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Abstract

The rapid evolution of influenza viruses presents difficulties in maintaining the optimal efficiency of vaccines. Amino acid
substitutions result in antigenic drift, a process whereby antisera raised in response to one virus have reduced effectiveness
against future viruses. Interestingly, while amino acid substitutions occur at a relatively constant rate, the antigenic
properties of H3 move in a discontinuous, step-wise manner. It is not clear why this punctuated evolution occurs, whether
this represents simply the fact that some substitutions affect these properties more than others, or if this is indicative of a
changing relationship between the virus and the host. In addition, the role of changing glycosylation of the haemagglutinin
in these shifts in antigenic properties is unknown. We analysed the antigenic drift of HA1 from human influenza H3 using a
model of sequence change that allows for variation in selective pressure at different locations in the sequence, as well as at
different parts of the phylogenetic tree. We detect significant changes in selective pressure that occur preferentially during
major changes in antigenic properties. Despite the large increase in glycosylation during the past 40 years, changes in
glycosylation did not correlate either with changes in antigenic properties or with significantly more rapid changes in
selective pressure. The locations that undergo changes in selective pressure are largely in places undergoing adaptive
evolution, in antigenic locations, and in locations or near locations undergoing substitutions that characterise the change in
antigenicity of the virus. Our results suggest that the relationship of the virus to the host changes with time, with the shifts
in antigenic properties representing changes in this relationship. This suggests that the virus and host immune system are
evolving different methods to counter each other. While we are able to characterise the rapid increase in glycosylation of
the haemagglutinin during time in human influenza H3, an increase not present in influenza in birds, this increase seems
unrelated to the observed changes in antigenic properties.
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Introduction

The rapid evolution of influenza viruses presents difficulties in

recognising and predicting current and future epidemiological

threats. One of the major sources of information about possible

future threats from influenza is a study of its history as an evolving

pathogen. Analysing how the virus evolves to evade the immune

response can provide insight into how the immune system has

dealt with the virus in the past and how the virus may change in

the future to evade elimination.

Modelling of influenza evolution has focused on haemagglutinin

(HA), the membrane-bound glycoprotein present on the surface of

the virus which is responsible for receptor-binding and membrane-

fusion. Sixteen different HA subtypes in influenza A have been

identified (H1 to H16) of which H1 and H3 are currently circulating

in human populations. For membrane fusion to occur, the HA

precursor (HA0) must be cleaved into two polypeptides, HA1 and

HA2, linked by a disulphide bond. Five canonical antigenic sites have

been identified on the HA1 polypeptide of H3 [1,2]. Because HA1 is

the principal target of antibody-mediated immunity [3], it has a

higher replacement rate for amino acids than HA2 [4].

The sequence evolution of HA1 results in antigenic drift as

antigenic properties change with time. Amino acid substitutions

result in changes in the ability of antibodies to neutralise the virus,

either through interfering with antibody binding or changing some

associated property (e.g. receptor binding), so that antisera raised in

response to one virus have reduced effectiveness against a future

virus [4]. The amount of this reduction can be used as a measure

of the difference between the antigenic properties of the two

viruses. Interestingly, antigenic properties of H3 move in a

discontinuous, step-wise manner [5]. For periods of two to five

years, HA1 sequence evolution has a limited effect on virus-

antibody interactions, so that antigenic drift is confined to a semi-

well-defined group of sequence variants with similar antigenic

properties, what has been referred to as an antigenic cluster.

Periodically, however, sequence change results in significant

change in antigenic properties, corresponding to a jump to a

new antigenic cluster. The correlation between genetic distance

and antigenic distance from the root cannot be explained by a

linear relationship [5].

There are two possible, not mutually-exclusive interpretations of

these irregular, punctuated changes. Firstly, it would be expected

that changes in different locations would have different impacts on

the antigenic properties, what has been described as the

‘influential sites’ model of antigenic change [6]. Some changes in
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the sequence will cause insignificant changes in antigenic

properties, while other changes, near the antigenic or binding

sites, would be more important. A constant rate of change of the

sequence would result in punctuated changes in antigenic

properties if relatively few locations had a very large effect on

these properties [3]. (In the data analysed by Smith and co-

workers, jumps between antigenic clusters can result from a single

amino-acid substitution [5].)

Secondly, it might be that each antigenic cluster represents a

particular manner of interaction between the virus and the host,

such as nature or location of antibody binding. Changes in the

amino acids at some locations would cause jumps between

antigenic clusters, representing changes in this relationship. As a

result, the effect of subsequent amino acid changes at other

locations might be significantly different. In particular, Koelle et

al. recently performed a simulation of the effect of such context-

dependent interactions on the evolutionary dynamics of influenza,

showing that it could re-create many observed epidemiological

patterns [6].

One way to distinguish between these two possibilities is to look

at the changing patterns of selective pressure. If changes in the

antigenic cluster correspond to modifications in virus-host

interactions, we would expect there to be corresponding changes

in the selective pressure at different locations in the viral proteins.

As the relative and absolute rates of amino acid substitution at

these locations will depend upon the nature of the local selective

pressure, we might be able to observe a change in the pattern of

amino acid substitutions. These changes can be in the overall rate

of substitution as well as in the nature of the substitutions accepted.

One possible cause of these punctuated antigenic changes is the

changing glycosylation state of the haemagglutinin. There has

been a large increase in the number of predicted HA1

glycosylation sites from viruses isolated in 1968 to those circulating

at present [3,7]. It would seem possible that the addition of these

glycosylation sites represent a way for the virus to avoid the

immune response through gross changes in the protein exterior. If

these changes in glycosylation are related to changes in antigenic

properties, we might expect correlations between the changes in

glycosylation, changes in antigenic properties, and changes in the

selective pressure at various locations in the protein.

