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Abstract

Mycobacterium tuberculosis has evolved many strategies to evade elimination by the host immune system, including the
selective repression of macrophage IL-12p40 production. To identify the M. tuberculosis genes responsible for this aspect of
immune evasion, we used a macrophage cell line expressing a reporter for IL-12p40 transcription to screen a transposon
library of M. tuberculosis for mutants that lacked this function. This approach led to the identification of the mmaA4 gene,
which encodes a methyl transferase required for introducing the distal oxygen-containing modifications of mycolic acids, as
a key locus involved in the repression of IL-12p40. Mutants in which mmaA4 (hma) was inactivated stimulated macrophages
to produce significantly more IL-12p40 and TNF-a than wild-type M. tuberculosis and were attenuated for virulence. This
attenuation was not seen in IL-12p40-deficient mice, consistent with a direct linkage between enhanced stimulation of IL-
12p40 by the mutant and its reduced virulence. Treatment of macrophages with trehalose dimycolate (TDM) purified from
the DmmaA4 mutant stimulated increased IL-12p40, similar to the increase observed from DmmaA4 mutant-infected
macrophages. In contrast, purified TDM isolated from wild-type M. tuberculosis inhibited production of IL-12p40 by
macrophages. These findings strongly suggest that M. tuberculosis has evolved mmaA4-derived mycolic acids, including
those incorporated into TDM to manipulate IL-12-mediated immunity and virulence.
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Introduction

Tuberculosis (TB) is the second leading cause of death from an

infectious disease worldwide [1,2]. Mycobacterium tuberculosis is well

adapted to the human host, and possesses a variety of mechanisms

that promote immune evasion and thereby permit latent infection

in the presence of host innate and adaptive immune responses

[3,4]. This latent reservoir of M. tuberculosis can eventually develop

into active disease when the host immune system is compromised

by any of a variety of factors, the most common of which are

aging, malnutrition, and concurrent infection by HIV [5–7].

Currently, the attenuated M. bovis strain, BCG, is the only vaccine

available for routine human immunization. It has had little if any

impact on the increasing global prevalence of TB, in spite of

having been administered to more than a billion people [8]. Thus,

work on developing new and more immunogenic vaccine

candidates is crucial and requires advances in our understanding

of the host-pathogen interaction.

Because phagocytic cells recognize microbes before the

development of specific immunity, the macrophage response to

the infection is critical for the initial local containment of infection

and the subsequent development of adaptive immunity. The

cytokine profile produced by macrophages and other antigen-

presenting cells within the first days or weeks following infection

can define the type of host immunity induced, and thereby

determine its effectiveness for controlling the microbial infection

[9]. A critical cytokine in the control of intracellular infections is

interleukin-12 (IL-12), which is produced mainly by macrophages

and dendritic cells [10]. Members of the IL-12 family, including

IL-12p80, IL-12p70, and IL-23, are central players in various

arms of early nonspecific innate immune resistance and subse-

quent antigen-specific adaptive immune responses to M. tuberculosis

[11–13]. These cytokines are dimers that all share the common IL-

12p40 subunit in association with a different partner, and each has

a different immunoregulatory role during various stages of the

immune response to intracellular pathogens [14]. For example,

during innate immune response, macrophages release IL-12p80,

which is a homodimer of p40 subunits, upon initial infection to

stimulate local recruitment of more macrophages. The IL-12p70

cytokine, a heterodimer of p35 and p40 subunits, induces

macrophage bactericidal activity and also proliferation, cytolytic

activity, and IFNc production by NK cells during the early innate

phase of the immune response. During the induction of the

adaptive response, IL-12p70 produced by macrophages and

dendritic cells plays a central role in polarizing T helper type 1

(Th1) differentiation [10]. In addition to IL-12p70, IL-12p80 also
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has a role in initiating adaptive immunity [15]. Finally,

maintenance and recall responses of immunological memory

require both IL-12p70 and IL-23 (a dimer of p40 and p19) [16].

It is known that mice and humans with mutations in the IL-12p40

or IL-12 receptor genes are highly susceptible to mycobacterial

infection, highlighting the importance of this family of cytokines in

resistance to infection with these bacteria [17], [18]. However, even

in a host that is genetically normal with respect to its IL-12 axis,

virulent M. tuberculosis can evade eradication. This may be explained

by the fact that resistance versus susceptibility to intracellular

pathogens is often determined by a delicate balance between the

cytokines that initiate and those that inhibit immunity. Studies of the

mechanisms of immune evasion by M. tuberculosis have revealed that

one of the strategies used by the tubercle bacillus to resist eradication

is to actively repress macrophage production of IL-12p40 while

stimulating secretion of IL-10, an inhibitor of IL-12 mediated-

immunity [19,20]. This immune evasion mechanism parallels that

proposed for Leishmania and Toxoplasma, another highly persistent

intracellular pathogen [21,22].

Given previous findings on the ability of IL-12 to enhance

protective immunity and extend survival in mice and humans

infected with M. tuberculosis [12,23,24], and the discovery that M.

tuberculosis represses IL-12p40 production, we hypothesized that M.

tuberculosis actively dampens the production of IL-12p40 cytokine

in infected macrophages. To identify the mechanisms and effector

molecules responsible for this, we screened a transposon library of

M. tuberculosis mutants using a macrophage cell line expressing a

reporter gene for monitoring IL-12p40 expression. This identified

a major role in IL-12p40 repression for the mmaA4 (methoxy

mycolic acid synthase 4) gene, which encodes the methyl

transferase that introduces oxygen-containing modifications of cell

wall mycolic acids. Mutants in which mmaA4 was inactivated

induced more IL-12p40 from murine macrophages, and were

attenuated for virulence in mice. The attenuation of virulence was

reversed in IL-12p40-deficient mice, indicating that this attenu-

ation depended on IL-12p40-mediated immunity. Furthermore,

the abundant surface and secreted glycolipid trehalose 6,69-

dimycolate (TDM) was identified as an effector molecule for the

repression of IL-12p40 production by M. tuberculosis. However,

purified TDM from the DmmaA4 mutant, which contained

mycolates that were devoid of distal oxygen-containing modifica-

tions, stimulated markedly increased production of IL-12p40 and

TNF-a compared to the levels resulting from stimulation with

TDM from wild type M. tuberculosis. Our data identify the role of

mmaA4-dependent mycolic acid modifications in the repression of

IL-12p40 production, thus establishing part of the genetic and

mechanistic basis for an important aspect of the immune evasion

strategy of M. tuberculosis.

Results

Isolation of M. tuberculosis mutants defective in
repression of IL-12p40 production

To screen for mutants of M. tuberculosis that were defective in

repression of IL-12p40 production, we generated a macrophage

reporter cell line to monitor IL-12p40 expression. Previously, we

described a Raw 264.7 murine macrophage cell line containing a

stably integrated construct of the minimal IL-12p40 promoter

fused to GFP [25]. Since the cis elements required for regulation of

the IL-12p40 promoter in response to M. tuberculosis infection are

not known, we engineered another Raw 264.7 line containing a

stable integration of the full-length IL-12p40 promoter fused to

GFP. Flow cytometry analysis showed that GFP was not

transcribed at baseline in this macrophage line, but was induced

upon treatment with lipopolysaccharide (LPS) or infection with E.

coli (data not shown). Following with mycobacterial strains and

species that varied in their virulence, we observed by flow

cytometry the levels of GFP induction that followed a pattern

similar to what was observed using a capture ELISA to quantitate

IL-12 p40 levels in supernatants of similarly infected bone

marrow-derived macrophages (Figs. 1A and 1B). Both the GFP

expression of the reporter macrophage cell line and supernatant

levels of IL-12p40 in primary macrophage cultures confirmed that

the avirulent M. smegmatis strain was a robust inducer of IL-12p40

production. In contrast, the virulent clinical (Beijing HN878) and

laboratory (H37Rv) strains of M. tuberculosis induced only

minimally detectable transcription and secretion of this cytokine,

consistent with previously reported results [26,27].

