as previously described [41,42]

(Figure 1). The resulting DsrbA strain was named SDW1. Ectopic

re-introduction of the wild type srbA allele into SDW1 (resulting in

strain SDW2) allowed us to attribute all resulting phenotypes

specifically to the absence of srbA in SDW1. All strains were

rigorously confirmed with Southern blot (Figure 1) and PCR

analyses (data not shown). The re-introduced srbA allele in SDW2

displayed similar mRNA abundance in response to hypoxia as the

srbA allele in the wild type strain (data not shown). SDW1 and

SDW2 both displayed normal hyphal growth rates compared to

the wild type strain CEA10 in normoxic conditions on glucose

minimal medium (GMM) (Figure 2A) (P.0.01). However, no

hyphal growth of SDW1 was observed in hypoxic (1% O2, 5%

CO2, 94% N2) conditions whereas wild type strain CEA10 and

reconstituted strain SDW2 grew at a normal rate with visual

phenotypic differences in colony color and conidiation compared

to growth in normoxia (Figure 2A and 2B). In hypoxia, the wild

type strains displayed increased aerial hyphae, decreased conidia

production, and consequently exhibited a fluffy colony morphol-

ogy (Figure 2B). After 96 hours of incubation in hypoxia, SDW1

continued to display undetectable growth. However, upon transfer

back to normoxic conditions, wild type growth rate was restored

(data not shown). Addition of exogenous ergosterol or lanosterol

did not rescue the SDW1 growth defect or alter wild type growth

morphology in hypoxia (data not shown). These results indicate

that A. fumigatus can rapidly adapt to hypoxic microenvironments,

and that SrbA in A. fumigatus is involved in mediating this response

by an undefined mechanism.

Transcriptional profiling of SDW1 in response to hypoxia
Given the dramatic phenotype observed in strain SDW1 in

hypoxia and the sequence annotation that SrbA likely functions as

a transcription factor, we next sought to determine which genes

are regulated by SrbA under hypoxic conditions. Microarray

experiments comparing the transcriptional profiles of wild type

strain CEA10 and SDW1 exposed to hypoxia for 24 hours

revealed 87 significant genes possibly regulated by SrbA (Table 1).

Several genes previously shown to be involved in ergosterol

biosynthesis in fungi were found to be transcriptionally repressed

in the absence of SrbA including ERG25, ERG24, and ERG3

(Table 1). Interestingly, besides srbA itself, the gene with the highest

fold difference in expression in SDW1 is a non-ribosomal peptide

synthetase, AFUA_1g10380 (NRPS1 or pes1) [43,44]. In addition,

a significant number of genes involved in cell wall biosynthesis or

homeostasis were observed to be repressed in SDW1 compared to

wild type. These included genes known to be involved in cell wall

biosynthesis such as alpha-galactosidase, alpha-glucosidase B, and

genes involved in cell wall homeostasis such as chitinase. However,

no obvious defects in cell wall biosynthesis were observed in the

Figure 1. Generation and confirmation of a SrbA null mutant in Aspergillus fumigatus. (A) Schematic of wild type (CEA10) and SDW1 (SrbA
null mutant) genomic loci. (B) Southern blot analysis of wild type, SDW1, and SDW2 strains. Genomic DNA from the respective strains was isolated
and digested overnight with NcoI. An approximate 1 kb genomic region of the SrbA locus was utilized as a probe. The expected hybridization
patterns and sizes were observed for the wild type CEA10 (5721 bp) and SrbA mutant (SDW1) (3622 bp) strains. In addition, confirmation of ectopic
reconstitution of the SrbA null mutant was confirmed by the presence of the wild type srbA locus hybridization signal and persistence of the SrbA null
mutant locus (strain SDW2).
doi:10.1371/journal.ppat.1000200.g001

Characterization of a SREBP in A. fumigatus
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Figure 2. SrbA is required for hyphal growth under hypoxic conditions. 16106 conidia of CEA10, SDW1 = DsrbA, SDW2 = DsrbA+srbA were
plated on GMM plates and incubated at 37uC under normoxic and hypoxic conditions. (A) The diameter of the colony was measured over 96 h every
24 h. Under normoxic conditions no significant difference in growth speed and colony size or morphology could be observed (P.0.01). (B) Under
hypoxic conditions the wild type CEA10 and the reconstituted strain SDW2 showed comparable growth (P.0.01) but the mutant strain SDW1 did not
demonstrate any detectable growth. Error bars represent standard error from the triplicate experiments.
doi:10.1371/journal.ppat.1000200.g002
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mutant strain, and thus the transcriptional profiling results are

likely indirect effects of the altered cell polarity of the mutant

(discussed below). Genes encoding several transporters were also

found to be regulated by SrbA. Overall, these results suggest some

similarities, such as with regard to ergosterol biosynthesis, with

Table 1. Genes with higher expression in wild type than in
the srbA null mutant in hypoxia.

TRANSPORTERS

AFUA_4g01560 MFS myo-inositol transporter, putative 15.77

AFUA_1g10390 ABC multidrug transporter, putative 15.64

AFUA_3g01670 MFS hexose transporter, putative 14.12

AFUA_2g09450 carboxylic acid transport protein 12.18

AFUA_3g14170 high-affinity hexose transporter 11.31

AFUA_5g06720 MFS sugar transporter, putative 11.04

AFUA_7g06120 transmembrane transporter, putative 10.80

AFUA_3g12720 sugar transporter-like protein 9.08

AFUA_1g13350 transporter, putative 7.65

TRANSCRIPTION REGULATION

AFUA_2g01260 HLH transcription factor, putative (srbA) 38.59

AFUA_3g12910 MmcR, putative 10.49

AFUA_8g00200 CalO6, putative 8.05

AFUA_2g07900 APSES transcription factor (StuA), putative 7.79

AFUA_1g16590 C2H2 transcription factor (BrlA), putative 7.14

AFUA_8g05460 bZIP transcription factor, putative 6.09

STEROL BIOSYNTHESIS

AFUA_8g02440 c-4 methyl sterol oxidase (ERG25) 15.79

AFUA_2g00320 sterol delta 5,6-desaturase (ERG3) 13.57

AFUA_1g03150 c-14 sterol reductase (ERG24) 11.98

OXIDATIVE STRESS RESPONSE

AFUA_1g10380 nonribosomal peptide synthase (NRPS), putative 23.36

AFUA_7g05070 FAD dependent oxidoreductase, putative 13.68

AFUA_5g08830 HEX1 10.66

AFUA_4g08710 short chain dehydrogenase, putative 9.82

AFUA_3g02270 mycelial catalase Cat1 9.15

AFUA_4g14530 theta class glutathione S-transferase 8.45

AFUA_3g01580 GMC oxidoreductase 6.56

AFUA_1g03250 oxidoreductase, short chain dehydrogenase/
reductase family, putative

