
Epstein-Barr Nuclear Antigen 1 Contributes to
Nasopharyngeal Carcinoma through Disruption of PML
Nuclear Bodies
Nirojini Sivachandran, Feroz Sarkari, Lori Frappier*

Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada

Abstract

Latent Epstein-Barr virus (EBV) infection is strongly associated with several cancers, including nasopharyngeal carcinoma (NPC),
a tumor that is endemic in several parts of the world. We have investigated the molecular basis for how EBV latent infection
promotes the development of NPC. We show that the viral EBNA1 protein, previously known to be required to maintain the EBV
episomes, also causes the disruption of the cellular PML (promyelocytic leukemia) nuclear bodies (or ND10s). This disruption
occurs both in the context of a native latent infection and when exogenously expressed in EBV-negative NPC cells and involves
loss of the PML proteins. We also show that EBNA1 is partially localized to PML nuclear bodies in NPC cells and interacts with a
specific PML isoform. PML disruption by EBNA1 requires binding to the cellular ubiquitin specific protease, USP7 or HAUSP, but
is independent of p53. We further observed that p53 activation, DNA repair and apoptosis, all of which depend on PML nuclear
bodies, were impaired by EBNA1 expression and that cells expressing EBNA1 were more likely to survive after induction of DNA
damage. The results point to an important role for EBNA1 in the development of NPC, in which EBNA1-mediated disruption of
PML nuclear bodies promotes the survival of cells with DNA damage.
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Introduction

Epstein-Barr virus (EBV) is widely recognized as a causative

agent of nasopharyngeal carcinoma (NPC), as most NPC tumors

are monoclonal proliferations of latently EBV-infected cells [1].

Latent EBV infection in NPC involves expression of four viral

proteins; two latent membrane proteins (LMP1 and LMP2), one

nuclear protein (EBNA1) and one secreted protein (BARF1) [1,2].

LMP1, LMP2 and BARF1 have all been reported to have cellular

effects that may contribute to the development of NPC, although

LMP1 and BARF1 are not consistently detected in all NPC

tumors [3–5]. EBNA1 is required for the replication and stable

persistence of EBV episomes in proliferating cells and is the only

EBV protein that is expressed in all EBV-associated tumors [6].

EBNA1 enables the expression of the other EBV latency proteins,

however, whether or not EBNA1 directly contributes to the

development of tumors has not been clear.

A number of observations in the literature are consistent with a

role for EBNA1 in the proliferation of EBV-positive cells. For

example, interference with EBNA1 function in EBV-positive

Burkitt’s lymphoma cells, by overexpression of a dominant-

negative EBNA1 mutant, increased cell death [7]. Similarly,

down-regulation of EBNA1 in Raji Burkitt’s lymphoma or EBV-

positive epithelial cells by RNA interference decreased cell

proliferation [8,9]. However, since EBNA1 is needed to maintain

the EBV episomes and to enhance expression of other latency

proteins, it is not clear from the above observations whether

EBNA1 is directly affecting cell proliferation or is functioning

indirectly by enabling expression of other EBV gene products.

Other studies have investigated whether expressing EBNA1 in

various EBV-negative cancer cells affects tumorgenicity. EBNA1

expression in HONE-1 NPC cells was found to increase primary

tumor formation as well as metastases in nude mice [10]. EBNA1

expression in Hodgkin’s lymphoma cells enhanced their ability to

form tumors in non-obese diabetic-SCID mice but not in regular

SCID mice [11]. In addition, Kaul et al [12] found that expression

of EBNA1 in a breast carcinoma cell line promoted the rate of

tumor growth in nude mice, reversed the growth inhibitory effect

of the cellular Nm23-H1 protein and increased lung metastases.

The molecular basis for the observed effects of EBNA1 on cell

proliferation are largely unknown, although an interaction between

EBNA1 and the cellular ubiquitin specific protease, USP7 or

HAUSP, has been proposed to be partially responsible [13]. USP7

binds and stabilizes p53 [14], and EBNA1 was found to block the

USP7-p53 interaction in vitro by competing for the same binding

pocket on USP7 [15–17]. In keeping with these findings, expression

of EBNA1 (but not a USP7-binding mutant of EBNA1) in U2OS

cells was shown to protect these cells from apoptosis in response to

DNA damage by interfering with p53 stabilization [16]. However,

USP7 is likely to have multiple cellular roles and the functional

significance of the EBNA1-USP7 interaction remains to be

determined in the context of latent EBV infection.

Few studies have investigated the role of EBNA1 in NPC.

Studies on the contribution of EBV proteins to NPC in general
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have been hampered by the lack of EBV-positive NPC cell lines,

since NPC cells tend to rapidly lose the EBV genomes when

propagated in culture. The isolation of a NPC cell line (C666-1)

that stably maintains EBV episomes [18] has greatly facilitated

NPC studies, enabling a comparison to EBV-negative NPC cell

lines. We have compared C666-1 cells to the EBV-negative NPC

cell lines CNE2 [19] and HK1 [20] in order to better understand

cellular alterations caused by EBV infection that may contribute to

cell transformation. Here we show that EBV latent infection in

NPC cells is associated with the disruption of host PML nuclear

bodies (NBs) and that EBNA1 is entirely responsible for this effect.