To explore the hypothesis that the low levels of IL-12p40

produced by macrophages infected with M. tuberculosis resulted

from active inhibition of IL-12p40 transcription, we used the

reporter cell line to screen for mutant bacilli that had lost this

function. Since a 2-14-fold difference in GFP expression could be

detected by this reporter cell line (Fig. 1B and data not shown), the

system was sensitive enough to allow for detection of incremental

changes in the promoter activity. A library of transposon insertion

mutants of the sequenced M. tuberculosis H37Rv strain was created

using the Himar-1 transposon and arrayed as individual clones in

96-well plates. We used this transposon to generate M. tuberculosis

mutants because it inserts randomly into frequently-occurring TA

dinucleotides [28]. Approximately 2880 transposon mutants were

infected individually into the macrophage reporter cells, and

screened by using a fluorimetric assay to identify GFP expression

that was greater than a baseline established by wild type H37Rv

infection. A primary screen identified three mutants of interest,

which were found by sequencing of the transposon insertion sites

to have interruptions in open reading frames Rv0643c, Rv0409,

and Rv3435c. Among these candidate genes, Rv0643c is the most

extensively characterized, and is annotated as the methoxy mycolic

acid synthase 3 (mmaA3) gene. Rv0409 is also known as ackA and

Author Summary

Currently, one-third of the world’s population has tuber-
culosis (TB). TB, an ancient foe, has reemerged to become
a threat to global public health. A central problem in TB
research is to investigate why the host immune system
cannot sterilize the infection caused by the bacterium
Mycobacterium tuberculosis. Interleukin-12 (IL-12), a mole-
cule produced by macrophages in response to pathogens,
plays an important role in orchestrating sterilizing
immunity. However, M. tuberculosis has evolved mecha-
nisms that block IL-12 production and thereby assist the
bacterium in establishing chronic infection. We discovered
that mutation of the mycobacterial mmaA4 gene, which
controls the chemical modification of complex lipids of M.
tuberculosis called mycolic acids, renders the bacterium
unable to block IL-12 production. Mycolic acids incorpo-
rated into a secreted bacterial molecule called trehalose
dimycolate (TDM) from M. tuberculosis had the ability on
their own to suppress the production of IL-12 by activated
macrophages; we also showed that TDM from the mmaA4
mutant of M. tuberculosis is attenuated for suppression.
Our results identify a critical part of the genetic basis and
mechanism for an important immune evasion function in
M. tuberculosis, and should contribute to the design of
future vaccines and immunotherapies for disease caused
by this pathogen.
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encodes a putative acetate kinase, while Rv3435c encodes a

predicted transmembrane protein of unknown function.

Analysis of transposon mutants and identification of
mmaA4 as a locus involved in repression of IL-12p40
responses in macrophages

A secondary screen using analysis of the infected macrophage

reporter cells by FACS confirmed that the three mutants identified

in the primary screening reproducibly stimulated enhanced GFP

expression, with the clone bearing a transposon insertion in the

mmaA3 gene showing the highest GFP expression (Fig. 1C). In a

tertiary screen for IL-12p40 production by ELISA of supernatant

levels from bone marrow-derived macrophages infected with these

mutants, the mmaA3 mutant again showed increased IL-12p40

production. In contrast, the ackA and Rv3435c mutants showed

inconsistent results in the tertiary screening with primary

macrophages (data not shown), and thus were not analyzed

further. To confirm and further evaluate the role of mmaA3 in

modulating IL-12p40 expression, the mmaA3 gene was deleted

from M. tuberculosis H37Rv by specialized transduction [29]. Since

the transcriptional regulation of the mmaA4 gene immediately

downstream of mmaA3 could also have been compromised by the

transposon insertion in mmaA3, we also generated and studied an

M. tuberculosis strain with deletion in the mmaA4 gene.

Using an ELISA to quantitate IL-12p40 in the medium of bone

marrow-derived macrophage cultures infected with either the

DmmaA3 or DmmaA4 mutants, we observed that infection of

macrophages with the DmmaA3 mutant showed variable increases

in IL-12p40 production (data not shown). In addition, when grown

on agar plates, the DmmaA3 mutant showed a mixture of both

rough and smooth colony morphologies (data not shown),

indicating that phenotypic switching between these two morphol-

ogies was occurring frequently during culture and may have

accounted for the variable effects on IL-12p40 induction. Because

of this potentially confounding variable and the inconsistent effects

on IL-12p40 production, no additional studies were pursued with

the DmmaA3 mutant and all subsequent work focused on the

DmmaA4 mutant.

In contrast to DmmaA3 infected macrophages, bone marrow-

derived macrophages infected with the DmmaA4 mutant showed a

reproducible increase in both IL-12p40 and TNF-a production,

compared to wild type M. tuberculosis. This phenotype was reversed

by complementation using chromosomal insertion of a single copy

of the wild type mmaA4 gene (Fig. 2). IL-12p40 and TNF-a
production in macrophages infected with the DmmaA4 mutant

increased over time, and similar cytokine increases were observed

for bone marrow-derived macrophages from two different mouse

strains (i.e., BALB/c in Fig. 2, and C57BL/6 in Fig. S1). It is

known that dendritic cell also produce IL-12p40 following

infection with M. tuberculosis [19,30]. To examine dendritic cell

responses, bone marrow-derived dendritic cells were infected with

the parental, mutant, or complemented strain. Dendritic cells

infected with the DmmaA4 mutant produced copious amounts of

IL-12p40. This robust production of IL-12p40 was also observed

for dendritic cells infected with wild type or complemented strain

(Fig. S2A). Thus, the DmmaA4 mutant selectively effects macro-

phage cytokine production.

The DmmaA4 mutant maintained stable colony morphology

with routine passage, showing a smooth colony morphology with

ruffled edges when plated on media containing the detergent

Tween-80 (Fig. 3). This was distinctly different from the rough

colony morphology observed with similarly cultured wild type M.

tuberculosis. This difference in colony morphology was reversed by

complementation of the DmmaA4 mutant (Fig. 3). The growth rate

of the DmmaA4 mutant in liquid culture was equivalent to that of

wild type (data not shown).

Figure 2. Increased induction of IL-12p40 and TNF-a by the
DmmaA4 M. tuberculosis mutant in bone marrow-derived
macrophages. Bone marrow-derived macrophages from BALB/c mice
were infected with wild type M. tuberculosis H37Rv, the DmmaA4
mutant, or the complemented DmmaA4 strain at an MOI of 10, or left
untreated (UT). Conditioned media from macrophage cultures were
harvested at 24, 48, and 72 hr post-infection. IL-12p40 and TNF-a
production were determined by ELISA. ***, p,0.001 (two-way ANOVA,
Bonferroni post-tests). Values are the means6SD of triplicate samples
and are representative of 3 separate experiments.
doi:10.1371/journal.ppat.1000081.g002

Figure 1. Macrophages infected with virulent strains of M. tuberculosis produced significantly less IL-12p40 than avirulent strain and
candidate mutants. (A) BALB/c bone marrow-derived macrophages were infected at an MOI of 3 or an MOI of 10 with virulent clinical (Beijing/W
(HN878)) or laboratory (H37Rv) strains of M. tuberculosis, with the avirulent mycobacterial species M. smegmatis, or left untreated (UT). IL-12p40 from
conditioned media harvested for 16 to 24 hr was analyzed by ELISA. At an MOI of 10, M. smegmatis induced significantly more IL-12p40 than virulent
M. tuberculosis Beijing and M. tuberculosis H37Rv (***, p,0.001; two-way ANOVA, Bonferroni post-tests). Values are the means6SD for triplicate
samples and are representative of 3 separate experiments. (*), below limit of detection. (B) Evaluation of IL-12p40 promoter activity in macrophages
infected with virulent or avirulent strains of mycobacteria. The -800+55 IL-12p40-GFP Raw 264.7 cell line was infected at an MOI of 3 or 10 with
virulent M. tuberculosis Beijing/W (HN878), H37Rv, or M. smegmatis, or left untreated (UT). Cells were harvested for 16 to 24 hr following infection to
measure GFP expression by flow cytometry. Top: sample dot plots are shown for infections at MOI of 3 or 10, as indicated. (1) Uninfected; (2) and (5),
M. tuberculosis Beijing/W (HN878); (3) and (6), M. tuberculosis H37Rv; (4) and (7), M. smegmatis. Bottom: graph of mean fluorescence intensity (MFI)
values for GFP expression. ***, p,0.001 (two-way ANOVA, Bonferroni post-tests). Values are the means6SD of triplicate samples and are
representative of 3 separate experiments. *, below limit of detection. (C) Transposon insertion mutants of M. tuberculosis that induced increased
expression of IL-12p40 in macrophage reporter cell line. Secondary screen of expanded cultures of candidate transposon mutants. Transposon (Tn)
insertion mutants in the indicated genes were used to infect the 2800+55 IL-12p40-GFP Raw 264.7 cell line at an MOI of 10. Flow cytometry analysis
was used to analyze GFP expression of infected macrophages. One-way ANOVA analysis showed that the difference in mean fluorescence intensity
(MFI) values for the entire set was statistically significant (p,0.05). Values are the means6SD of triplicate samples and are representative of 2 separate
experiments.
doi:10.1371/journal.ppat.1000081.g001
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Previous studies of mycolic acids synthesized by the mmaA4

mutant (also known as hma, for hydroxyl mycolic acid synthase) or by

using the expression of the M. tuberculosis mmaA4 gene in M.