6.25

CELL WALL RELATED

AFUA_3g08110 cell wall protein, putative 21.29

AFUA_5g14740 fucose-specific lectin 15.00

AFUA_6g00430 IgE-binding protein 12.65

AFUA_5g00840 integral membrane protein 12.21

AFUA_5g03760 class III chitinase ChiA1 7.68

AFUA_4g09600 GPI anchored protein, putative 6.32

AFUA_2g05340 1,3-beta-glucanosyltransferase, putative 6.29

AFUA_1g05790 GPI anchored protein, putative 6.20

AFUA_5g07190 beta-glucosidase 6.04

SECONDARY METABOLISM

AFUA_8g01220 arthrofactin synthetase B 8.38

AFUA_2g17600 polyketide synthetase PksP 6.40

OTHER METABOLIC PROCESSES

AFUA_3g00810 cholestenol delta-isomerase, putative 18.48

AFUA_7g04930 alkaline serine protease (PR1), putative 13.09

AFUA_5g02130 alpha-galactosidase 12.92

AFUA_8g00190 cytochrome P450, putative 11.40

AFUA_1g16250 alpha-glucosidase B 9.95

AFUA_3g12960 cytochrome P450, putative 8.97

AFUA_3g07030 glutaminase A 8.24

AFUA_8g00620 dimethylallyl tryptophan synthase, putative 7.65

AFUA_4g09980 cytochrome P450 monooxygenase, putative 7.15

OTHER AND UNKNOWN GENES

AFUA_6g03680 hypothetical protein 13.55

AFUA_3g07870 conserved hypothetical protein 13.23

AFUA_8g04380 conserved hypothetical protein 12.96

AFUA_8g00710 antimicrobial peptide, putative 12.92

AFUA_3g13110 hypothetical protein 12.88

AFUA_7g01930 ESDC 12.14

AFUA_4g08400 hypothetical protein 11.16

AFUA_6g01870 hypothetical protein 10.71

AFUA_4g14060 conserved hypothetical protein 10.60

AFUA_6g12180 conserved hypothetical protein 10.20

AFUA_6g13980 prenyltransferase, putative 10.04

AFUA_2g00500 conserved hypothetical protein 9.61

AFUA_8g04310 conserved hypothetical protein 9.26

AFUA_1g02290 conserved hypothetical protein 9.13

AFUA_7g05450 SUN domain protein (Uth1), putative 9.02

AFUA_2g15200 conserved hypothetical protein 8.86

AFUA_7g04870 hypothetical protein 8.71

AFUA_5g00700 hypothetical protein 8.69

AFUA_3g07730 hypothetical protein 8.65

AFUA_4g12700 hypothetical protein 8.60

AFUA_5g14920 hypothetical protein 8.59

AFUA_3g07340 hypothetical protein 8.53

AFUA_7g04120 DUF636 domain protein 8.23

AFUA_1g14340 metalloreductase, putative 8.01

AFUA_3g08210 hypothetical protein 7.95

AFUA_5g14680 hypothetical protein 7.80

AFUA_6g11890 dynamin GTPase, putative 7.72

AFUA_2g09030 secreted dipeptidyl peptidase 7.70

AFUA_4g13630 hypothetical protein 7.51

AFUA_2g09680 PB1 domain protein, putative 7.09

AFUA_7g04740 hypothetical protein 6.84

AFUA_3g12230 hypothetical protein 6.81

AFUA_5g02330 major allergen Asp F1 6.81

AFUA_6g14340 related to berberine bridge enzyme (imported) 6.64

AFUA_2g17550 yellowish-green 1 6.56

AFUA_8g04620 hypothetical protein 6.37

AFUA_4g14040 Hsp70 family protein 6.30

AFUA_5g14410 cysteine dioxygenase 6.30

AFUA_2g08820 hypothetical protein 6.24

AFUA_1g13610 SH3 domain protein 5.97

AFUA_4g14050 hypothetical protein 5.73

doi:10.1371/journal.ppat.1000200.t001

Table 1. Cont.

Characterization of a SREBP in A. fumigatus

PLoS Pathogens | www.plospathogens.org 5 November 2008 | Volume 4 | Issue 11 | e1000200



genes regulated by SREBPs in S. pombe and C. neoformans. However,

the overall set of genes putatively regulated by SrbA in A. fumigatus

is significantly different from data obtained from Sre1 mutants in

the yeast S. pombe and C. neoformans. Consequently, these results

strongly suggest that SrbA plays a distinct role in filamentous

fungal biology. These results subsequently directed experiments to

further characterize the role of SrbA in A. fumigatus biology.

SrbA mediates resistance to the azole class of antifungal
drugs

Given the number of ergosterol biosynthesis genes apparently

regulated by SrbA, we next asked the question whether SrbA

mediated resistance to the azole class of antifungal drugs that

target ergosterol biosynthesis. In a screen for susceptibility to

antifungal drugs using E-Test strips (AB Biodisk, kindly provided

by Dr. Theodore White, Seattle Biomedical Research Institute) we

found that SrbA is required for resistance to Fluconazole and

Voriconazole, but not Amphotericin B or Caspofungin. All 3

strains showed equivalent minimal inhibitory concentrations

(MIC) to Amphotericin B (0.25 mg/ml) and Caspofungin

(0.125 mg/ml). The lack of effect of Caspofungin provides support

for our hypothesis that the mutant is likely not directly affected in

cell wall biosynthesis as possibly suggested by the transcriptional

profiling data. However, while CEA10 and SDW2 showed

resistance to Fluconazole as expected, SDW1 growth was inhibited

at the surprisingly low MIC of 1 mg/ml (Figure 3). On the plates

with Voriconazole we could observe that CEA10 and SDW2 were

susceptible as expected (MIC of 0.125 mg/ml respectively). Similar

to the results with Fluconazole, SDW1 was significantly more

susceptible to Voriconazole and showed a MIC of only 0.012 mg/

ml (Figure 3). These clinically significant results suggest that SrbA

mediates resistance to the azole class of antifungal drugs by an

undefined mechanism.

SrbA is required for cell polarity and hyphal
morphogenesis

Visual inspection of SDW1 colony morphology in standard

laboratory conditions did not reveal any apparent morphological

phenotypes (Figure 2B). However, our transcriptional profiling

experiments suggested possible alterations in cell wall biosynthesis,

a critical component of hyphal morphology and growth, in the

absence of SrbA. Consequently, we performed a more in depth

analysis of SDW1 morphology. First, we utilized light microscopy

to examine the growing edges of SDW1 colonies in normoxia. We

observed a significant defect in hyphal tip branching in SDW1 that

is not apparent in strains CEA10 and SDW2 (Figure 4). SDW1

hyphal tips display hyper-branching and a ‘‘blunted’’ abnormal

morphological phenotype (Figure 4). This phenotype suggests that

SrbA is involved in maintaining cell polarity that directs hyphal

growth. Interestingly, this phenotype does not appear to alter the

growth rate of the colony, which was comparable to the wild type

under normoxic conditions (Figure 2A). Next, we utilized

transmission electron microscopy (TEM) to further examine the

cell wall and morphology of conidia and hyphae of SDW1.

Confirming our suspicions that the mutant was not directly

affected in cell wall biosynthesis we observed no clear cell wall

Figure 3. SrbA mediates resistance to Fluconazole (FL) and Voriconazole (VO) in Aspergillus fumigatus. A clear ellipse indicates the
susceptibility to the respective drug. As expected, Fluconazole has no effect on CEA10 and SDW2, but in the absence of SrbA, SDW1 is highly
susceptible to Fluconazole (MIC = 1.0 mg/ml). CEA10 and SDW2 are susceptible to Voriconazole (MIC for both = 0.125 mg/ml); however, SDW1 also
displays increased susceptibility (MIC = 0.012 mg/ml) to this important antifungal agent. The numbers on the scale correspond to the Fluconazole and
Voriconazole concentrations on the E-test strip (in micrograms per milliliter).
doi:10.1371/journal.ppat.1000200.g003

Characterization of a SREBP in A. fumigatus

PLoS Pathogens | www.plospathogens.org 6 November 2008 | Volume 4 | Issue 11 | e1000200



defects. However, a general thickening of the intracellular space

between the cell wall and plasma membrane is observed in SDW1

conidia and hyphae compared with the wild type (Figure 5A and

5B and 5D and 5E). A striking phenotype was consequently

observed in conidia from SDW1 that suggested a significant defect

in the cell wall-plasma membrane interface occurs in the absence

of SrbA (Figure 5A and 5B). This defect is apparently exacerbated

by the electron beam, which causes a separation between the cell

wall and plasma membrane in SDW1 conidia (Figure 5C). This

phenotype was observed in over 80% of the SDW1 conidia

examined. However, the size and density of the mutant conidia

were comparable to the wild type strain as measured by flow

cytometry (data not shown). Since a defect in the cell wall plasma

membrane interface was suggested, we examined viability of the

SDW1 conidia by monitoring germination. These experiments

revealed that viability, as measured by conidia germination, was

not significantly different between the wild type, SDW1 and

SDW2 strains (Figure 6) (P.0.01). Similar cell wall-plasma

membrane defects were observed in the SDW1 hyphae compared

with the wild type hyphae (Figure 5D and 5E). Importantly, an

accumulation of electron dense objects was observed in the SDW1

hyphae. We hypothesize that these objects may be vesicles of the

Spitzenkörper, and their abnormal location in the SDW1 hyphae

may cause the observed altered cell polarity (Figure 5E and 5H).