Consistent with the known importance of PML NBs in p53

activation and DNA damage responses, we also show that EBNA1

expression in NPC impairs both of these processes.

Results

EBNA1 disrupts PML NBs in NPC cells
In initial studies comparing EBV-positive and EBV-negative

NPC cell lines, we examined the host PML NBs, which have the

PML protein as the main constituent and have been implicated in

many important cellular processes [21]. We were particularly

interested in examining PML NBs in the context of NPC because

the disruption of PML NBs, or lack of the PML protein, is a factor

in the development of several types of cancer [22,23] and because

DNA viruses are known to have mechanisms to disrupt PML NBs

[24]. Immunofluorescence (IF) microscopy for PML revealed that

C666-1 cells have considerably fewer PML NBs than do CNE2 or

HK1 cells (average number per cell of 4, 16 and 11 respectively;

Figure 1A and 1B), suggesting that some aspect of EBV infection

disrupts PML NBs. We investigated whether this involved the

EBNA1 protein by down-regulating EBNA1 expression with

siRNA. This treatment greatly decreased EBNA1 expression in

some but not all of the C666-1 cells allowing a direct comparison

of silenced and non-silenced cells in the same culture (Figure 1A

bottom row). The number of PML NBs was found to increase 2–3

fold upon EBNA1 silencing, as compared to non-treated cells or

cells treated with siRNA against green fluorescence protein (GFP),

indicating that EBNA1 contributes to PML disruption in C666-1.

To determine whether EBNA1 expression was sufficient to

disrupt PML NBs, we generated CNE2E and HK1E cell lines in

which EBNA1 was constitutively expressed in CNE2 and HK1

NPC cells from an integrated cassette. EBNA1 expression levels in

HK1E and CNE2E were shown by immunoblot to be approx-

imately 2-fold and 3-fold higher than in C666-1, respectively

(Figure S1). EBNA1 expression in both cell lines resulted in a

notable decrease in the number of PML NBs per cell (Figure 1B).

To further verify that this effect was caused by EBNA1, CNE2E

cells were treated with siRNA to down-regulate EBNA1

expression. EBNA1 silencing restored the number of PML NBs

to the level seen in the parent CNE2 cells (Figure 1B). We also

examined whether transient expression of EBNA1 was sufficient to

cause PML disruption. To this end, CNE2 cells were transfected

with an EBNA1 expression plasmid and examined by IF 48 hrs

later (Figure 2A). EBNA1 expression lowered the number of PML

NBs in a dose-dependent manner, where PML NBs were

decreased 5-fold in cells staining brightly for EBNA1 and

decreased 3-fold in those with lighter EBNA1 staining

(Figure 2B). Therefore EBNA1 expression has an immediate

effect on PML NBs.

EBNA1 lowers PML protein levels
Viral proteins have been found to decrease PML NBs either by

inducing the degradation of the PML protein or by disrupting the

interaction of PML proteins required to form NBs [24]. To address

the mechanism by which EBNA1 expression disrupts PML NBs, we

compared the levels of PML isoforms in CNE2 before and after

stable (CNE2E) or transient expression of EBNA1 by Western

blotting. PML is known to exist as several isoforms (comprised of

alternative spliced and modified forms), resulting in multiple bands

migrating between 60 and 200 Kda on PML immunoblots [25,26].

Down-regulation of EBNA1 expression in C666 cells resulted in

increased expression of all PML isoforms (Figure 3A). Similarly,

EBNA1 expression in CNE2E resulted in a dramatic decrease in all

PML isoforms (Figure 3B compare lanes 1 and 2), which was

restored by silencing EBNA1 expression (Figure 3B lanes 3 and 4). In

addition, transient EBNA1 expression in CNE2 decreased the level

of all PML isoforms in a dose-dependent manner (Figure 3C).

Therefore EBNA1 expression results in the loss of PML protein, as

opposed to dispersal of PML from the foci. However the level of

another PML NB component, Sp100, was unaffected by EBNA1

demonstrating the specificity of this effect (Figure 3C). Effects of

EBNA1 expression on the level of PML mRNA was also examined

by RT-PCR to rule out potential effects on PML transcription. As

expected, no change in the level of PML transcripts was evident,

indicating that the EBNA1-mediated PML effects were occurring at

the protein level (Figure S2).

The EBNA1-induced loss of PML protein suggests that EBNA1

might be increasing the degradation of PML isoforms by the

proteasome. We tested this possibility by examining the effect of

blocking the proteasome in CNE2E cells with MG132 (Figure 3D).

This treatment was found to increase the levels of all PML

isoforms, and higher molecular weight forms suggestive of

polyubiquitination also became visible. Therefore the loss of

PML protein caused by EBNA1 is proteasome dependent.

EBNA1 associates with PML NBs through a specific PML
isoform

In most cells, EBNA1 is found throughout the nucleus making it

difficult to assess whether some of the EBNA1 localizes to PML

NBs. However, some of the transiently transfected CNE2 cells

expressed very low levels of EBNA1 and, in these cells, discreet

EBNA1 foci were observed, many of which localized to PML NBs

(Figure 4A). In addition, EBNA1 foci are frequently seen in C666-

1, which naturally express low levels of EBNA1, and these foci

often correspond to or overlap with PML NBs, even though few

PML NBs are present in C666-1 (Figure 4A).