smegmatis, provided strong evidence that the enzyme encoded by

this locus is responsible for introducing the methyl and adjacent

hydroxy groups on the distal meromycolate chain of the common

precursor for methoxy- and keto-mycolic acids [31,32]. This was

also supported by analysis of mycolic acid and major extractable

lipids in the wild type, DmmaA4 mutant, and complemented strains

in this study (Figs. S3 and S4). Additionally, our finding that

growth of the DmmaA4 mutant in the presence of Tween-80 caused

changes in colony morphology was consistent with a significant

alteration in the lipid composition of the cell wall [33], which

would be expected given that mycolates are among the most

abundant cell wall lipids.

Increased induction of IL-12p40 and TNF-a by trehalose
6,69 -dimycolate (TDM) from the DmmaA4 mutant

A small but significant quantity of mycolic acids are found

noncovalently associated with cell wall glycolipids; the most abundant

of these is TDM [34]. Since TDMs are released into the cytoplasm of

macrophages infected with mycobacteria, this suggested that the

alterations in cytokine production seen with the DmmaA4 mutant

might be due to changes in the mycolic acids incorporated into its

TDMs [35]. This possibility was studied by comparing the cytokine

responses of macrophages to TDMs purified from wild type and from

DmmaA4 mutant M. tuberculosis. Time course and dose response

studies with purified TDM from either wild-type or the DmmaA4

mutant clearly showed that the DmmaA4 TDM mutant induced

significantly more IL-12p40 and TNF-a than did wild type TDM

(Fig. 4A). IL-12p40 production was detected at 22 hr in conditioned

media from macrophages that were treated with DmmaA4 TDM, and

further increased 4-fold by 44 hr. TNF-a was detected at 22 hr, with

no further increase thereafter (Fig. 4B). In contrast, after 22 to 44 hr

of incubation with wild type TDM, production of IL-12p40

remained constant and was substantially less then that stimulated

by DmmaA4 TDM (Fig. 4A). By comparison, IL-12p40 and TNF-a
production increased with the addition of increasing amounts of

DmmaA4 TDM to the cultures, whereas wild type TDM did not show

a dose dependency over the range of TDM concentrations tested

Figure 3. Changes in colonial morphology following deletion
of mmaA4 gene. Colonial morphologies of bacteria grown on 7H10
plates containing 0.05% Tween-80. Photographs were taken after 2
months of growth. (A) wild type M. tuberculosis H37Rv (B) DmmaA4
mutant (C) DmmaA4 complemented. Bar is 1 cm.
doi:10.1371/journal.ppat.1000081.g003

Figure 4. Purified TDM from DmmaA4 mutant stimulated macrophages to produce IL-12p40. (A) Bone marrow-derived macrophages were
treated with 5 mg of purified M. tuberculosis TDM (wild type TDM) or mutant TDM (DmmaA4 TDM). Cytokines in conditioned media were harvested at 22
and 44 hr post-TDM treatment. Supernatants were analyzed for the presence of IL-12p40 and TNF-a by ELISA. Vehicle treatment is the solvent in which the
TDM was dissolved. Statistically significant differences for DmmaA4 TDM compared to wild type TDM are indicated by asterisks as follows: *, p,0.05 (*); **,
p,0.01; ***, p,0.001 (two-way ANOVA, Bonferroni post-tests). Values are the means6SD of triplicate samples and are representative of 3 separate
experiments performed on 2 independent batches of purified TDMs. (B) Dose responses to TDM purified from wild type M. tuberculosis H37Rv (wild type
TDM) or DmmaA4 mutant (mmaA4 TDM). Bone marrow-derived macrophages were treated with varying doses of TDM purified from wild type or
DmmaA4 mutant M. tuberculosis. Conditioned media were assayed for cytokines at 44 hr by ELISA. Symbols as in (A); values are the means6SD of triplicate
samples and are representative of 2 separate experiments performed on 2 independent batches of purified TDMs.
doi:10.1371/journal.ppat.1000081.g004
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(Fig. 4B). Similar differences in cytokine production by macrophages

treated with trehalose monomycolate (TMM) from the mutant and

wild type strains were observed (Fig. S5). These findings indicated

that the increased macrophage cytokine production following

infection with DmmaA4 mutant bacteria could potentially have been

mediated by the release of modified TDMs.

Inhibition of IL-12p40 production in macrophages by
TDM of wild type M. tuberculosis

The differences in cytokine production observed for macrophages

treated with TDM-containing oxygenated mycolic acids versus

mutant TDMs lacking oxygenated mycolic acids suggested a possible

inhibitory effect of the oxygenated mycolic acids on IL-12p40

responses. To test this, we analyzed the effects of mixing wild type

TDM and DmmaA4 TDM on macrophage cytokine responses. This

experiment revealed that combining the two TDMs led to significant

inhibition of the IL-12p40 response stimulated by the mutant TDM

alone (Fig. 5A, left). Interestingly, this apparent inhibition of cytokine

production was not observed for TNF-a production, which was

actually slightly enhanced when the TDMs from wild type and

mutant bacteria were combined (Fig. 5A, right).

To further assess this apparent repression of IL-12p40 production

by wild type but not by DmmaA4 mutant TDMs, we examined the

impact of each on IL-12p40 production in response to E. coli

lipopolysaccharide (LPS). This analysis showed that TDMs from

both sources reduced the LPS-induced IL-12p40 response, but that

wild type TDM was significantly more potent in this regard than was

DmmaA4 TDM (Fig. 5B, left). In contrast, we observed that neither

type of TDM repressed the LPS-induced TNF-a production (Fig. 5B,

right). In fact, a trend was observed of increased stimulation of TNF-

a production by the mutant, as compared to the wild type, TDM.

Taken together, these data suggested that the TDM of wild type M.

tuberculosis was a significant mediator of IL-12p40 repression in

macrophages, whereas the TDMs of the DmmaA4 mutant, which

lack keto- and methoxy-mycolates, were much less potent in this

regard. In addition, it was apparent from these results that wild type

TDMs possessed both weak stimulatory and strong inhibitory

activity for macrophage production of IL-12p40, whereas the

DmmaA4 TDM was significantly more stimulatory and had reduced

capacity to inhibit IL-12p40 responses.