This phenotype was observed in over 50% of the SDW1 hyphae

examined and never observed in the wild type strain. These results

suggest that SrbA is critical for maintaining the cell wall – plasma

membrane interface, and that SrbA is critical for normal hyphal

branching and cell polarity in filamentous fungi by an undefined

mechanism.

SrbA is required for normal sterol biosynthesis
Transcriptional profiling of SDW1 under hypoxia suggested

that SrbA was involved in both early and late steps of the sterol

Figure 4. Hyphal morphology and growth of wild type strain
CEA10 and SrbA null mutant SDW1. Strains were grown overnight
on slides coated with GMM. Brightfield microscopy pictures of wild type
CEA10 and SDW1 at 200-fold and 400-fold magnification. SDW1 showed
abnormal hyphal formation and apparent cell polarity defect with
multiple branches and unusual thick structures at the apical tips of the
hyphae. Bars = 100 mm.
doi:10.1371/journal.ppat.1000200.g004

Figure 5. Abnormal cell wall-plasma membrane interface and
hyphal morphology is evident in the absence of SrbA. (A–C)
Transmission electron micrographs showing sections of conidia of wild
type CEA10 (A) and SDW1 (B,C). Compared with the round wild type
conidia having clear boundaries between plasma membrane and cell
wall layers, most of the SDW1 conidia were distorted in shape and
possessed faint, somewhat shriveled boundaries. Note that frequent
‘‘tearing’’ took place mainly at the cell wall – plasma membrane
interface during microscopic examination of the SDW1 conidia (arrows).
This phenotype was observed in over 80% of SDW1 conidia examined.
Inset panels depict a 36magnified view of the conidial cell wall region.
Bars = 500 nm. (D–H). Transmission electron micrographs showing
longitudinal and transverse hyphal sections of wild type CEA10 (D,F)
and SDW1 (E,G,H). Close observation of the hyphal tips show
phenotypic differences between wild type and SDW1. Abnormal cell
wall – plasma membrane interfaces and apical swellings in SDW1
hyphae were frequently observed, while the wild type showed normal
round-shaped apexes. With respect to cell wall morphology around the
hyphal apex, SDW1 had an abnormally expanded cell wall (arrows)
containing numerous electron dense objects (arrowheads), which likely
resulted in hyphal tip bending (H). Inset panels depict a magnified view
of the boxed region. Bars = 1 mm, except for the inset panels of E and H
where they denote 500 nm.
doi:10.1371/journal.ppat.1000200.g005
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biosynthesis pathway. In addition, the abnormal conidial and

hyphal morphology observed via light microscopy and TEM

micrographs in SDW1 also suggested possible alterations in sterol

content in the absence of SrbA. Thus, we examined the sterol

profile of the SrbA null mutant SDW1 by GC-MS and compared

it with the wild type strain CEA10. The GC-MS profiles

demonstrated a significant accumulation of 4-methyl sterols in

the SrbA null mutant, SDW1, that was not observed in the wild

type strain CEA10 (Figure 7). Interestingly, both strains possessed

significant amounts of ergosterol (Figure 7). The ratio of C-4

methylated sterols to ergosterol in the absence of SrbA is 1.94

whereas no C-4 methylated sterols accumulated in the wild type.

Specifically, the accumulation of 4-methylfecosterol and 4,4-

dimethylergosta-8,24(28)-dien-3b-ol in the absence of SrbA

suggests a blockage at ERG25 in the sterol biosynthesis pathway

in SDW1. These alterations are supported by the transcriptional

profiling data, which suggests transcriptional regulation of ERG25

by SrbA in A. fumigatus (Table 1). Consequently, these results

suggest a blockage of C4 demethylation in the absence of SrbA in

A. fumigatus. In addition, these results suggest that ergosterol can

still be synthesized in the absence of SrbA in A. fumigatus.

SrbA is required for fungal virulence in two distinct
murine models

Next, we sought to determine whether SrbA was required for A.

fumigatus virulence. To answer this important question, we utilized

two distinct murine models of IPA. In the first model, outbred

CD1 neutropenic mice infected with SDW1 displayed no

symptoms associated with IPA (Figure 8A). This was in contrast

to mice infected with the wild type CEA10 and reconstituted strain

SDW2 that displayed well described symptoms of A. fumigatus

infection including hunched posture, ruffled fur, weight loss, and

increased respiration. Consequently, a significant difference in

mortality was observed between the mice infected with SDW1 and

mice infected with either SDW2 or CEA1O (P = 0.0002). Indeed,

in this murine model, the SDW1 strain was completely avirulent

(Figure 8A). We next asked the question whether mice infected

with SDW1 were able to clear the infection. After 28 days, SDW1

Figure 6. Conidia germination is not affected by loss of SrbA. Germination media was inoculated with approximately 106 conidia/ml of the A.
fumigatus strains CEA10, SDW1, and SDW2. After 7 hours the germination rate was determined by counting a total of 100 spores and noting the
number of germinated spores. Three replicates were performed. No significant difference in germination was observed between CEA10, SDW1, and
SDW2 (P.0.01).
doi:10.1371/journal.ppat.1000200.g006

Figure 7. C4-demethylation is altered in the absence of SrbA.
Representative GC-MS chromatograms of sterol extracts from wild type
(A) and SDW1 (B). Key: A- ergosta-5,8,22-trien-3b-ol, B- ergosterol, C-
ergosta-5,7,22,24(28)-tetraen-3b-ol, D- ergosta-5,7,24(28)-trien-3b-ol, E-
24-ethylcholesta-5,7,22-trien-3b-ol, F- 4-methylfecosterol, G- 4methyler-
gosta-5,8,24(28)-trien-3b-ol, H- 4,4-demethylergosta-8,24(28)-dien-3b-ol.
An accumulation of 4-methyl sterols is observed in the absence of SrbA,
suggesting a blockage in enzymes involved in sterol C-4 demethylation.
The ratio of C-4 methylated sterols to ergosterol in the absence of SrbA
was 1.94 whereas no C-4 methylated sterols accumulated in the wild
type.
doi:10.1371/journal.ppat.1000200.g007
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infected mice displayed no visible or microscopic signs of infection.

In particular, at days 14, 21, and 28 lung homogenates were taken

from SDW1 infected mice and with the exception of one mouse,

no fungal colonies were recoverable indicating that the mice had

cleared the infection. Histopathological analyses of mice on days

14, 21 and 28 in this neutropenic model also confirmed the lack of

fungal persistence and inflammation in mice infected with SDW1

(Figure 9).