To further assess the interaction of EBNA1 with PML in the

context of a latent infection, EBNA1 was immunoprecipitated

Author Summary

Epstein-Barr virus (EBV) infects most people worldwide and
is associated with several types of cancer due to its ability
to induce cell proliferation. Only one viral protein, EBNA1,
is expressed in all forms of EBV-associated tumors. Here,
we have investigated whether EBNA1 directly contributes
to the development of nasopharyngeal carcinoma (NPC),
the most common EBV-associated tumor. We found that
EBNA1 disrupts structures in the cell nucleus, called PML
bodies, that are known to inhibit malignant transformation
and to be important for cells to repair DNA that has been
damaged due to exposure to carcinogenic agents. We
show that EBNA1 interacts with and degrades the principal
component of PML bodies. As a result, cells expressing
EBNA1 are less able to repair their DNA and more likely to
survive with DNA damage that could result in malignant
transformation.

EBNA1 Disruption of PML Nuclear Bodies
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from C666-1 and co-precipitating proteins were analysed for PML

(Figure 4B). One PML isoform was consistently found to co-

immunoprecipitate with EBNA1 (Figure 4B lane 3). Interestingly

this did not correspond to the most prevalent PML band in the

lysate (presumably isoforms I and II according to its size and

abundance) but rather corresponded to a less abundant form

consistent with the size of PML isoform IV [26]. EBNA1 was also

found to preferentially bind PML IV over PML I when FLAG-

tagged versions of these proteins were over-expressed in CNE2

cells along with EBNA1 (Figure S3).

Figure 1. Immunofluorescence imaging of PML NBs in NPC cell lines. Log phase cells were fixed and stained for EBNA1 (red) and PML
(green). The number of PML foci seen per cell was counted for 100 cells for each sample in three separate experiments and the average number with
standard deviation is shown in the histograms, where *** denotes p values less than 0.0001 relative to the parental cell line. Exposure times of image
capture were constant for all samples with the same antibody treatment. (A) EBV-positive C666-1 cells before and after treatment with siRNA against
GFP (siGFP) or EBNA1 (siEBNA1) are shown. Arrowheads indicate a siEBNA1 treated cell that continued to express EBNA1 and can be used for
comparison to neighboring silenced cells. (B) EBV-negative CNE2 and HK1 cell lines with (CNE2E, HK1E) and without stable EBNA1 expression are
shown. CNE2E are also shown after silencing of EBNA1 expression where one of the three cells shown continues to express EBNA1 (arrowhead).
doi:10.1371/journal.ppat.1000170.g001

EBNA1 Disruption of PML Nuclear Bodies
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Figure 2. Transient expression of EBNA1 and EBNA1 mutants in CNE2 cells. (A) CNE2 cells were transiently transfected with a plasmid
expressing EBNA1 or EBNA1 mutants D325–376 or D395–450, then stained for EBNA1 and PML. Both EBNA1-expressing and nonexpressing cells are
shown 48 hrs post transfection. Exposure times of image capture were constant for all samples with the same antibody treatment. (B) Numbers of
PML NBs per cell were counted 48 hours after expression of wildtype EBNA1. Cells were categorized into low and high EBNA1 expression depending
on the intensity of EBNA1 staining. ** indicates 0.0001,p,0.001 and *** indicates p,0.0001 relative to untransfected cells. (C) The number of PML
NBs were counted for all cells in (A) expressing wildtype or mutant EBNA1 proteins.
doi:10.1371/journal.ppat.1000170.g002
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EBNA1-mediated disruption of PML NBs involves USP7
To gain insight into the mechanism by which EBNA1 induces

loss of PML NBs and protein, we tested the ability of EBNA1

mutants to disrupt PML NBs after transfection in CNE2 cells

(Figure 2A and 2C). Initially we tested the EBNA1 D325–376

mutant, as this mutation disrupts the interaction of EBNA1 with

cellular chromatin and abrogates the transcriptional activation

function of EBNA1 [27,28]. However EBNA1 D325–376

disrupted PML NBs to the same degree as wildtype EBNA1

indicating that neither transcriptional activation nor strong

chromatin interactions are required for the observed effects. An

EBNA1 mutant, D395–450, that is fully functional for all of the

known functions of EBNA1 (replication, segregation and tran-

scriptional activation) but fails to bind the cellular USP7 protein

was also tested for PML effects [13]. USP7 is known to be partially

associated with PML NBs and associates with another herpesvirus

protein (ICP0 or Vmw110 from herpes simplex virus) that also

disrupts PML NBs through loss of PML protein [29–31]. Unlike

Figure 3. EBNA1 expression diminished PML protein levels. (A) C666-1 cells were treated with siRNA against EBNA1 (siEBNA1) or GFP (siGFP) then
equal amounts of whole cell lysates were Western blotted and probed with an antibody recognizing all PML isoforms, EBNA1 and actin. (B) Equal amounts
of whole cell lysates from CNE2 and CNE2E cells were Western blotted and probed as in A. Lysates from CNE2E cells after one (+) or two (++) rounds of
transfection with siRNA against EBNA1 are also shown (lanes 3 and 4). (C) Lysates from CNE2 cells 48 hrs after transfection with the indicated amounts of
an EBNA1 expression plasmid (OriPE) or the empty plasmid (OriP) were Western blotted for PML, EBNA1, actin or Sp100. (D) CNE2E cells were treated with
MG132 proteasomal inhibitor for 0, 8 or 10 hours then equal amounts of lysates were blotted for PML, EBNA1 and actin.
doi:10.1371/journal.ppat.1000170.g003
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wildtype EBNA1, D395–450 caused no obvious change in the

number of PML NBs or the level of PML protein, suggesting that

USP7 binding might be important for PML disruption.