IL-12p40 dependent attenuation of virulence of the
DmmaA4 mutant in mice

The increased IL-12p40 and TNF-a observed in macrophages

infected with DmmaA4 M. tuberculosis or treated with its TDM could

be hypothesized as potentially having either of two opposing

Figure 5. Purified wild type M. tuberculosis TDM inhibits macrophage IL-12p40 induction. (A) Wild type M. tuberculosis H37Rv TDM
(wtTDM) dampens IL-12 production induced by DmmaA4 mutant TDM. Bone marrow-derived macrophages were incubated with DmmaA4 TDM
alone or with a mixture of purified wild type TDM and DmmaA4 TDM. IL-12p40 and TNF-a were measured in culture supernatants by ELISA. *, p,0.05
(one-way ANOVA, Bonferroni post-tests). Values are the means6SD of triplicate samples and are representative of two separate experiments
performed on at least two independent batches of purified TDM. (B) M. tuberculosis TDM (wtTDM) dampens IL-12 production induced by LPS. IL-12
p40 and TNF-a accumulation was measured by ELISA in supernatants of bone-marrow derived macrophages stimulated with LPS alone, or with LPS
combined with either wild type TDM or DmmaA4 TDM. *, p,0.05; **, p,0.01 (one-way ANOVA, Bonferroni post-tests). Values are the means6SD of
triplicate samples and are representative of 3 separate experiments performed on at least 2 independent batches of purified TDM.
doi:10.1371/journal.ppat.1000081.g005

mmaA4-Derived TDM Represses IL12p40

PLoS Pathogens | www.plospathogens.org 6 June 2008 | Volume 4 | Issue 6 | e1000081



outcomes in vivo. The increases in these cytokines could either

induce a protective immune response and improved host survival,

or could lead to a deleterious exacerbation of immunity with tissue

damage, contributing to poor outcome. To distinguish between

these two possibilities, we infected immunocompetent C57BL/6

mice with the DmmaA4 mutant and compared their survival rate to

that of mice infected with wild type (H37Rv) M. tuberculosis or the

complemented DmmaA4 strain. As shown in Fig. 6A, all mice

infected with wild type M. tuberculosis died by approximately 225

days post-infection. In contrast, all mice infected with the DmmaA4

mutant survived 450 days post-challenge, while complementation

of DmmaA4 mutation restored virulence to the mutant.

To examine whether the attenuation in virulence observed for

mice infected with the DmmaA4 mutant was dependent on IL-

12p40, we assessed the survival rate of IL-12p40 deficient mice

infected with wild type M. tuberculosis, the DmmaA4 mutant, or the

complemented mutant. IL-12p40-deficient mice infected with wild

type M. tuberculosis or the complemented mutant strain all died

between 45 and 60 days. Noticeably, IL-12p40-deficient mice

infected with the DmmaA4 mutant survived only slightly longer

(p = 0.08 by Logrank test, compared to wild type M. tuberculosis

infected animals), with all of these animals dying by 62 days post-

infection (Fig. 6B). This finding was consistent with the conclusion

that the attenuation of the DmmaA4 mutant in vivo was dependent

on the presence of a normally functioning IL-12p40 gene as well as

on the ability of this mutant to elicit a more robust IL-12 response.

This in vivo study provided additional support for the view that the

repression of IL-12p40 by mycolic acids with oxygen-containing

modifications plays a major role in immune evasion that leads to

the virulence of M. tuberculosis.

Figure 6. Requirement of IL-12p40 for attenuation of virulence of M. tuberculosis DmmaA4. (A) Survival of mice infected with wild-type M.
tuberculosis H37Rv, the DmmaA4 mutant, or the complemented DmmaA4 mutant. Ten mice each were infected with approximately 100 CFU via the
aerosol route and their survival times were recorded. The difference between the survival curves of DmmaA4 infected mice and that of wild type or
complemented mutant-infected groups is highly significant (Logrank test p,0.0001). Results are representative of 2 independent experiments. (B)
Survival of IL-12p40-deficient mice infected with wild-type M. tuberculosis H37Rv, the DmmaA4 mutant, or the DmmaA4 complement. Five mice were
infected for the mutant and the complemented groups, and four for the wild-type group, with approximately 125 CFU via the aerosol route, and their
survival times were recorded. There was no significant difference in survival curves for DmmaA4-infected animals compared to wild type- or
complemented mutant-infected animals (Logrank test p = 0.08). Survival study shown is from one of two independent experiments.
doi:10.1371/journal.ppat.1000081.g006
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Discussion

M. tuberculosis has evolved strategies to evade the antimicrobial

effects of IL-12-induced immunity, including selective repression

of IL-12p40 expression in macrophages [19,20]. To identify the

factor(s) involved in this evasion strategy, we screened for mutants

that induced IL-12p40, and identified the M. tuberculosis mmaA4

gene as a key locus involved in modulation of IL-12p40. We

demonstrated that infection of macrophages with the DmmaA4

mutant of M. tuberculosis H37Rv resulted in production of more IL-

12p40. In addition, our results strongly suggest that this enhanced

induction of IL-12p40 could be mediated by the mycolate-

containing glycolipid TDM, which is known to be secreted as a

potential immunomodulator into the cytosol of infected macro-

phages. Consistent with this view, we also showed that TDM from

wild type M. tuberculosis repressed macrophage IL-12p40 produc-

tion. To our knowledge, this is the first demonstration of such

inhibitory activity for TDMs of M. tuberculosis, and also the first

data to implicate the methoxy- and keto- modifications of the

mycolates in TDM in the expression of this inhibitory activity on

macrophages.

Consistent with findings reported in the literature that M.

tuberculosis does not repress IL-12 production in dendritic cells, we

found that dendritic cells produced similar amounts of IL-12,

whether infected with the wild type, the complemented strain, or the

DmmaA4 mutant. Additionally, dendritic cells treated with TDM

produced levels of IL-12 comparable to those resulting from LPS

treatment. Thus, the mmaA4 mutation has a selective effect on

macrophages. It is interesting to note that suppression of IL-12

production in macrophage, but not dendritic, cells as an immune

evasion mechanism has also been observed for other well-

characterized persistent intracellular pathogens, such as, Leishmania

and Toxoplasma [21,22].

Two independent reports have shown that constitutive expres-

sion of the IL-12p40 gene in mice did not improve host immunity

against M. tuberculosis [36,37]. Nevertheless, IL-12 is necessary and

sufficient for achieving normal levels of protective host immunity

against M. tuberculosis and other mycobacteria [11,12,24]. This

disparity between a protective response when IL-12 is produced at

the time of infection and a lack of enhanced immunity when IL-12

is constitutively expressed, underscores the importance of temporal

and spatial regulation of IL-12p40 expression during infection.

Thus, any perturbation of such regulation, such as constitutive and

generalized expression, or M. tuberculosis-mediated repression,

could shift the balance toward a suboptimal induction of host

immunity. In the current study, we showed that the ability of M.

tuberculosis to interfere with normal production of IL-12p40 was

dependent on its production of mycolic acids with distal chain keto

or methoxy groups, and that TDMs containing such modified

mycolates could be the effector molecules for this immune evasion

mechanism of M. tuberculosis. Specifically, our data suggest that M.

tuberculosis may have evolved keto- and methoxy-modification of

the mycolic acids incorporated into TDM in order to manipulate

IL-12p40-mediated immunity in the host macrophages. We

predicted that the removal of such IL-12p40 inhibitory compo-

nents of M. tuberculosis would lead to a decrease in bacterial burden

and would increase host survival. Indeed, Dubnau et al. previously

showed attenuation of growth of the DmmaA4 mutant (also known

as hma) in a mouse model of M. tuberculosis infection. Extending this

observation, our data demonstrated that mice infected with the

DmmaA4 mutant survived 400 days, at which time the experiment

was terminated. Moreover, the attenuation depended on IL-

12p40-mediated immunity. As part of the mechanism of M.

tuberculosis pathogenesis, our results provide new insights into the

link between oxygenated mycolic acids on TDM and the

suppression of IL-12p40-mediated immunity contributed by

macrophages.

Mycolic acids are long-chain a-alky ß-hydroxy fatty acids

unique to mycobacteria, and they comprise approximately 30% of

the dry weight of M. tuberculosis [34]. Structurally, the mycolic

acids can be broadly distinguished into two classes, de-oxygenated

(cyclopropyl) and oxygenated (keto and methoxy), based on the

chemical functional group at the distal position of their long

meromycolate chains. Several cyclopropane synthetases and

methyl transferases are involved in the introduction of these

functional groups, including the so-called methoxy mycolic acid

synthases encoded by the mmaA3 and mmaA4 genes that were the

focus of our current study. While mycolates are found covalently

attached to the arabinogalactan of the M. tuberculosis cell wall, they

also have an important role as a component of several extractable

cell wall glycolipids, such as TMM and TDM. Significantly, both

of these glycolipids are shed from the mycobacterium into the

cytoplasm of infected macrophages, and they are widely believed

to play a role in modulating many of the cellular processes that

occur in the M. tuberculosis-infected mammalian host [35].