Next, we examined the virulence of SDW1 in a murine model

of X-linked chronic granulomatous disease (X-CGD) utilizing

gp91phox2/2 mice. These mice are deficient in NADPH oxidase

activity and display hyper-susceptibility to Aspergillus species

without the need for immunosuppression with chemotherapeautic

agents [45,46]. Similar to the neutropenic mouse model, X-CGD

mice infected with strain SDW1 had significant differences in

survival compared with mice infected with wild type and

Figure 8. Role of SrbA in Aspergillus fumigatus virulence. (A) Outbred CD-1 mice (n = 12) were immunosuppressed by i.p. injection of
cyclophosphamide (150 mg/kg) 2 days prior to infection and s.c. injection of Kenalog (40 mg/kg) 1 day prior to infection and injection of 150 mg/kg
cyclophosphamide 3 days post-inoculation and 40 mg/kg Kenalog 6 days post-inoculation. Mice were inoculated intranasally with 106 conidia in a
volume of 40 ml of wild type CEA10, DsrbA mutant strain SDW1 and the srbA reconstituted strain SDW2. P value for comparison between SDW1 and
wild type CEA10, P = 0.0002. (B) gp91phox2/2 mice (n = 6) were challenged intratracheally with 106 conidia in a volume of 40 ml of wild type CEA10,
DsrbA mutant strain SDW1 and the srbA reconstituted strain SDW2. A log rank test was used for pair wise comparisons of survival levels among the
strain groups. P value for comparison between SDW1 and wild type CEA10, P = 0.0054. SDW1 is significantly less virulent than the wild type CEA10
and the reconstituted strain SDW2 in both murine models. All animal experiments were repeated in duplicate with similar results.
doi:10.1371/journal.ppat.1000200.g008
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reconstituted strains (Figure 8B) (P = 0.005). Unlike the neutrope-

nic mouse model, these mice all displayed symptoms of IPA during

the preliminary stages of infection. These symptoms, likely due to

the large inflammatory response characteristic of these mice when

exposed to fungal antigens, included ruffled fur, hunched posture,

and lethargic movement as early as 24 hours post-infection.

However, only one mouse infected with SDW1 succumbed to the

infection. In a repeat experiment, 3 additional X-CGD mice

infected with SDW1 also succumbed on day 4 to the infection.

Most likely, this was due to the hyper-inflammatory response that

occurs in X-CGD mice and not death due to invasive fungal

growth. Regardless, the majority of X-CGD mice infected with

SDW1 survived the infection and displayed no symptoms of IPA

by day 14. Histopathological analyses of these mice displayed

standard pathological findings associated with Aspergillus infections

in X-CGD mice including the development of granulomatous like

lesions, massive influx of inflammatory cells (primarily neutrophils)

to sites of infection, subsequent peribronchiolar and alveolar

inflammation, and substantial fungal growth in silver stained tissue

(Figures 10 and 11). On day 1 of the infection, fungal germination

and growth is observed in mice infected respectively with all 3

strains of the fungus. This observation confirms the viability of

SDW1 conidia in vivo (Figure 10). Semi-quantitative assessment of

the percent of the lung affected by the infection, measured by

inflammation and necrosis, of mice infected with the 3 strains

respectively revealed no difference at this early time point

(CEA10 = 1.360.5, SDW1 = 1.360.5, SDW2 = 160.0). Histopa-

thology on day 4 of the infection, however, revealed extensive

growth and proliferation of the wild type and reconstituted SDW2

strain, but minimal fungal growth and proliferation in mice

infected with the SrbA null mutant SDW1 (Figure 11). Semi-

quantitative assessment of the inflammation and necrosis observed

in the lungs of mice infected with the 3 strains respectively at this

time point revealed significant differences in the percent of the

lung affected by the infection (CEA10 = 3.360.5,

SDW1 = 2.360.5, SDW2 = 3.860.5). Lung homogenates from

these mice also revealed that viable SDW1 fungus was recoverable

from these mice at this time point. This data is consistent with the

observed in vitro phenotype of the SDW1 strain in hypoxia.

Histopathological analysis of SDW1 infected survivors in this

model revealed persistence of granuloma like structures and fungal

tissue (Figure 12). Lung homogenates from these animals revealed

that the observed fungal tissue was still viable. These results

indicate that despite normal growth rates in vitro in normoxic

conditions, the SDW1 strain is severely attenuated in its ability to

cause lethal disease in two distinct murine models of IPA.

Figure 9. Representative histopathology of CD-1 mouse model
SDW1 infected survivors. Hematoxylin and eosin (H&E) or Gom-
mori’s methenamine silver (GMS) stains at 100-fold magnification. No
sign of inflammation or fungal burden was observed in any surviving
animal on day +14, +21 and +28 of the infection. This result indicates
that in this murine model, the immune system is capable of clearing the
fungal infection in the absence of SrbA. Bar = 100 mm.
doi:10.1371/journal.ppat.1000200.g009

Figure 10. Histopathology of X-CGD mouse model 24 hours
after infection. Mock = 0.01% Tween inoculated, WT = CEA10,
SDW1 = DsrbA, SDW2 = DsrbA+srbA. Mice were inoculated with 16106

conidia intratracheally, euthanized on day +1 after inoculation, lungs
removed, fixed in formaldehyde, and stained with hematoxylin and
eosin (H&E) or Gommori’s methenamine silver (GMS) stain. On day 1 no
difference in size and state of lesions could be observed in the infected
mice. GMS staining revealed that fungal colonization and germination is
observed in all infected animals but not the mock control. This result
indicates that SDW1 conidia are viable in vivo during the early stages of
infection. Bar = 100 mm.
doi:10.1371/journal.ppat.1000200.g010
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SrbA is not required for oxidative stress resistance and
resistance to macrophage killing

One possible mechanism that could explain the virulence defect of

strain SDW1 is an increased susceptibility to oxidative stress as

suggested by transcriptional profiling and altered conidia morphol-

ogy. We examined the growth of CEA10, SDW1, and SDW2 in the

presence of 1 mM and 2.5 mM hydrogen peroxide on glucose

minimal media. After 48 hours, we observed no detectable

difference in growth morphology or colony diameter. In addition,

we next examined the ability of RAW264.7 macrophage-like cells to

kill SDW1 conidia (Figure 13). As presented in figure 13, no

significant difference in conidia killing was observed between

CEA10, SDW1, and SDW2 (P.0.01). We conclude that increased

susceptibility to oxidative stress and macrophage killing is not

responsible for the virulence defect observed in the absence of SrbA.

Discussion

In this manuscript we present the first characterization of a

SREBP in a filamentous fungus. In the yeasts S. pombe and C.

neoformans, SREBP homologs are crucial for sterol biosynthesis,

survival under hypoxic conditions, resistance to azole antifungal

agents, and fungal virulence [25,32,33]. Our results confirm that

some roles of SREBPs in filamentous fungi are conserved with

yeast including, the response to hypoxia, sterol biosynthesis, and

susceptibility to the azole class of antifungal drugs. However, our

results suggest additional functions of SREBPs in filamentous

fungi, most importantly a role in maintenance of cell polarity.