The role of USP7 in EBNA1-mediated disruption of PML NBs

was further investigated by silencing USP7 by siRNA treatment in

the CNE2E cells that are stably expressing EBNA1. USP7 silencing

restored the number of PML NBs and the level of the PML protein

(Figure 5A and 5B), indicating that EBNA1 does not disrupt PML

NBs in the absence of USP7. Similar experiments were conducted in

which CNE2 cells were transfected with siRNA against USP7 (or

GFP as a negative control) prior to transient expression of EBNA1.

The siUSP7 treatment was confirmed by IF to silence USP7

expression in virtually all of the CNE2 cells prior to transfection of

the EBNA1 expression plasmid (Figure 5C, left panel). Cells

pretreated with siUSP7 had numerous PML NBs regardless of

whether or not EBNA1 was expressed, whereas EBNA1 continued

to diminish PML NBs in cells pretreated with siGFP (Figure 5C,

right panel). Similarly, pretreatment with siUSP7 but not siGFP

interfered with EBNA1-induced loss of PML protein as determined

by Western blotting (Figure 5D). Therefore EBNA1-mediated

disruption of PML NBs requires USP7.

Since USP7 can alter p53 levels [14,32] and p53 induces PML

transcription [33,34], we wanted to ensure that the observed

effects of EBNA1 on PML were not due to interference with p53

stabilization by USP7. Therefore we examined whether the

EBNA1 effects on PML were independent of p53 by expressing

EBNA1 in the p53-null Saos-2 cells. As shown in Figure 6, EBNA1

reduced the number of PML NBs per cell and the level of PML

protein to a similar degree as in the NPC cells lines. Therefore the

disruption of PML NBs by EBNA1 does not involve p53.

EBNA1 interferes with p53 activation, DNA repair and
apoptosis

Considerable data indicate that PML NBs are important for

p53 activation, apoptosis and DNA repair which would have

important consequences for the development of NPC. Therefore

we asked whether the effect of EBNA1 on PML NBs was sufficient

to disrupt these processes. PML NBs are required for the

activation of p53 through acetylation [35,36], and therefore we

compared p53 activation in CNE2 and CNE2E cells after

treatment with the DNA damaging agent etoposide (Figure 7A).

We consistently observed that the EBNA1-expressing cells had an

Figure 4. Interaction of EBNA1 with PML. (A) Immunofluorescence images of CNE2 cells transfected with pc3OriPE and of C666-1 cells are shown
after staining for EBNA1 and PML. The transfected CNE2 cells shown are those expressing very low levels of EBNA1. (B) EBNA1 was
immunoprecipitated from C666-1 cells with anti-EBNA1 antibody (IP:EBNA1). The starting lysate (Input) and protein remaining after IP (Post IP) are
also shown, in each case representing 1/40th of the lysate used in IP. The same lysate was also treated with IgG beads as a negative control (IP:IgG). All
samples were Western blotted using antibodies against EBNA1 or all PML isoforms. In the right panel, the positions of FLAG-tagged PML isoform I
(FLAG-PML I) and PML isoform IV (FLAG-PML IV) expressed in C666-1 cells are shown by Western blotting with anti-FLAG antibody.
doi:10.1371/journal.ppat.1000170.g004

EBNA1 Disruption of PML Nuclear Bodies

PLoS Pathogens | www.plospathogens.org 6 October 2008 | Volume 4 | Issue 10 | e1000170



impaired ability to acetylate p53 (at K382) while the induction of

p53 was affected to a lesser degree. In Hela cells, EBNA1 has no

obvious effect on PML NBs (data not shown) and therefore we

examined the effect of EBNA1 expression on p53 activation in

Hela cells to verify that this effect involved PML NB disruption. As

shown in Figure 7B, p53 acetylation in Hela cells occurred in

response to etoposide treatment at least as efficiently in the

presence of EBNA1 as in its absence. Therefore PML disruption

by EBNA1 appears to be responsible for the lack of p53

acetylation.

We examined the effect of EBNA1 expression on DNA repair

by comparing FACS profiles of CNE2 and CNE2E after inducing

DNA damage with UV or etoposide treatment (Figure 8A).