Recently, there has been increased appreciation of the specific

bioactivities associated with each functional group. For example,

TDM purified from the DcmaA2 mutant of M. tuberculosis which

lacks trans-cyclopropanation of mycolic acids stimulated increased

TNF-a production by macrophages [38]. On the other hand,

TDM which lacks both cis- and trans-cyclopropanation, as do

those isolated from the DpcaA mutant, caused delayed TNF-a
production [39]. Interestingly, cyclopropanation of mycolic acid

affects only TNF-a, but not IL-12p40, production by macro-

phages.

Our data extend earlier characterizations of the biological

activities of TDM and explore the previously uncharacterized role

of the distal keto and methoxy groups that are missing from the

mycolic acids incorporated in TDMs of the DmmaA4 mutant.

Previously, Oswald et al. reported that peritoneal macrophages

isolated from mice showed activation of transcription of IL-12p40

ex vivo when treated with TDM purified from M. tuberculosis [40].

The findings of these investigators are consistent with our

observation that wild type TDM induced low levels of IL-12p40

production by macrophages. In addition, by comparing the effects

of wild type and DmmaA4 TDMs on macrophage production of IL-

12p40, we uncovered an underappreciated novel repressing

function for wild type TDM. This was evident in the ability of

wild type TDM to significantly dampen LPS-induced IL-12p40

production. Since LPS signals mainly through the TLR4 receptor

and wild type TDM bioactivity has been found to be independent

of TLR4 signaling, it is unlikely that inhibition of LPS-mediated

IL-12p40 production resulted from competition between wild type

TDM and LPS for the TLR4 receptor [41]. In comparison,

DmmaA4 TDM was attenuated in its ability to repress induction of

IL-12p40 by LPS, and DmmaA4 TDM was also more directly

stimulatory than wild type TDM with regard to activating

macrophage production of IL-12p40.

It is likely that the different biological activities observed for

TDMs from wild type versus those from DmmaA4 bacteria were

based on the chemical and structural differences conferred by the

functional groups of their mycolates. In particular, while the lack

of methoxy- and keto- groups may have been responsible for the

loss of ability to repress the activation of IL-12 transcription, it is

also possible that the novel appearance of epoxy mycolates that we

observed in the DmmaA4 mutant TDM accounted for at least part

of its increased stimulatory effect. Although entirely speculative at

this point, this possibility is suggested by the fact that the epoxide
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functional group is highly reactive, and may thus interact more

avidly with cellular components that are normally not engaged

during M. tuberculosis infection. At present, it is not technically

feasible to purify TDMs based on their precise mycolate

composition into separate homogeneous groups, and future studies

using chemically synthesized TDMs with precisely fixed mycolate

structures may be required to clarify the cytokine-inducing or -

repressing activity of each mycolic acid functional group when

associated with different TDMs.

Previous studies focused on transcriptional profiling of M.

tuberculosis in the lungs of infected mice have shown that the mmaA4

gene is upregulated in vivo, compared to its level in bacteria

growing in culture [42]. This observation suggests the interesting

possibility that M. tuberculosis remodels its mycolic acid composition

as a counter-response to host immunity. In support of this idea,

analysis of mycolic acid production during infection has shown

that M. tuberculosis synthesizes more keto-mycolates following

macrophage infection [43]. Evading host immunity by modifying

bacterial components that interact with the host is a strategy

common among opportunistic bacteria that cause chronic

infection. For example, Pseudomonas aeruginosa (associated with

cystic fibrosis) and Porphyromonas gingivitis (associated with peri-

odontal disease) have naturally occurring variants of LPS

structures that antagonize cytokine production [44], [45].

Additionally, Helicobacter pylori (associated with peptic ulcer disease)

flagellin contains natural modifications which allow the bacterium

to evade detection by the immune system [46]. A prominent

theme emerging from studies of immunologically active glycolipids

in M. tuberculosis is that this pathogen has evolved a number of

mechanisms for modifying these compounds to reduce their

recognition by the innate immune system and dampen their

tendency to stimulate cytokine production. In addition to the

modification of mycolic acids in TDM, the modification of M.

tuberculosis lipomannan (LM) by attachment of a large arabinan to

generate lipoarabinomannan (LAM) also may represent a strategy

designed to block the ability of a mycobacterial glycolipid to

activate IL-12p40 production [25,47]. Similarly, the phenol group

on phenolic glycolipid alters cytokine production of macrophages.

Absence of this phenol group in mutants lacking the pks 1–15 gene

cluster abrogates cytokine-repressing activity, and leads to

attenuation of virulence with extended survival in mouse infection

studies [48].

Our current findings add to a growing literature demonstrat-

ing that M. tuberculosis has evolved a repertoire of molecules that

disrupt macrophage effector mechanisms. In addition to our

current findings for TDM, the ESAT-6 protein of M. tuberculosis

also suppresses IL-12p40 [49,50]. This suppression of macro-

phage IL-12 production is likely to be responsible for increasing

bacterial survival during innate immune response, given the

critical role of IL-12p40 as a macrophage chemoattractant and

in interferon gamma production [51–54]. By expressing various

IL-12 inhibitors that might function at different times and locales

during the course of the infection, M. tuberculosis is well adapted

to survive even in the face of a normal host immune response.

We believed that additional bacterial components of M.

tuberculosis involved in IL-12p40 repression could be revealed by

extending our screening approach to saturation. The identifica-

tion and removal of mycobacterial genes involved in the

inhibition of important cytokine responses, such as we have

demonstrated in the current study for mmaA4, should provide a

straightforward and rational approach for creating more

immunogenic strains of attenuated mycobacteria that may

ultimately yield more effective vaccines and immunotherapies

for the prevention of tuberculosis.

Materials and Methods

Bacterial cultures
Cultures of mycobacteria were routinely grown in 7H9-C media

which contained Middlebrook 7H9 media supplemented with

OADC (oleic acid/albumin/dextrose/catalase) (Difco, Becton-

Dickinson), 0.5% Glycerol, and 0.05% Tween-80. Colony

morphologies for wild type and mutant M. tuberculosis strains were

observed by plating bacterial cultures on Middlebrook 7H10 plates

supplemented with OADC, 0.5% glycerol, and 0.05% Tween-80.

For mutant strains, 50 mg/ml of hygromycin was included in the

media.

Differentiation of bone marrow-derived macrophages
and dendritic cells from BALB/c or C57B6 mice

Six-to-eight-week-old female BALB/c mice were purchased

from Jackson Laboratory (Bar Harbor, ME). Bone marrow cells

were flushed with phosphate buffered saline (PBS) from the femurs

of mice and cultured in Dulbecco’s Modified Eagle Medium

(DMEM), supplemented with 10% heat-inactivated fetal calf

serum (FCS) plus 20% conditioned medium from a culture of

L929 cells (as a source of M-CSF), for 7 days at 37uC, 5% CO2.

Bone marrow-derived macrophages were harvested on day 6 to

plate for infection with different M. tuberculosis strains on day 7.

Bone marrow-derived dendritic cells were differentiated by

methods described by Lutz, MB et al. Briefly, bone marrow cells

were seeded at 36105 cells/100 mm petri dish. The cells were

differentiated in the presence of 10 ng/ml GM-CSF (Peprotech).

Media were changed every two days. Cells (1.56105/200 ul

media) were seeded into 48 wells on day 7 and infected on day 8.