Similarities and differences between SrbA in A. fumigatus and

Sre1 in the yeast S. pombe and C. neoformans were apparent from

transcriptional profiles comparing the SREBP null mutants to

their respective wild type strains in response to hypoxia. Unlike C.

neoformans, we did not observe SrbA dependent genes involved in

iron or copper uptake in A. fumigatus [32]. This may, however, be a

reflection of the experimental conditions that did not place iron

stress on the fungus in these experiments. Similar to C. neoformans

and S. pombe, we observed SrbA dependent genes involved in

ergosterol biosynthesis including ERG25, ERG24, and ERG3

[31–33]. This result suggests that regulation of ergosterol

Figure 11. Histopathology of X-CGD mouse model day 4 after infection. Mock = 0.01% Tween inoculated, WT = CEA10, SDW1 = DsrbA,
SDW2 = DsrbA+srbA. Mice were inoculated with 16106 conidia intratracheally, euthanized on day +4 after inoculation, lungs removed, fixed in
formaldehyde, and stained with hematoxylin and eosin (H&E) or Gommori’s methenamine silver (GMS) stain. Significant inflammation, necrosis, and
an influx of immune effector cells (primarily neutrophils) is observed on day +4 in all infected animals but not the mock control. However, lesions are
more localized and not as extensive in mice infected with SDW1. Open alveoli and more localized inflammation are clearly observed in mice infected
with SDW1. Interestingly, GMS staining revealed that fungal growth is less extensive in SDW1 as well. This result indicates that as the infection
progresses, SDW1 is incapable of continued hyphal growth despite the absence of NADPH oxidase in this murine model. Bar = 500 mm for 406;
Bar = 100 mm for 2006.
doi:10.1371/journal.ppat.1000200.g011
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biosynthesis is a conserved function of SREBPs in fungi. In A.

fumigatus, the SrbA dependent regulation of ERG25 seems to be of

particular significance as sterol profiles of the SrbA mutant

indicated an accumulation of C-4 methyl sterols suggesting a block

in ERG25 function. The effects of decreased ERG3 and ERG24

transcription in the SrbA null mutant is less clear. The

accumulation of pathway intermediates may subsequently affect

the expression of these genes, and thus, their regulation by SrbA

may be indirect. Moreover, A. fumigatus is predicted to have 3

possible orthologs of ERG3 and two of ERG24, which likely

indicates a complex regulatory mechanism for ergosterol biosyn-

thesis in A. fumigatus that is mediated in part by SrbA under specific

conditions such as hypoxia [47,48]. Indeed, single mutants of erg3

genes result in no difference in their sterol profiles compared with

wild type strains [49].

Other differences with yeast in the transcriptional profile of the

SREBP mutant in A. fumigatus suggest important roles for SrbA in

filamentous fungal biology. For example, a non-ribosomal peptide

synthetase, NRPS1 (or pes1), had the highest change in expression

between wild type and the SrbA null mutant [43,44]. This NRPS

has been observed to mediate resistance to oxidative stress in A.

fumigatus and displayed an attenuated virulence phenotype in a

Galleria mellonella (wax moth) model of aspergillosis depending on

inoculum dose [44]. NRPSs are not generally found in most yeast

and are particularly abundant in filamentous fungi. Thus, this

result suggests that the uncharacterized peptide produced by this

NRPS may possibly be involved in hypoxia adaptation as

regulated by SrbA in filamentous fungi. Interestingly, we did not

observe any increased susceptibility to oxidative stress in the SrbA

null mutant. Overall, however, unlike C. neoformans and S. pombe,

we did not observe any genes with an annotation that would

clearly point to a role in allowing Aspergillus to adapt to hypoxia.

This result further illustrates that mechanisms of hypoxia

adaptation are almost certainly different in molds than yeast.

Our examination of the SrbA null mutant colony morphology

subsequently revealed abnormal branching at the hyphal tips in

normoxia and an inability of hyphal growth in hypoxia. Further

examination of the mutant with TEM suggested altered vesicle

Figure 12. Representative histopathology of X-CGD mouse
model SDW1 infected survivors. Hematoxylin and eosin (H&E) or
Gommori’s methenamine silver (GMS) stains. Resolution of inflamma-
tion and necrosis is observed in all surviving animals on day +14 of the
infection. However, lesions are still apparent as is common in these
mice, but necrosis and debris is significantly reduced. Fungal tissue
remains evident on GMS stains indicating that despite surviving the
infection, these mice have not entirely cleared the fungal infection. This
result confirms the importance of a functional NADPH oxidase in
resistance to Aspergillus infections, and suggests that increased hypoxia
prevents proliferation of fungal tissue in the absence of SrbA.
Bar = 500 mm for 406; Bars = 100 mm for 1006 and 2006.
doi:10.1371/journal.ppat.1000200.g012

Figure 13. Loss of SrbA does not affect susceptibility to conidia killing by RAW264.7 cells. RAW264.7 cells (macrophages) were infected
with a total of 1.256106 freshly harvested A. fumigatus conidia of strains CEA10, SDW1, and SDW2 to obtain a conidia:macrophage ratio of 5:1.
Conidia and macrophages were incubated together for 6 hours. After 6 hours, conidia were collected from the macrophages and plated onto
glucose minimal media. Shown is the percent of recovered conidia after 6 hours incubation of two biological replicates. No significant difference in
conidia killing was observed between CEA10, SDW1, and SDW2 (P.0.01).
doi:10.1371/journal.ppat.1000200.g013
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translocation or formation in the hyphae. It is unclear whether

these electron dense objects, which we hypothesize are vesicles,

comprise the actual Spitzenkörper. At the apex of hyphae in

filamentous fungi, the Spitzenkörper is an accumulation of vesicles

that is critical for growth directionality [50,51]. Interestingly,

Takeshita et al. (2008) recently observed that localization of key

deposition proteins involved in polarized growth at the hyphal tip

requires apical sterol-rich membranes [52]. Thus, we hypothesize

that the altered hyphal morphology and excessive branching at the

tips observed in the SrbA null mutant is due to the alteration in

sterol composition of the sterol-rich microdomains in the

membrane that are critical for localization of important vesicles

and landmark proteins [53]. The alteration in sterol content may

cause improper sorting of the vesicles to the apex of the hyphal tip.

It is also likely then that the inability of the mutant to grow in

hypoxia is related to the perturbation in sterol biosynthesis, a

highly oxygen dependent pathway reported to require at least 22

molecules of oxygen.

We could not rescue the SrbA phenotype in hypoxia with

addition of ergosterol or lanosterol (data not shown). Nor did

exogenous addition of these sterols alter growth of the wild type

strain in hypoxia as is the case for S. cerevisiae, which requires

exogenous sterols for anaerobic growth. These results may suggest

that A. fumigatus does not import exogenous sterols in hypoxic

conditions, that SrbA may be in part responsible for exogenous

sterol uptake, or that the defect is not due to loss of ergosterol or

lanosterol. We feel that the latter explanation is most likely as A.

fumigatus has been observed to take up and utilize exogenous

cholesterol [54]. We observed that the A. fumigatus SrbA null

mutant produced substantial levels of ergosterol even in the

absence of SrbA. Thus, even though the ergosterol biosynthesis

pathway appears blocked at ERG25 in the SrbA mutant,

alternative mechanisms exist for A. fumigatus to produce ergosterol

in the absence of SrbA and presumably ERG25 activity. This

finding is consistent with a recent report which suggested that A.

fumigatus likely possess at least three alternative pathways for

ergosterol biosynthesis [48]. Also, an analysis of the A. fumigatus

genome sequence revealed that A. fumigatus contains duplicate and

even triplicate copies of many of the ergosterol biosynthesis genes

[47,55]. Thus, it appears that A. fumigatus contains complex

regulatory mechanisms, of which SrbA is a part, for the

production of ergosterol that remain to be elucidated.

Based on our current knowledge of the pathophysiology of IPA,

the in vitro phenotypes observed in the SrbA mutant would not

predict a role for this protein in A. fumigatus virulence. However,

the SrbA null mutant was virtually avirulent in two distinct murine

models of IPA despite a normal growth rate of the fungus in

standard laboratory conditions. Consequently, we believe two

possible explanations exist for the observed avirulent phenotype of

the SrbA null mutant. First, and we believe most likely, the

inability of the SrbA null mutant to grow in hypoxia prevents

invasive disease from being established. Once hypoxia is generated

during Aspergillus infection, the mutant simply can no longer grow

and proliferate, allowing what immune effector cells that remain

functional the ability to ultimately clear the infection. An

alternative hypothesis is that the altered hyphal morphology and

excessive branching observed in the SrbA mutant in normoxic

conditions results in a strain incapable of invasive growth or a

strain more susceptible to clearance by the immune system. To

examine these alternatives, we employed the use of two distinct

murine models of IPA.