Previous studies have shown that unrepaired DNA damage is

reflected by the accumulation of cells in S-phase, while cells that

have repaired the damage pass through S and accumulate either in

G2/M or G1 depending on which DNA damage checkpoint has

been activated [37–39]. Hence silencing of PML or a number of

DNA repair proteins has been found to increase the percentage of

cells in S phase after DNA damage [37,39]. Similarly, we

consistently observed that CNE2E cells had a higher fraction of

cells in S phase after UV or etoposide treatment as compared to

CNE2 cells (compare profiles ii and v, and profiles iii and vi in

Figure 8A) even though the cell cycle distribution of the two cell

lines was indistinguishable prior to treatment. In multiple

experiments the percentage of CNE2 cells in S phase after UV

or etoposide treatment was 55.862.5 and 55.461.5, respectively,

while the same treatments in CNE2E cells resulted in S-phase

percentages of 66.562.2 and 91.460.2, respectively. In both

cases, differences with and without EBNA1 are statistically

significant with p values ,0.001. This effect was confirmed to

be due to EBNA1 expression, as down-regulation of EBNA1 in

CNE2E with siRNA reduced the S-phase accumulation after

DNA damage as compared to the control siRNA treatment

against GFP (Figure 8A, compare profiles viii and xi, and profiles

ix and xii). Therefore EBNA1 expression results in an impaired

ability to repair DNA damage, consistent with the disruption in

PML NBs.

Figure 5. Effect of USP7 silencing on PML degradation by EBNA1. (A) CNE2E cells expressing EBNA1 were transfected with siRNA against
USP7 or GFP (negative control) then stained for USP7 and PML. Exposure times of image capture were constant for all samples with the same
antibody treatment. (B) Equal amounts of cell lysates from (A) were analysed by Western blotting with the indicated antibodies. siUSP7-1 and siUSP7-
2 are duplicate samples treated with siRNA against USP7. (C) CNE2 cells were transfected with siRNA against GFP or USP7 (left panel) then were
transfected with EBNA1 expression plasmid pc3OripE and stained for EBNA1 and PML (right panel). Exposure times of image capture were constant
for all samples with the same antibody treatment. (D) Equal amounts of cell lysates from (C) were analysed by Western blotting after pretreatment
with siGFP or siUSP7 followed by EBNA1 expression.
doi:10.1371/journal.ppat.1000170.g005
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The effect of EBNA1 expression in CNE2 cells on apoptosis was

also examined by TUNEL assay. The percentage of cells that

became TUNEL-positive after etoposide treatment was decreased

two-fold in the presence of EBNA1 (Figure 8B), showing that

EBNA1 also interferes with apoptosis.

EBNA1 increases cell survival after DNA damage
We compared the viability of CNE2 and CNE2E cells after

etoposide or UV treatment and found that CNE2E cells had a

somewhat higher survival rate than CNE2 cells (particularly after

etoposide treatment), despite their reduced ability to repair DNA

damage (Figure 8C). This is consistent with the known importance

of PML NBs in apoptosis [40] and the observed inhibition of

apoptosis by EBNA1. The results suggest that EBNA1 promotes

the survival of cells even though they contain DNA damage, which

has important implications for tumorigenesis.

Discussion

We have identified a major effect of EBNA1 expression on host

cell PML NBs in NPC, where EBNA1 expression results in

pronounced loss of PML NBs and the PML protein itself. This

effect has important biological implications due to the strong

association between PML disruption and tumor development.

While initially identified as a gene whose rearrangement leads to

promyelocytic leukemia, it has since been found that loss of the

PML protein is associated with cancer development for a variety of

human tumors [22]. In addition, mice lacking PML develop

normally but their cells are more prone to malignant transforma-

tion [23].

Unlike the results in NPC cells, we have not seen any notable

disruption of PML NBs when EBNA1 is expressed in Hela or 293

cells, suggesting that this effect is specific to particular cell

backgrounds. Indeed a previous study examined PML NBs in B-

cells latently infected with EBV (both latency and I and latency III

forms of infection) and found no obvious difference from

uninfected cells [41]. This ability of EBNA1 to disrupt PML

NBs in cells of the nasopharnyx could be part of the reason that

these cells are particularly susceptible to malignant transformation

by EBV.

We found that EBNA1 is partly associated with PML NBs in a

native latent infection in NPC cells and can physically associate

with at least one PML isoform that appears to be PML IV. We

have also shown that disruption of the PML NBs by EBNA1 is due

to loss of multiple isoforms of the PML protein and that this effect

is proteasome-dependent. This suggests that EBNA1 is targeted to

PML bodies through an interaction with PML IV but, once there,

can promote the degradation of all PML isoforms.

The disruption of PML NBs by EBNA1 requires EBNA1

binding to USP7, a cellular ubiquitin specific protease that is

known to associate with PML NBs [42]. There are several possible

scenarios of the role of the EBNA1-USP7 interaction in PML-

disruption as depicted in Figure 9. In scenario I, EBNA1 mediates

the interaction between a specific PML isoform (ie. PML IV) and

USP7 thereby increasing recruitment of USP7 to PML NBs. USP7

could then promote PML degradation either through its catalytic

activity or through recruitment of additional cellular proteins. It is

not intuitively obvious why deubiquitination would lead to PML

destabilization, however approximately three quarters of USP7 is

comprised of protein interaction domains, so recruitment of

additional cellular enzymes to PML is a viable possibility

[15,17,43–46]. In scenarios II and III, the interaction of EBNA1

with PML NBs depends entirely (scenario II) or partly (scenario

III) on USP7. In these cases, loss of PML may require the

recruitment of additional cellular proteins by EBNA1, since

EBNA1 itself is not known to have any enzymatic activities. For

example, we have previously shown that EBNA1 forms a stable

complex with casein kinase 2 (CK2) [13] and Scaglioni et al [47]