Construction of a GFP-based reporter for IL-12p40
expression

The construction of the 2350+55 IL-12p40-GFP Raw 264.7

reporter line was described previously [25]. Using a similar strategy

to monitor IL-12p40 expression from a full-length (FL) IL-12p40

promoter [55], position 2800 to +55 relative to the transcription

start site of the IL-12p40 promoter was amplified from C57BL/6

mouse genomic DNA by PCR by using upstream primer

59ACAGGATTGCACACCTCTTTG 39 and downstream primer

59 TTGCTTTGCTGCGAGC39. The 856 bp PCR product was

placed into the TOPO cloning vector (Invitrogen) to create the

plasmid pFL.IL-12p40.TOPO. The full-length IL-12p40 GFP

reporter construct (pFL.IL-12p40.EGFP-1) was generated by

ligating the HindIII/PstI fragment from the pFL.IL-12p40.TOPO

into the HindIII and PstI cleaved enhanced green fluorescent protein

reporter vector, pEGFP-1 (BD Bioscience). Raw 264.7 cells were

stably transfected with pFL.IL-12p40.EGFP-1 using electroporation,

as described previously [25]. Following selection with G418 (1 mg/

ml), a stable 2800+55 IL-12p40-GFP Raw 264.7 macrophage cell

line was cloned by limiting dilution under G418 selection and

maintained in DMEM with high glucose, supplemented with 10%

FCS, 10 mM HEPES, and 1 mg/ml of G418. Clones that express

GFP only when treated with LPS (10 ng/ml) or CpG (100uM) were

expanded for use.

Growth of M. tuberculosis strains for macrophage
infection

For each infection, a new vial of bacterial culture was thawed

from stocks kept at 270uC. Thawed M. tuberculosis H37Rv, Beijing

HN878, or M. smegmatis were grown in 10 ml 7H9-C medium, as

described above. The DmmaA4 mutant was grown in 7H9-C

medium along with 50 mg/ml hygromycin, while the comple-
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mented DmmaA4 mutant was grown in 7H9-C medium with

40 mg/ml of kanamycin. All mycobacterial strains were grown to

an OD600 nm of between 0.1 and 0.3 prior to infection, since a

population of the mycobacterial culture will autolyse when grown

to OD $0.5 undergo autolysis (data not shown) [56]. Prior to

infection, the bacteria were pelleted and resuspended in 7H9-C

medium. The resuspended pellets were treated once with 10 sec of

continuous sonication to minimize aggregation.

Mouse infection
Male and female C57BL/6 and IL-12p402/2 mice, 6 to 10

weeks of age, were acquired from Jackson Laboratories. One ml

aliquots of frozen suspensions of M. tuberculosis, H37Rv, DmmaA4

mutant, or complemented DmmaA4 mutant were thawed and

innoculated into 7H9-C media containing the appropriate

selecting agents (50 mg/ml hygromycin for DmmaA4, and 40 mg/

ml kanamycin for the complemented mutant). Bacteria from

frozen stocks were grown to an OD600nm of between 0.1 and 0.3,

and then collected by centrifugation and washed once with PBS-

0.05% Tween-80. Cell pellets were resuspended to 16107 CFU/

ml, and 20 ml of 1:5 diluted Antifoam (Sigma) was added to 10 ml

of the bacteria suspension to prevent froth formation during

aerosalization. The bacterial suspension was placed in the

nebulizer jar of a whole-body exposure aerosol chamber

(Mechanical Engineering Workshop, Madison, WI). Mice were

exposed for 20 min, with a chamber purge time of 30 min

between strains. 24 hr post-aerosalization, lungs from 3 mice per

group were harvested to determine the inoculum per group.

In vitro mycobacteria infections
Bone marrow-derived macrophages or dendritic cells were seeded

in triplicate at 26105 per well (for macrophages) or 1.56105 per well

(for dendritic cells) in 48-well plates, or 26105 per well in 96-well

plates for the FL.IL-12p40-GFP macrophage reporter cell line. The

macrophages were infected with mycobacteria at a multiplicity of

infection (MOI) of 3 or 10. After 4 hr incubation in a humidified

incubator at 37uC in the presence of 5% CO2, non-ingested bacteria

were removed by washing gently 3 times with pre-warmed DMEM-

C medium for macrophages and with RPMI-C medium for

dendritic cells. Each well then received 200 ml DMEM-C or

RPMI-C containing 50 mg/ml gentamicin (to kill the remaining

extracellular bacteria), and plates were cultured in a humidified

incubator at 37uC in the presence of 5% CO2.

ELISA measurement of cytokine production
Infection was allowed to proceed for 16 to 24 hr before cell

supernatants were harvested. For time course studies, the

supernatants were collected at the additional time points of 48

and 72 hr. Supernatant was filtered with 0.22 mm SpinX columns

(Costar) to remove any uningested extracellular bacteria. Cyto-

kines in the conditioned medium were analyzed by sandwich

ELISA using the Biosource International (Camarillo, CA) kit for

IL-12p40 and TNF-a, following the manufacturer’s protocol.

Flow cytometry
Following infection of the FL.IL-12p40 GFP- reporter macro-

phage cell line with H37Rv, HN878 Beijing, and M. smegmatis, the

experiment was allowed to proceed for 16 to 24 hr before processing

the cells for FACS analysis. Mycobacteria infected cells were

trypsinized, fixed with equal volume of 4% paraformaldehyde, and

left at 4uC overnight. The following day, GFP expression was

ascertained by using the FACSCalibur flow cytometer (BD

Biosciences) and analyzed with FlowJo software (Tree Star).

Construction of Himar-1 M. tuberculosis H37Rv mutant
library

The Himar-1 M. tuberculosis H37Rv mutant library was generated

using the Himar-1 transposon delivered by phage, pHAE159, as

described previously [28,29]. Briefly, the phage-containing mariner

transposon was propagated to high titer in MP buffer (50 mM Tris

(pH 7.6), 150 mM NaCl, 10 mM MgCl2, 2 mM CaC12) and used

to transduce the M. tuberculosis H37Rv strain. The transductions were

plated on 7H10 plates containing 50 mg/ml hygromycin, and placed

at 37uC for three weeks. Transductants were picked into 96-well

plates containing 200 ml of 7H9 media supplemented with OADC,

0.5% glycerol, 0.05 % Tween-80, and 50 mg/ml hygromycin. A

Himar-1 transposon library of M. tuberculosis H37Rv was grown to

late-log phase. Aliquots of the mariner M. tuberculosis H37Rv library

were made into separate 96-well plates for stocking and were diluted

and grown to mid-log phase for screening.

High-throughput screen for M. tuberculosis mutants that
strongly induce IL-12p40 production

Individual clones from the M. tuberculosis mariner transposon

library were grown in wells of 96-well plates with monitoring of cell

density by photometric measurements of optical density (OD) at

590 nm using a 96-well plate reader (Victor II plate reader, Perkin

Elmer). After 2 days of growth, each well was diluted to

approximately 26106 CFU per 10 ml. The IL-12 reporter strain,

Raw 264.7- FL.IL-12p40-GFP, was seeded at 26105 per well in 96-

well plates the day before infection with clones from the mariner

transposon library. An aliquot of 10 ml of bacteria from each well was

used to infect the FL.IL-12p40-GFP Raw 264 macrophage reporter

cell line (i.e., an MOI of 10). After incubation for 4 hr in a 5% CO2

humidified incubator at 37uC, non-ingested bacteria were removed

by washing gently 3 times with pre-warmed DMEM-C medium.

Each well then received 200 ml DMEM-C containing 50 mg/ml

gentamicin, and the plates were cultured as before for an additional

16 hr at 37uC, at which time IL-12 expression was found to be

maximal. The GFP expression from individual wells on the plate was

determined by the use of the Viktor II plate reader using a 488 nm/

530 nm excitation/emission filter pair and reading for 1.0 sec per

well. For secondary screening of the candidates, the mutants were

expanded in 10 ml cultures, and grown to an OD600nm of between

0.1 and 0.3. The IL-12 reporter macrophages were infected with

each clone in duplicate and incubated overnight, as described above.

After 16 hr, the cells were harvested by trypsinization, and single-cell

suspensions from these infected macrophages were generated. An

equal volume of 4% paraformaldehyde was added to each well to

allow fixation overnight at 4uC, and flow cytometry analysis for GFP

expression was performed the following day.