We first examined the SrbA mutant virulence phenotype in a

persistently neutropenic mouse model characterized by the use of

high doses of cyclophosphamide and Kenalog [42]. Currently, it is

unclear what specific components of the immune system are

affected in this model, but it is clear that differences in the

immunosuppression regimen can significantly affect the outcome

of infection [56,57]. In this model, significant inflammation and

tissue necrosis is observed in histopathological examinations. We

hypothesize that these sites of infection and inflammation in this

model are hypoxic. Thus, we believe that A. fumigatus must

overcome significant hypoxia during pulmonary infections, and

the inability of the SrbA null mutant to adapt to hypoxic

conditions results in rapid cessation of invasive growth and a lack

of lethal disease. Our histopathological findings with the SrbA

mutant strain revealed fungal growth in this model early in the

infection. However, by day 14, we were unable to recover viable

colonies from mice infected with the SrbA null mutant strain.

Indeed, by day 14 of the infection, little evidence of inflammation

or fungal burden was evident in mice infected with the SrbA null

mutant. These two results suggest that growth of the fungus was

halted and what immune effector cells present in the immuno-

suppressed mice were able to clear the infection. Furthermore, our

in vitro experiments revealed that the growth defect of the SrbA

mutant in hypoxia was not fungicidal but fungistatic. Thus, if

growth simply were halted in the animals without immune system

clearance, we would have expected to recover viable fungal

colonies from the infected mice.

To further examine the apparent virulence defect of the SrbA

null mutant, we utilized a mouse strain highly susceptible to

Aspergillus infections, the X-CGD gp91phox2/2 mice [45,46]. These

mice exhibit a hyper-inflammatory response when exposed to A.

fumigatus and other Aspergillus species. We chose this particular

animal model for our experiments given the very specific defect in

NADPH oxidase function in these mice, and with the hypothesis

that the hyper-inflammatory response would generate significant

hypoxia in the lung. Given the extreme susceptibility of these mice

to A. fumigatus, we hypothesized that if the SrbA null mutant could

grow and persist in vivo, even at a reduced rate, we should observe

significant mortality in these mice. However, in contrast, we

observed limited mortality in these mice when inoculated with the

SrbA null mutant, strongly suggesting that the mutant simply

cannot grow effectively in vivo to cause invasive disease. Unlike the

neutropenic mouse model, extensive signs of chronic inflammation

remained evident in the X-CGD mice post-day 14, consistent with

previously reported results in these animals [45]. Furthermore,

unlike the neutropenic mice, we could detect the persistence of

viable SDW1 in the lungs of these surviving mice out to day 14.

Consequently, we conclude that these observations strongly

suggest that the inability of the SrbA null mutant to grow in

hypoxic microenvironments is primarily responsible for the

avirulent phenotype of the mutant. Though the altered cell

polarity of the SrbA mutant may contribute to the virulence

defect, the fact that SrbA null mutant displayed normal growth

rates in vitro in standard laboratory growth conditions suggests to us

that the altered cell polarity did not significantly affect fungal

growth. Furthermore, we also have examined the susceptibility of

the SrbA null mutant conidia to macrophage (RAW264.7 cells)

killing and found no difference with the wild type strain. In

addition, the SrbA mutant did not display increased sensitivity to

hydrogen peroxide. Taken together, we feel these observations

strongly suggest that the virulence defect in the SrbA null mutant is

due to its inability to grow in hypoxia.

An additional observation of clinical significance was the finding

that SrbA mediates resistance to the azole class of antifungal drugs.

Interestingly, loss of SrbA resulted in a strain of A. fumigatus highly

susceptible to fluconazole, an azole that normally has minimal

activity against A. fumigatus [58,59]. The mechanism(s) behind this
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result are currently not known. Transcriptional profiling of the

SrbA mutant revealed numerous transporters possibly regulated

by SrbA. Thus, the mechanism behind the increased azole

susceptibility may be due to loss of transcription in specific

transporters in the SrbA mutant. This hypothesis is currently being

tested in our laboratory. Second, a relationship between

mitochondria function, sterol homeostasis, and azole drug

resistance has been observed in the yeast S. cerevisiae and Candida

glabrata [60,61]. Thus, the altered accumulation of sterol

intermediates in the SrbA mutant may alter the resulting

interaction with fluconazole and mitochondria. With a similar

increase in susceptibility to azoles in the SREBP mutant in C.

neoformans, it seems clear that further study of the SREBP pathway

and azole drug resistance in pathogenic fungi is highly warranted.

Identification of ways to inhibit this pathway in vivo may increase

the efficacy of current azole antifungal agents [32,33]. Thus,

further studies are needed to dissect this important pathway in

yeast and molds to identify conserved targets that may be

harnessed to treat patients with invasive mycoses.

Finally, in this study, we did not focus on elucidating the

molecular mechanism behind SrbA regulation and activation in

molds. However, several observations from our studies hint at

possible mechanisms. First, we identified SrbA in a transcriptional

profiling screen of A. fumigatus in response to hypoxia (induced .5

fold). This suggests that SrbA may be transcriptionally regulated in

molds. However, HIF1 in humans also responds transcriptionally

to hypoxia, but its activity is primarily post-translationally

regulated [62,63]. In the yeast S. pombe and C. neoformans, it seems

clear that Sre1 is regulated post-translationally in response to sterol

biosynthesis perturbation that occurs in low oxygen environments.

Indeed, Hughes et al. (2007) have identified 4-methyl sterols as the

primary activating agent of Sre1 in S. pombe [64]. Thus, our finding

that the SrbA null mutant in A. fumigatus accumulates 4-methyl

sterols may also suggest that these sterols are the trigger for SrbA

activation in A. fumigatus.

While many of the phenotypes we observed in the SrbA mutant

in A. fumigatus may suggest that SrbA is regulated in a similar

manner as Sre1 in yeast, our results may also suggest an alternative

model in molds. First, despite extensive bioinformatic analyses, we

were unable to identify a clear homolog of the sterol cleavage

activating protein (SCAP). SCAP is highly conserved in yeast,

mammals, and insects and thus it is surprising that bioinformatic

searches were unable to identify a clear homolog in any

filamentous fungi with genome sequences available. However,

some candidates with minimal sequence similarity are being

pursued in our laboratory. Second, the observation that sterol

biosynthesis was altered in normoxia, likely resulting in altered cell

polarity, suggests that in molds, SrbA plays a significant role in the

biology of filamentous fungi in normoxic conditions. Third,

though sequence identity was extremely low, generation of null

mutants in putative site-1 (S1P) and site-2 (S2P) protease homologs

in A. fumigatus did not demonstrate expected defects in hypoxic

growth (Willger and Cramer, unpublished data). Additional

proteases remain to be explored. We could, however, identify a

clear Insig1 homolog, which we have named InsA. In mammals,

Insig is a key regulator of SREBP function where it binds to SCAP

and prevents SREBP cleavage in the presence of sterols by

maintaining the SREBP-SCAP complex in the endoplasmic

reticulum membrane [65,66]. We are currently characterizing a

possible role for InsA in SREBP signalling in filamentous fungi.

Interestingly, C. neoformans lacks an apparent Insig homolog and

the Insig homolog in S. pombe does not appear to be required for

regulation of SREBP signalling [25,32]. Taken together, these

results suggest that while aspects of SrbA signalling in filamentous

fungi may be conserved in yeast and mammals, it is likely that

significant differences exist in molds that remain to be elucidated.

What is clear, however, is that SREBPs play critical roles in the

biology of fungi that have important implications for fungal

virulence and how we manage and treat invasive fungal infections.

Future studies on this pathway in A. fumigatus are likely to yield

important insights into sterol metabolism, hypoxia adaptation,

fungal growth, and mechanisms of azole drug resistance.