showed that phosphorylation of PML by CK2 targets PML

proteins for ubiquitination and subsequent degradation. Therefore

Figure 6. EBNA1-induced disruption of PML NBs in Saos-2 cells. p53-null Saos-2 cells were transiently transfected with the expression
plasmid with or without the EBNA1 gene as in Figure 2. (A) Cells were stained for EBNA1, PML and DNA (DAPI) and visualized by fluorescence
microscopy. The number of PML NBs per cell were counted and average numbers with standard deviations are shown in the histogram, where ***
indicates p,0.0001. (B) Equal amounts of lysates from the transfected cells were analysed by Western blotting as in Figure 3.
doi:10.1371/journal.ppat.1000170.g006
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it is possible that increased recruitment of CK2 to PML NBs by

EBNA1might give the observed effect.

While additional experiments are required to distinguish the

above scenarios, the involvement of USP7 in PML disruption by

EBNA1 has an interesting parallel with studies of PML disruption

by herpes simplex virus type 1 (HSV-1). In HSV-1 infection, ICP0

(also called VMW110) plays a major role in disrupting PML NBs

by promoting the degradation of PML protein through its action

as an ubiquitin ligase [24,48]. Although unrelated to EBNA1 in its

sequence, ICP0 also binds tightly to USP7 (albeit through a

different USP7 domain than EBNA1 [15]) and this interaction is

required for PML disruption, at least in part because USP7

stabilizes ICP0 by preventing its autoubiquinitation [29,49]. While

EBNA1 and ICP0 may utilize USP7 in different ways, it is striking

that the only two viral proteins known to bind USP7 both require

this interaction to facilitate PML disruption.

PML NBs have been shown to be important for p53 activation

and DNA repair [36,39], prompting us to investigate whether the

degree of disruption of PML NBs by EBNA1 was sufficient to

impair these processes. Indeed both the acetylation of p53 and the

repair of DNA lesions after UV or etoposide treatment were found

to be impaired by EBNA1. EBNA1-expressing cells, however,

survived these treatments as well or better than parental cells, due

to an inhibition of apoptosis which also requires PML NBs

[35,50]. The data as a whole support a model in which EBNA1

contributes to the development of NPC through the disruption of

PML NBs, thereby increasing the accumulation of DNA damage

while promoting cell survival. This model is consistent with reports

of frequent but varying chromosomal aberrations in NPC tumors

[51,52]. PML disruption by EBNA1 also provides a mechanistic

basis for the observation that EBNA1 expression increases the

tumorigenicity of EBV-negative NPC cells [10]. While several

viral proteins are known to promote lytic viral infection through

disruption of PML NBs, our results indicate that viral proteins can

also contribute to carcinogenesis through PML disruption.

Materials and Methods

Cell lines
The Saos-2 p53-negative, human osteoblast cell line was

cultured in DMEM (Sigma) supplemented with 10% fetal calf

serum. The EBV-positive NPC C666-1 cell line and the EBV-

negative NPC cell lines HK1 and CNE2Z (CNE2) (both of which

lost the EBV genomes after growth in culture) have been

previously described [18–20]. C666-1 and HK1 were grown in

HEPES-modified RPMI 1640 (Sigma), while CNE2 was main-

tained in alpha minimal essential media (aMEM, Gibco), in all

cases supplemented with 10% fetal calf serum. To generate the

CNE2E and HK1E cell lines, EBNA1 cDNA was cloned into

pcDNA3.1/hygro (2/2; Invitrogen), and CNE2 and HK1 cells

were transfected with 10 mg of linearized plasmid. Transfected

cells were maintained at low densities in medium supplemented

with hygromycin B (Invitrogen; 0.75mg/mL for CNE2 and

0.5mg/mL for HK1) to allow growth of individual colonies.

Colonies were examined for EBNA1 expression by IF microscopy,

then picked and propagated for further studies in media

containing 0.5 mg/mL (CNE2E) and 0.35 mg/mL (HK1E) of

hygromycin B, respectively.

Transfections and RNA interference
To generate CNE2 or Saos-2 cells transiently expressing

EBNA1, 1.56105 cells were transfected with 2 mg of an EBNA1

expressing plasmid containing EBV oriP, pc3OriPE [53], unless

otherwise indicated, using lipofectamine 2000 (Invitrogen). Where

indicated, the same plasmid expressing EBNA1 mutants D325–

376 or D395–450 was used [13,54], and the same plasmid lacking

EBNA1 cDNA (pc3OriP) was used as a negative control [53]. 48

hrs later, cells were fixed for IF imaging as described below. For

RNA interference experiments, 1.56105 CNE2E or C666-1 cells

were transfected with 50 pmol of siRNA against GFP (GCAAG-

CUGACCCUGAAGUUCAU), against EBNA1 (GGAGGUUC-

CAACCCGAAAUTT) or against USP7 (UCAAGAUGACUAC-

CAGCUG) using 2 mL of lipofectamine 2000. For C666-1 and

one CNE2E sample (Figure 3A and B), cells underwent an

identical second round of siRNA transfection 72 hours after the

first transfection. For Figure 5C, cells were subjected to three

rounds of transfection with siRNA against USP7 or GFP prior to

transfection with pc3OriPE.