Mapping of the transposon insertion
Standard genomic DNA (gDNA) preparations were made for

transposon insertion mutants. Briefly, 10 ml cultures were grown

to an OD600nm of between 0.5 and 0.7, and then centrifuged and

the pellets extracted for gDNA. Ten ml aliquots of gDNA were

digested with BssHII in 50 ml for 1 hour, after which 4 ml aliquots

of digested gDNA were self-ligated for 1 hr using the Rapid

Ligation Mixture kit from Roche Laboratories. Five ml of ligation

mixture was transformed into competent DH5a pir bacteria and

selected for on LB plates containing 150 mg/ml hygromycin. The

exact location of each transposon insertion site in the selected

mutants was determined by sequencing the flanking M. tuberculosis

gDNA: Upstream flanking sequence (59 -AGAATAGACCGA-

GATAGGGT), Downstream flanking sequence (59-ACTTTA-

GATTGATTTCGCGT).
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Construction of phagemid for deletion of mmaA3 and
mmaA4

The mmaA3 (Rv0643c) and mmaA4 (Rv0642c) mutants were

constructed by homologous recombination using specialized

transducing phages [29]. The deletion phagemid for the DmmaA3

mutant was constructed by PCR amplification of the 59-flanking

region of mmaA3 using M. tuberculosis H37Rv genomic DNA with

the following primer pairs: 0643cRL 59 TTTTTTTTCCATA-

GATTGGTCACTCGATCACCGGCTTGCACGTA 39 and

0643cRR 59TTTTTTTTCCATCTTTTGGGGAGACGTCG-

TAGTGCGCTTGGATG 39. This PCR product was 553 bp.

For the 39 flanking region of mmaA3, the following primer pairs

were used: 0643c LL 59TTTTTTTACCATAAATTGGGGAA-

CAGTCGGCGAAGACGGGTTT 39 and 0643cLR 59 TTTTT-

TTTCCATTTCTTGGTGAAGTTGGCCCAGTCGCTCAG-

CAG 39. This PCR product was 811 bp.

The deletion phagemid for the DmmaA4 mutant was constructed

by PCR amplification of the 59-flanking region of mmaA4 from M.

tuberculosis H37Rv genomic DNA using the primer pairs 0642cRL

59 TTTTTTTTCCATAGATTGGTTCGAGACGGCGCGTT-

TCATCA 39 and 0642cRR 59 TTTTTTTTCCATCTTTTG-

GCGACCCGCGTAAGGCAGACCAG 39 for the 5 prime arm.

This PCR product was 994 bp. The primer pairs were 0642cLL

59TTTTTTTACCATAAATTGGAGCACTCGATCACCGG-

CTTGCACGTA39 and 0642cLR 59TTTTTTTTCCATTT-

CATGGTCCAACCGCACCCAATGTCCAGCAG 39 for the

downstream arm, which gave rise to a 723 bp PCR product.

Following cloning into p0004S (0642c.p004S or 0643c.p004S),

the resulting plasmid was then packaged into the temperature-

sensitive phage phAE159, as described earlier, to yield the

knockout phages for mmaA3 (phAE301) and mmaA4 (phAE302).

Specialized transduction was performed, as described previously

[29], and the transduction mix was spread on 7H10 plates,

selecting with 50 mg/ml hygromycin.

Confirmation of deletion mutants
Hygromycin-resistant clones were screened for deletion by

Southern analysis. Briefly, gDNA from mmaA3 or mmaA4 mutants

was digested with StuI. Deletion analysis for the DmmaA3 mutant

was confirmed by probing the southern blot with the PCR product

(811 bp) from the primer pairs 0643c LL & 0643cLR. Following

homologous recombination, the mmaA3 mutant had a 2742 bp

fragment as compared to wild type, which gave a 6127 bp

fragment. Deletion analysis for the DmmaA4 mutant was confirmed

by probing the southern blot with the PCR product (723 bp) from

the primer pairs 0642cLL & 0642cRL. Following homologous

recombination, the DmmaA4 mutant had a 3542 bp fragment as

compared to wild type, which gave a 6127 bp fragment.

Construction of DmmaA4 complemented strain
Complementation analyses were performed with the cosmid

3E2 (Rv0630c–Rv0654c), which contained the mmaA4 gene in the

integration-proficient vector pYUB412. The transformation of the

mutant strains with the constructs by means of electroporation was

described previously. Kanamycin-resistant clones were screened

for reversion of mutant colonial morphology.

Small-scale lipid extraction and MAME analysis
Initially, 10 ml cultures of wild type M. tuberculosis, DmmaA4

mutant, or complemented DmmaA4 mutant at an OD 600 nm,0.4

were labeled using 1 mCi/ml [14C]-acetic acid and further

incubated for 12 hr. Cells were recovered by centrifugation at

27,0006g for 10 min and carefully freeze-dried using a Savant

SpeedVac. Cellular-associated lipids were extracted twice using

2 ml of CHCl3/CH3OH/H2O (10:10:3, v/v/v) for 3 hr at 50uC.

Organic extracts were combined with 1.75 ml CHCl3 and 0.75 ml

H2O, mixed and centrifuged. The lower organic phase was

recovered, washed twice with 2 ml of CHCl3/CH3OH/H2O

(3:47:48, v/v/v), and then dried and resuspended with 200 ml of

CHCl3/CH3OH (2:1, v/v). The residual cell pellet was subjected

to alkaline hydrolysis using 15% aqueous tetrabutylammonium

hydroxide (TBAH) at 100uC overnight, followed by the addition of

4 ml of dichloromethane, 300 ml iodomethane, and 4 ml of water.

The entire reaction mixture was then mixed for 1 hr. The upper

aqueous phase was discarded and the lower organic phase washed

twice with water and evaporated to dryness. Mycolic acid methyl

esters (MAMES) were re-dissolved in diethyl ether. After

centrifugation, the clear supernatant was again dried and

resuspended in dichloromethane (100 ml) and an aliquot subjected

to 1-dimensional High Performance Thin-Layer Chromatography

(1D-HPTLC), using two developments of hexane/ethyl acetate

[95:5]). MAMES were visualized by autoradiography by exposure

of TLCs to X-ray film (Kodak X-Omat).

Large-scale lipid extraction and purification of TDM and
TMM

Four liter cultures of wild type M. tuberculosis or DmmaA4 mutant

were grown to OD600nm = 0.4. Mycobacteria were recovered by

centrifugation at 3000 RPM for 15 min in a table-top centrifuge.

Cellular lipids were extracted twice, as described above, from

freeze-dried cells using 200 ml of CHCl3/CH3OH/H2O (10:10:3,

v/v/v) for 3 hr at 50uC. Organic extracts were combined with

175 ml CHCl3 and 75 ml H2O, mixed and centrifuged. The lower

organic phase was recovered, washed twice with 200 ml of

CHCl3/CH3OH/H2O (3:47:48, v/v/v), dried, and resuspended

with 2 ml of CHCl3/CH3OH (2:1, v/v). The lipid extract was

examined by 2-dimensional TLC on aluminum-backed plates of

silica gel 60 F254 (Merck 5554), using chloroform/methanol/water

(100:14:0.8, v/v/v) in the first direction and chloroform/acetone/

methanol/water (50:60:2.5:3, v/v/v) in the second direction.

TDM and TMM were visualized either by spraying plates with a-

naphthol/sulfuric acid, or by spraying with 5 % ethanolic

molybdophosphoric acid, followed by gentle charring.

The crude lipid extract (250 mg) dissolved in chloroform/

methanol (2:1, v/v) was applied to a diethylaminoethyl (DEAE)

cellulose column (2 cm615 cm) and the flow-through kept for

further purification. TDM and TMM were further purified by

preparative TLC on 10 cm620 cm plastic-backed TLC plates of

silica gel 60 F254 (Merck 5735, Darmstadt, Germany), run in

chloroform/methanol/ammonium hydroxide (80:20:2, v/v/v).

The plates were then sprayed with 0.01% 1,6-diphenyl-1,3,5-

hexatriene dissolved in petroleum ether/acetone (9:1, v/v), and

lipids were visualized under UV light. Following detection, the

plates were re-developed in toluene to remove diphenyl-1,3,5-

hexatriene, and the corresponding TDM and TMM bands were

scraped from the plates and extracted from the silica gel using 3

extractions of chloroform/methanol (2:1, v/v) to provide highly

purified TDM and TMM. Quantitation of the purified TDM and

TMM was done by directly weighing the material.

The highly purified TDM and TMM from wild type M.

tuberculosis was reconstituted in petroleum at a concentration of

200 mg/ml. Aliquots of 500 ml were dispensed into endotoxin-free

glass vials, and the samples were dried under nitrogen for storage.