Materials and Methods

Strains and media
A. fumigatus strain CEA17 (a gift from Dr. J.P. Latgé, Institut

Pasteur) was used to generate the srbA null mutant strain, SDW1

(DsrbA::A. parasiticus pyrG pyrG1). A. fumigatus strain CEA17 is a

uracil-auxotrophic (pyrG1) mutant of A. fumigatus strain CEA10

[67,68]. In this study we used CEA10 (gift from Dr. Thomas

Patterson, University of Texas- San Antonio Health Sciences

Center) as the wild type, SDW1, and an ectopic complemented

control strain SDW2 (Dsrb::A. parasiticus pyrG+srbA). All strains were

stored as frozen stocks with 50% glycerol at 280uC. The strains

were routinely grown in glucose minimal medium (GMM) with

appropriate supplements as previously described [69] at 37uC. To

prepare solid media 1.5% agar was added before autoclaving.

Strain construction
Generation of a srbA null mutant in A. fumigatus strain CEA17

was accomplished by replacing an ,2.2-kb internal fragment of

the srbA coding region (,3.0 kb; GenBank accession

no. XM_744169) with A. parasiticus pyrG. The replacement

construct was generated by cloning a sequence homologous to

the srbA locus into plasmid pJW24 (donated by Dr. Nancy Keller,

University of Wisconsin—Madison). Homologous sequences, each

,1 kb in length and 59 and 39 of the srbA coding sequence, were

cloned to flank A. parasiticus pyrG in pJW24. The resulting plasmid,

pSRBAKO, was used as a template to amplify the ,5.1-kb

disruption construct for use in fungal transformation. To

complement the DsrbA strain SDW1 the srbA gene was amplified

using genomic DNA of CEA10 as template and the primers

59SrbAKOLF and 39SrbAKORF. The ,5.9-kb PCR product was

used in a fungal transformation and selection was for colonies able

to grow under hypoxic conditions. The primers utilized in vector

construction are presented in Table S1.

Generation of fungal protoplasts and polyethylene glycol-

mediated transformation of A. fumigatus were performed as

previously described [70]. Briefly, 10 mg of the srbAKO PCR-

generated replacement construct was incubated on ice for 50 min

with 16107 fungal protoplasts in a total volume of 100 ml.

Transformants were initially screened by PCR to identify potential

homologous recombination events at the srbA locus. PCR was

performed with primers designed to amplify only the disrupted

srbA locus (59SrbAKOLF and 39PyrGKOLF; 59PyrGKORF and

39SrbAKORF) (Table S1). Homologous recombination was

confirmed by Southern analysis with the digoxigenin labeling

system (Roche Molecular Biochemicals, Mannheim, Germany) as

previously described [71]. To eliminate the chance of heterokary-

ons, each transformant was streaked with sterile toothpicks a

minimum of two times to obtain colonies from single conidia.

Hypoxic cultivation
Strains were grown on GMM plates at 37uC. Normoxic

conditions were considered general atmospheric levels within the

lab (,21% O2). For hypoxic conditions a Hypoxia Incuba-

tion Chamber (MIC-101; Billups-Rothenberg, http://www.
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hypoxiaincubator.com) was used. The chamber was maintained at

37uC and kept at ,1% oxygen level utilizing a gas mixture

containing 1% O2, 5% CO2 and 94% N2. In addition, hypoxia

experiments requiring shake-flask cultures were conducted in a

Biospherix C-Chamber with O2 levels controlled by a PRO-Ox

controller and CO2 levels controlled with PRO-CO2 controller

(Biospherix, Lacona, NY). For these experiments, O2 set point was

1% and CO2 set point was 5%.

Colony growth was quantified as previously described [72].

Briefly, 5-ml aliquots containing 16106 conidia from freshly

harvested GMM plates were placed in the center of GMM agar

plates. Plates were then cultured under normoxic or hypoxic

conditions. Diameters of three colonies per A. fumigatus strain and

condition were measured once daily over a period of 4 days. The

average change in colony diameter per 24 h of growth was

calculated from three independent cultures. Conidia were

harvested with 20 ml of sterile 0.01% Tween 80, filtered through

two layers of sterile miracloth (EMD Biosciences, La Jolla, CA),

and quantified.

Isolation of total RNA
Conidia from freshly harvested GMM plates were inoculated in

5 ml GMM in a 6-well plate to a concentration of 16107/ml.

Cultures were grown aerobically for 24 h. For normoxic growth,

cultures were maintained in atmospheric conditions. For hypoxic

growth, cultures were placed in the hypoxic chamber for 24 h.

Fungal mats were flash frozen in liquid nitrogen and lyophilized

prior to total RNA extraction using TRIsure Reagent (Bioline)

according to the manufacturer’s instructions. RNA was further

purified using the RNeasy Mini Kit (Qiagen) and re-suspended in

DEPC-treated water. RNA integrity was confirmed with an

Agilent Technologies Bioanalyzer.

Microarray-based transcriptional profiling
Total RNA was reverse transcribed by priming with oligo dT

and utilizing aminoallyl-dUTP. The resultant cDNA was then

coupled to Cy3- and Cy5-labeled probes (GE Healthcare), and

hybridized to Aspergillus fumigatus version 3 microarrays from the

pathogen functional resources center (PFGRC) as described in the

TIGR standard operating procedures found at http://atarray.tigr.

org. Labeled cDNA from wild type grown in hypoxic conditions

was hybridized against cDNA from SDW1 grown in hypoxic

conditions. Data for each strain represents six independent

experiments and includes three dye swaps. Arrays were scanned

on an Axon 4000B scanner with GenePix software at the Montana

State University Functional Genomics Core facility (Axon

Instruments). Array signals were bulk-normalized and filtered for

flagged spots using MIDAS (available at http://www.tm4.org/

midas.html). Data were log-transformed (base 2) and filtered for

genes that contained data for at least three out of four arrays from

each strain, and missing values were calculated through K-nearest

neighbor algorithm using Significance Analysis of Microarrays

(SAM) software [73] prior to statistical analysis by SAM.

Statistically significant genes identified by SAM with 2-fold or

greater changes in expression are listed in Table 1. A Delta cutoff

in SAM that captured the maximum number of significant genes

with a false discovery rate of zero was utilized. Microarray data

has been deposited in the Gene Expression Omnibus (GEO) at the

National Center for Biotechnology Information (NCBI) series

accession number GSE12376.

Susceptibility testing
E-test strips (AB Biodisk, N.J.) plastic strips impregnated with a

gradient of Fluconazole, Voriconazole, Caspofungin, or Ampho-

tericin B were used per manufacturers’ instructions. Each strip was

placed onto a RPMI-1640 (Sigma Aldrich) agar plate containing a

lawn of conidia and growth inhibition was measured after 24 and

48 h by direct observation of the plates at 37uC. No difference in

results was observed between 24 and 48 h.

Sterol analyses
Sterols were extracted following published protocols [74]. Gas-

chromatography-Mass spectrometry analyses were performed with

a HP6890 GC coupled to a HP5973 mass selective detector.

Electron impact MS (70 eV, scanning from 50 to 550amu, at 2.94

intervals/sec) was performed using the following conditions: HP-5

column (30 m60.25 mm i.d., 0.25 mm film thickness), Helium as

carrier gas (1 ml/min), detector temperature 180uC, column

temperature 100uC to 300uC (100uC for 1 min, 7uC/min to

300uC then held for 15 min). All injections were run in splitless

mode.