Immunofluorescence microscopy
Cells grown on coverslips were fixed with 3.7% formaldehyde in

phosphate buffered saline (PBS) for 20 min, rinsed twice in PBS

and permeabilized with 1% Triton X-100 in PBS for 5min.

Samples were blocked with 4% BSA in PBS followed by

incubation with primary antibodies against EBNA1 (R4 rabbit

serum at 1:300 dilution [13]) and PML (Santa Cruz PG-M3 at

1:50 dilution) and incubation with the secondary antibodies goat

anti-rabbit Alexafluor 555 (Molecular Probes) and goat anti-mouse

Alexafluor 488 (Molecular Probes) in 4% BSA. Coverslips were

Figure 7. Effects of EBNA1 on p53 activation. (A) CNE2 and CNE2E
cells were treated with etoposide (+) or left untreated (2) and equal
amounts of total cell lysates were analysed by SDS-PAGE and Western
blotting for p53 acetylated on K382 and total p53. Actin loading
controls are also shown. (B) Hela cells were transfected with a plasmid
lacking (oriP) or expressing (oriPE) EBNA1 then were treated with
etoposide (+) or left untreated (2). Equal amounts of cell lysate were
then analysed by Western blotting as in A.
doi:10.1371/journal.ppat.1000170.g007
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mounted onto slides using ProLong Gold antifade medium

containing DAPI (Invitrogen). Images were obtained using the

40 x oil objective on a Leica inverted fluorescent microscope and

processed using OpenLAB (ver.X.0) software. PML nuclear bodies

were quantified by counting all visible PML foci in 100 cells.

Western blots
Cells were lysed in 9 M urea, 5 mM Tris-HCl (pH 6.8) and

briefly sonicated. 100 mg of total protein was subjected to 10%

SDS-PAGE and transferred to nitrocellulose. Where indicated,

CNE2E cells were treated with 10 mM MG132 for 8 or 10 hours

prior to lysis. Membranes were blocked in 5% non-fat dry milk in

PBS, then incubated with antibodies against PML (Chemicon

AB1370; 1:2000 dilution), EBNA1 (OT1X at 1:2000; kindly

supplied by Japp Middeldorp), actin (Ab-1, Oncogene Research

Products; 1:20 000), Sp100 (Chemicon 1380, 1:1000 dilution) or

USP7 (rabbit serum against full-length USP7). After washing, blots

were probed with goat anti-mouse peroxidase (1:3000) or goat

anti-rabbit peroxidase (1:5000) from Santa Cruz, then developed

using chemiluminescence reagents (ECL, Perkin Elmer). Mem-

branes were stripped in 0.1 M glycine pH 2.9 for 30 min, washed

in PBS-Tween, blocked and re-probed with the next antibody as

described above.

Experiments in Figure 7 were performed as above except that

some cells were treated with 10 mg/mL of etoposide 24 hrs prior

to harvesting and 80 mg (p53 blot) or 60 mg (acetyl-p53 blot) of

total protein was analyzed by Western blotting using the following

antibodies: PAb 1801 for p53 [55] (a gift from Sam Benchimol)

Figure 8. Effects of EBNA1 on DNA repair, apoptosis and cell survival. (A) CNE2 and CNE2E cells, before and after siRNA treatment for GFP (siGFP;
negative control) or EBNA1 (siEBNA1), were treated with UV or etoposide or left untreated. 24 hrs later cells were fixed, stained with propidium idodide
and analysed for DNA content by FACS. The percentage of cells in each cell cycle stage was determined using Modfit and is shown for each sample. (B)
CNE2 and CNE2E cells were treated with etoposide then analysed by TUNEL assay. Average percentage of TUNEL-positive cells are shown from three
experiments with standard deviation and 0.0001,p,0.001 (**). (C) CNE2 (grey) and CNE2E (black) cells were treated with etoposide (top graph) or UV
(bottom graph) then grown for the indicated number of days. At each time point, cells were incubated with Trypan blue and the percentage of cells that
excluded Trypan blue was determined. Experiments were performed in triplicate and average numbers with standard deviations are shown. The
difference in cell survival with and without EBNA1 3 days post etoposide treatment is statistically significant with a p value of 0.05.
doi:10.1371/journal.ppat.1000170.g008
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and antibody 2525 for acetyl-p53 K382 (Cell Signaling Technol-

ogies). For acetyl-p53 blots, membranes were blocked and

incubated with primary antibody in 5% BSA, 50 mM Tris

pH7.4, 150 mM NaCl, 0.1% Tween-20. The same experiment

was also performed in Hela cells transfected with pc3OriP or

pc3OriPE. In the later case, EBNA1 expression was confirmed in

approximately 80% of the cells by IF prior to etoposide treatment

(10 mg/mL) 48 hours post-transfection. 100 mg of cell lysate was

Western blotted as described above except that the anti-p53

antibody was DO-1 from Santa Cruz (sc-126).