The TDM and TMM stock was tested for endotoxin contamina-

tion using the Limulus Amoebocyte Lysate (LAL) assay from Bio

Whittaker, following the manufacturer’s protocol. Briefly, the

TDM (or TMM) in one of the vials was resuspended in DMSO to
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a Cf = 1 mg/ml. Ten ml of the sample was used in the LAL assay.

The TDMs and TMMs from wild type M. tuberculosis H37Rv or

DmmaA4 mutant were endotoxin-free (data not shown).

Reconstitution and dilution of TDM or TMM for
macrophage stimulation

At the time of the experiment, 100 mg of TDM was

reconstituted in 500 ml of petroleum ether. A series of 2-fold

dilutions of TDM was made with petroleum ether to yield 10 mg/

100 ml, 5 mg/100 ml, and 2.5 ug/100 ml, after which 100 ml of

each dilution was used to coat a 48-well plate. The plate was air

dried to evaporate the solvent, washed once with PBS, and then

air dried again. The TDM dose used in this assay was higher than

that typically used for pathogen glycolipids from gram-negative

bacteria such as LPS, but comparable to that used for glycolipids

and other cell wall-associated immune activators of gram-positive

bacteria, such as lipoteichoic acid and peptidoglycan [57–59].

Bone marrow-derived macrophages were then immediately added

at 26105 cells/200 ml per well in a 48-well plate. For wild type

TDM and DmmaA4 TDM cotreatment, 10 mg of wild type TDM

and 5 mg of mmaA4 TDM were added in 100 ml each of petroleum

ether to the same wells of a 48-well plate. The contents were mixed

to ensure even distribution of the lipids before the plate was air-

dried, washed with PBS, and then air dried again, before the

addition of macrophages. For E. coli LPS and wild type TDM

cotreatment, the wells were first coated with 5 mg wild type TDM,

air dried, washed with PBS, and then air dried again. This was

followed by the addition of bone marrow-derived macrophages

and, 16 hr later, 100 ng/ml E. coli LPS. Culture supernatants were

harvested, filtered, and then analyzed by ELISA for cytokine

levels, as described above. TDM from M. tuberculosis purchased

from Sigma was also tested. The IL-12p40 response of

macrophage and dendritic cells is similar to that of TDM purified

by us from wild type M. tuberculosis. TDM studies reported in Fig.

S2 was purchased from Sigma.

Supplementary materials and methods for total lipid extraction

and analysis can be found in Protocol S1.

Accession numbers
mmaA4 METHOXY MYCOLIC ACID SYNTHASE 4

(HYDROXY MYCOLIC ACID SYNTHASE) [Mycobacterium

tuberculosis H37Rv] GeneID: 888056

mmaA3 METHOXY MYCOLIC ACID SYNTHASE 3

[Mycobacterium tuberculosis H37Rv] GeneID: 1091772

ackA ACETATE/PROPIONATE KINASE [Mycobacterium

tuberculosis H37Rv] GeneID: 886399

Rv3435c PROBABLE CONSERVED TRANSMEMBRANE

PROTEIN [Mycobacterium tuberculosis H37Rv] GeneID: 887564

Supporting Information

Figure S1 Increased induction of IL-12p40 and TNF-a by the

DmmaA4 M. tuberculosis mutant in C57B6 bone marrow-derived

macrophages. Bone marrow-derived macrophages from C57BL/6

mice were infected with wild type M. tuberculosis H37Rv or the

DmmaA4 mutant at an MOI of 10, or left untreated (UT).

Conditioned media from macrophages were harvested at 24 hr

post-infection. IL-12p40 and TNF-a production were determined

by ELISA. (UT) untreated. (*) undetectable levels. Values are

statistically significant between wild type and DmmaA4 mutant; **,

p,0.01; ***, p,0.001 (one-way ANOVA, Bonferroni post-tests).

Values are the means6SD of triplicate samples and are

representative of 2 separate experiments.

Found at: doi:10.1371/journal.ppat.1000081.s001 (0.92 MB TIF)

Figure S2 Production of IL-12p40 in dendritic cells infected

with bacteria or TDM. (A) Bone marrow-derived dendritic cells

from Balb/c were infected with wild type M. tuberculosis H37Rv or

the D mmaA4 mutant at an MOI of 10, or left untreated (UT).

Conditioned media were harvested at 24 hr post-infection. IL-

12p40 production was determined by ELISA. (B) Bone marrow-

derived dendritic cells from Balb/c were treated with either 10 ug

of TDM from M. tuberculosis or 50 ng/ml of lipopolysaccharide

(LPS). Conditioned media were harvested at 24 hr post-treatment.

IL-12p40 production was determined by ELISA.

Found at: doi:10.1371/journal.ppat.1000081.s002 (0.47 MB

TIF)

Figure S3 Analysis of mycolic acids from mycobacteria and TDM

prep. (A) Schematic representation of a-, methoxy-, and keto-

mycolic acids synthesized by wild type M. tuberculosis H37Rv strain.

(B) Thin-layer chromatographic analysis of lipids extracted from

[14C] acetate-labeled cultures of wild type M. tuberculosis H37Rv, the

DmmaA4 mutant, and the complemented DmmaA4. The cultures

were grown to mid-exponential phase in 7H9 containing 0.05%

Tween-80 media, at which time [14C] acetate was added, and they

were incubated for an additional 12 hr. Lipids were then extracted

from cultures for analysis. MAMEs were prepared and analyzed by

1D-High Performance Thin-Layer Chromatography (1D-HPTLC),

using two developments of hexane/ethyl acetate [95:5] and

visualized by autoradiography. (1) and (3) wild type M. tuberculosis

H37Rv; (2) DmmaA4 mutant; (4) DmmaA4 mutant complemented. (C)

Thin-layer chromatography of purified TDM from M. tuberculosis

wild type and DmmaA4 mutant developed with chloroform/

methanol/water (90:10:1, vol/vol/vol). (1) Wild type M. tuberculosis

H37Rv; (2) DmmaA4 mutant.

Found at: doi:10.1371/journal.ppat.1000081.s003 (2.19 MB TIF)

Figure S4 Major extractable lipids from wild type M. tuberculosis

H37Rv and DmmaA4 mutant. Apolar and polar lipids from wild type

and mutant bacteria, including phthiocerol dimycocerosates

(PDIMs), sulfolipids, trehalose dimycolates (TDMs), glucose mono-

mycolates (GMMs), and phospholipids, were unaltered in their

quantities and TLC mobilities. 2D Thin-layer chromatographic

analysis of lipids extracted from [14C] acetate-labeled cultures of

wild type M. tuberculosis H37Rv or the DmmaA4 mutant. (A) Apolar

lipid extracts, run with solvent systems A–D. (B) Polar lipid extracts,

run with solvent systems D and E. See Protocol S1 for description of

solvent systems. Lipids were visualized by phosphorimaging and

compared to known standards. (?) unknown.

Found at: doi:10.1371/journal.ppat.1000081.s004 (4.61 MB TIF)

Figure S5 Macrophages treated with trehalose monomycolate of

wild type M. tuberculosis (wtTMM) produced less IL-12p40 and

TNF-a than those treated with trehalose monomycolate from

DmmaA4 mutant (mmaA4TMM). Bone marrow-derived macro-

phages were treated with wtTMM or DmmaA4 TMM. Superna-

tants were analyzed for the presence of IL-12p40 and TNF-a by

ELISA. Vehicle treatment was the solvent in which the TMM was

dissolved. Values were statistically significant between wild type

and the DmmaA4 mutant; ***, p,0.001 (one-way ANOVA,

Bonferroni post-tests). (*) Undetectable levels. (UT) = vehicle

solvent. Values are the means6SD of triplicate samples and are

representative of two separate experiments performed on two

independent batches of purified TMM from wild type M. tuberculosis

H37Rv or DmmaA4 mutant.

Found at: doi:10.1371/journal.ppat.1000081.s005 (0.83 MB TIF)

Protocol S1 Supplementary materials and methods.

Found at: doi:10.1371/journal.ppat.1000081.s006 (0.03 MB

DOC)
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