Electron microscopy
Conidia and mycelia of wild type and SDW1 were examined by

transmission electron microscopy (TEM). Conidia released in

sterile water from 5-day-old GMM plates and mycelia grown in

liquid GMM for two days were collected by centrifugation at

50006g for 10 min. The conidial and mycelial pellets were coated

with 0.8% agarose and fixed in modified Karnovsky’s fixative

containing 2% paraformaldehyde and 2% (v/v) glutaraldehyde in

0.05 M sodium cacodylate buffer (pH 7.2) overnight at 4uC. After

washing three times with 0.05 M sodium cacodylate buffer

(pH 7.2) for 10 min each, samples were post-fixed with 1% (w/

v) osmium tetraoxide in the same buffer for 2 hours at 4uC. The

post-fixative was removed by washing briefly twice with distilled

water at room temperature and the samples were en bloc stained

with 0.5% uranyl acetate overnight at 4uC. The samples were then

dehydrated in a graded ethanol series, rinsed with propylene

oxide, and embedded in Eppon resin (Fluka AG, Zürich, CH).

Ultrathin sections cut from the Eppon-embedded material with

ultramicrotome (MT-X, RMC, USA) were collected on carbon-

coated grids, stained with 2% uranyl acetate for 3 min, and with

Reynold’s lead solution [75] for 3 min. Examination was

conducted with a JEM-1010 (JEOL, Tokyo, Japan) electron

microscope operating at 60 kV.

Conidia Germination assay
For the conidia germination assay, A. fumigatus strains were

grown in 25 ml GMM with 2% yeast extract. Cultures were

inoculated with approximately 106 conidia/ml. After 7 hours the

germination rate was determined by counting a total of 100 spores

and noting the number of germinated spores. Counting was

repeated three times for each strain and the mean and standard

deviation are reported.

Murine virulence assays
In this study two different mouse models were used to assess the

role of the transcription factor SrbA in fungal virulence. For the

persistently neutropenic mouse model we used outbred CD1

(Charles River Laboratory, Raleigh, NC) male mice (26 to 28 g in

size, 6–8 weeks old), which were housed six per cage and had

access to food and water ad libitum. Mice were immunosup-

pressed with intraperitoneal (i.p.) injections of cyclophosphamide

at 150 mg/kg 2 days prior to infection and with Kenalog injected

subcutaneously (s.c.) at 40 mg/kg 1 days prior to infection. On day

3 post-infection (p.i.), repeat injections were given with cyclophos-

phamide (150 mg/kg i.p.) and on day 6 p.i. with Kenalog (40 mg/
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kg s.c.). Twelve mice per A. fumigatus strain (CEA10, srbA-deficient

mutant SDW1, or the reconstituted strain SDW2) were infected

intranasally. For an alternative mouse model, we used breeder

mice with a null allele corresponding to the X-linked gp91phox

component of NADPH oxidase (B6.129S6-Cybbtm1Din). Breeding

pairs of these mice were obtained from the Jackson Laboratory

(Bar Harbor, Maine) and reared in the Animal Resource Center at

Montana State University. All animals were kept in specific-

pathogen-free housing, and all manipulations were approved by

the institutional internal review board (IACUC). To avoid

exposing gp91phox2/2 mice to bacterial infections, they were

housed in microisolator cages in an environment of filtered air and

given autoclaved food ad libitum and prophylactic treatment with

sulfamethoxazole-trimethoprim in their sterile drinking water. The

animals were used at 8 to 13 weeks of age. The mice were

inoculated intratracheally following brief isoflurane inhalation,

returned to their cages, and monitored at least twice daily.

Infection inoculum was prepared by growing the A. fumigatus

isolates on GMM agar plates at 37uC for 3 days. Conidia were

harvested by washing the plate surface with sterile phosphate-

buffered saline-0.01% Tween 80. The resultant conidial suspen-

sion was adjusted to the desired concentration of 16106 conidia/

40 ml by hemacytometer count. Mice were observed for survival

for 14 days after A. fumigatus challenge. Any animals showing

distress were immediately sacrificed and recorded as deaths within

24 h. Mock mice were included in all experiments and inoculated

with sterile 0.01% Tween 80. Lungs from all mice sacrificed

during the experiment were removed for fungal burden assessment

and histopathology. Experiments were repeated in duplicates with

similar results. Survival was plotted on a Kaplan-Meier curve and

a log-rank test used to determine significance of pair-wise survival

(two-tailed P,0.01). No mock infected animals perished in either

murine model in all experiments.

Histopathology
For histopathology studies, additional gp91phox2/2 mice were

infected as described above, and sacrificed at set time points of day

1 and day 4 after A. fumigatus challenge. When mice were

sacrificed, lungs were removed on that day. Lung tissue was fixed

in 10% phosphate-buffered formalin, embedded in paraffin,

sectioned at 5 mm, and stained with hematoxylin and eosin

(H&E) or Grocott methenamine silver (GMS) by using standard

histological techniques. Microscopic examinations were performed

on a Zeiss Axioscope 2-plus microscope and imaging system using

Zeiss Axiovision version 4.4 software. Semi-quantitative analysis of

inflammation and necrosis were scored on a scale of 1 to 5. The

scale consisted of: 1 = 0 to 24% lung involvement, 2 = 25–49%,

3 = 50–74%, 4 = 75–99% 5 = 100%. H&E stained whole lungs

from 4 mice infected with each respective strain were assessed to

determine the percentage involvement and scored accordingly on

days 1 and 4 of the infection in consultation with a pulmonary

immunologist.

Macrophage assays
Macrophage killing of conidia was measured by serial dilution

as previously described with slight modifications [76–78]. Briefly,

2.56105 RAW264.7 cells in a volume of 500 ml were inoculated

into 24 well tissue culture treated cell culture plates (Corning

Incorporated, Corning, NY) in DMEM complete media and

incubated overnight at 37uC, 5% CO2. A total of 1.256106 freshly

harvested A. fumigatus conidia of the respective strains in DMEM

complete media were inoculated into each well to give a

conidia:macrophage ratio of 5:1. Co-incubation was performed

at 37uC, 5% CO2 for 1 hour, after which media was removed and

cells were gently washed with 16phosphate buffered saline (PBS)

to remove non-phagocytosed conidia. At this time point, conidia

from each strain were harvested from macrophages in one well to

establish the baseline number of conidia engulfed. DMEM

complete media was added back to the non-harvested wells and

incubation proceeded for an additional 5 hours. Lysis of

macrophages was performed by treating the cells with 200 ml of

a 0.5% SDS solution for 10 minutes followed by addition of

200 ml of 16PBS. The percentage of colony forming units (CFU)

from conidia:macrophage co-incubations was determined relative

to control conidia harvested at the one hour time point. Controls

were performed by lysing macrophages as described above after

phagocytosis of conidia for 1 hour and CFU counts were set to

100%. Experiments were performed with triplicate wells and

repeated two times for each A. fumigatus strain.

Oxidative stress assay
For the oxidative stress assay, the A. fumigatus strains were grown

on GMM plates with and without H2O2. GMM plates with 1 and

2.5 mM H2O2 were prepared. Plates were inoculated with

approximately 100,000 spores in 5 ml and incubated at 37uC.

Sensitivity to oxidative stress was determined by comparing the

colony radius of 2-day-old cultures on plates with H2O2. The assay

was repeated three times for each concentration. Growth of each

strain on each plate was visually examined.

Statistical analysis
The software program Prism 5 (GraphPad, San Diego, Calif.)

was used for all statistical tests of significance (to P values of

#0.01). Normally, a two-sided t test was used to compare two

groups of data, with Welch’s correction being used if the groups

had unequal variances. In cases in which a deviation from a

normal distribution was suspected, a nonparametric test (Mann-

Whitney test) was also applied. In those cases, we found that both

the t test and Mann-Whitney test indicated the same results (i.e.,

both indicated significance or insignificance); however, typically

one test gave a more conservative (larger, but still ,0.01) P value.

The P values we report are always the conservative values. Log-

rank tests were utilized to determine significance of survival in

animal studies.

Supporting Information

Table S1 Primers Used in This Study

Found at: doi:10.1371/journal.ppat.1000200.s001 (0.03 MB

DOC)
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