Co-immunoprecipitation
Log phase C666-1 cells were lysed in IP buffer (20 mM Tris-

HCl pH 7.5, 150 mM NaCl, 1 mM MgCl2, 10% glycerol, 1%

Triton X-100, and protease inhibitors) on ice for 30 min. After

centrifugation, the supernatant was pre-cleared with protein A/G

agarose (Santa Cruz) and then equal amounts (4 mgs) were

incubated for 4 hr at 4uC with either mouse IgG coupled to

agarose (Santa Cruz; negative control) or with OT1X EBNA1

monoclonal antibody followed by protein A/G agarose overnight

at 4uC. Beads were collected by centrifugation, washed in IP buffer

then boiled in SDS loading buffer. Immunoprecipitated proteins

were separated by SDS-PAGE and Western blotted as described

above. The positions of PML I and PML IV isoforms on Western

blots was determined by transfecting C666-1 cells with constructs

expressing FLAG-PML I or FLAG-PML IV [56] and analyzing

30 mg of lysate by Western blotting using anti-FLAG antibody

(Abcam AB21536; 1:10,000 dilution).

FACS analysis
CNE2 and CNE2E cells (before and after siRNA treatment)

seeded at 60% confluence in 10 cm dishes were treated with UV

(506102 mJ/cm2) or 10 mg/mL of etoposide. 24 hours later,

adherent cells were harvested, fixed in 70% ethanol, treated with

RNAse (50 mg/mL) at 37oC for 1 hour and stained with

propidium iodide. DNA content was analyzed immediately after

propidium iodide treatment on a FACScalibur (Becton Dickinson,

USA) and cell cycle analysis was performed using Modfit LT 3.1

(Verity Software House).

Apoptosis Assay
CNE2 and CNE2E cells were treated with etoposide as stated

above. 48 hours later, cells were processed for TUNEL staining

using the APO-BrdU TUNEL Assay Kit (Invitrogen, MP23210)

according to the manufacturer’s instructions. Cells were then

mounted on coverslips, counter-stained with DAPI and analyzed

by fluorescence microscopy. Apoptotic index was calculated as the

number of TUNEL-positive cells divided by the total number of

cells. The experiment was done in triplicate and at least 100 cells

were counted for each sample.

Cell viability assay
Cell viability was measured using Trypan blue (Gibco) exclusion

assay as follows: CNE2 and CNE2E cells were seeded in 12-well

plates such that they reached 80–90% confluence at time of

harvesting. 24 hours later, cells were treated with etoposide

(10 mg/mL) or UV (506102 mJ/cm2). After growing for 24, 48

and 72 hours, floating and adherent cells were harvested, washed

in PBS, stained with 0.04% Trypan blue in PBS and counted

immediately. Experiments were done in triplicate and at least 200

cells were counted for each replicate.

Supporting Information

Figure S1 Quantification of EBNA1 levels in NPC cell lines. (A)

C666-1, HK1E, CNE2E and CNE2 cells were lysed in 9 M urea,

10mM Tris pH6.8 and 100 mg of protein from each sample was

analysed by Western blotting using antibodies against EBNA1 and

actin and the ECL Plus system (Perkin Elmer). Positions of the full

length EBNA1 (EBNA FL) expressed endogenously in C666-1 and

recombinant EBNA1 lacking most of the Gly-Ala repeat region

(EBNA1DGA) expressed in HK1E and CNE2E are indicated. (B)

Flourescent signals from each band were quantified on a Typhoon

Imaging scanner using ImageQuant 5.0 software. EBNA1 levels

were normalized to the actin loading control and are shown

relative to the C666-1 value.

Found at: doi:10.1371/journal.ppat.1000170.s001 (0.20 MB TIF)

Figure S2 Quantification of PML mRNA levels in NPC cell

lines. Total RNA from C666-1, CNE2E and CNE2 cells was

harvested using RNeasy mini kit (Qiagen). RNA quality was

assessed by confirmation of intact 28S and 18S ribosomal bands

following agarose gel electrophoresis and ethidium bromide

staining. cDNA was synthesized using 1 mg total RNA and First

Strand cDNA sythesis kit (Fermentas). Quantitative real-time PCR

was performed with 1/5 to 1/20 of the cDNA template and

Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen) in a

Rotorgene qPCR System (Corbett Research). The primer pairs

used to amplify PML mRNA were CGGAGGAGGAGTTC-

CAGTTT and CCACAATCTGCCGGTACAC. b-actin mRNA

was amplified from the same samples using the primers

Figure 9. Models of the EBNA1, USP7 and PML interactions. Three possible interpretations of the data on EBNA1-PML and EBNA1-USP7
interactions at PML nuclear bodies are shown.
doi:10.1371/journal.ppat.1000170.g009
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CATGTACGTTGCTATCCAGGC and CTCCTTAATGT-

CACGCACGAT. PML mRNA levels are shown realtive to b-

actin mRNA.

Found at: doi:10.1371/journal.ppat.1000170.s002 (0.07 MB TIF)

Figure S3 Interactions of EBNA1 with overexpressed FLAG-

tagged PML I and PML IV. CNE2 cells were co-transfected with

pc3oriPE (expressing EBNA1) and plasmids expressing either

FLAG-PML I, FLAG-PML IV or FLAG-tagged lacZ (negative

control). 16 hours later, IPs were performed using anti-FLAG M2

agarose beads. Recovered proteins were immunoblotted for FLAG

and EBNA1. Input samples contain 1/50th the amount of lysate

used in the FLAG IPs.

Found at: doi:10.1371/journal.ppat.1000170.s003 (0.18 MB TIF)
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