In addition to constructing phylogenetic trees, evolutionary

theory can also be applied to a wide range of problems through

hypothesis testing. These approaches can generate new insights

into the forces of evolution that are shaping the protein sequence,

and hence into the structure, function, and physiological context of

the protein itself [8]. Competing models of sequence change can

be applied to the data, and standard tools from statistics and

information theory can be used to evaluate the evidence for

specific behaviour. In this paper we are interested in addressing

specific questions regarding haemagglutinin evolution. Does the

selective pressure change during evolution, either in degree or

nature? Are the changes in selective pressure correlated with

changes in antigenic properties or changes in glycosylation?

We develop a series of increasingly-complex models for the

evolution of HA1 of human H3N2 viruses, at each stage inquiring

whether we have statistical grounds for rejecting the simpler

model. We start with a standard model where the rate of amino

acid change at all locations is modelled by a single substitution

matrix, allowing for heterogeneity of overall substitution rate

following a Gamma distribution. We then develop a so-called

‘mixture model’ where different locations in the protein follow one

of a set of possible substitution matrices, differing in overall

substitution rate as well as different propensities for the various

amino acids, but where we assume the substitution rates at any

location is constant over the evolutionary process. The next model

allows changes in the substitution rates during the evolution,

corresponding to changing selective pressure. Because our mixture

model includes substitution matrices that differ in their preference

for different amino acids, we can detect changes in the nature of

the selective pressure that do not correspond to changes in the

magnitude or sign. Finally, we consider a more complicated model

that considers that the alterations in selective pressure might

preferentially occur on branches of the evolutionary tree

corresponding either to changes in antigenic cluster or to changes

in glycosylation.

We find different substitution matrices describing different

regions of the protein, indicating a range of selective pressures. We

also find that these selective pressures change with time. More

specifically, changes in selective pressure do not seem to occur at a

constant rate throughout the tree. Rather, changes in selective

pressure are found to occur more often during major changes in

antigenic properties. This suggests that the movement between the

antigenic clusters, as observed in Smith et al. [5] corresponds to

changes in the nature of the interaction between virus and host.

The locations that undergo changes in selective pressure are

largely in places under positive selection, at or around the cluster-

difference substitutions (identified by Smith et al.), and in locations

in canonical antigenic sites. Surprisingly, we do not observe a

significant correlation between rapid changes in antigenic

properties and changes in the predicted HA glycosylation state.

Nor do we observe changes in glycosylation state during rapid

changes in antigenic properties. This indicates that changes in

glycosylation do not play a dominant role in the major changes of

antigenic properties.

Results

A phylogenetic tree was constructed for the sequences used in

the analysis of Smith et al. [5], as drawn schematically in Figure S1.

(The detailed tree is available from the authors.) The various

clusters of sequences with similar antigenic properties is notated by

the location (Hong Kong, ENgland, VIctoria, TeXas, BangKok,

SIngapore, BEijing, WUhan, SYdney, FUjian) and year of the

earliest sequence. The derived tree is similar to that derived by

Author Summary

H3N2-type influenza is responsible for widespread disease
and significant mortality. The virus evolves rapidly,
changing its antigenic properties, allowing it to escape
clearance by the immune response as well as complicating
the maintenance of vaccine effectiveness. Part of this
evolution has been the rapid increase in glycosylation, an
increase not observed either in H9 evolution in birds or in
H1 evolution in humans. It has been observed that the
antigenic properties change in a punctuated, discontinu-
ous manner. This could be either because some mutations
are more significant than others, or it could mean that the
antigenic changes correspond to adjustments in the
antagonistic relationship between virus and host. By
studying the sequence evolution of the H3 haemaggluti-
nin, we can demonstrate that the selective pressure acting
on the virus protein changes with time, and that these
changes are especially rapid during changes in antigenic
properties. This indicates that the antigenic changes
correspond to modifications in the virus–host relationship.
Surprisingly, neither the changes in selective pressure nor
the changes in antigenic properties correspond to changes
in glycosylation.

Changing Selective Pressure in Human Influenza
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Smith et al. [5]. In contrast to their tree, however, we have

transitions from antigenic clusters EN72 to VI75 and TX77, with

VI75 representing a dead-end, as well as transitions from SI87 to

both BE89 and BE92, with BE89 representing a dead-end.

We then applied a series of different evolutionary models to

these data, using various tests to quantify the statistical support for

the increased complexity. As described in the Methods section

below, if the models are nested (that is, the simpler model is a

special case of the more complex model), we can use the

likelihood-ratio test to determine the statistical support for

rejecting the simpler model. When the models are not nested,

we use the Akaike information criterion (AIC), which penalises

more complex models based on the number of adjustable

parameters; the best model is the one that minimises the AIC.

Choice of model and evaluation of model parameters
We developed four different evolutionary models. Model 1,

representing a standard optimised single substitution-model with

Gamma-distributed rates, when applied to the haemagglutinin

sequence data, yielded a log-likelihood of 24674.1, for

AIC = 10,492.2. (The number of parameters includes 209 model

parameters and 363 adjustable branch lengths.) We then

developed a mixture-model (Model 2) where there were a number

of different substitution matrices representing different forms of

selective pressure, defined by an overall substitution rate and

different relative propensities for the various amino acids. Model 2

assumed that the selective pressure acting on every location was

constant with time throughout the evolutionary process. The

number of substitution matrices was optimised by minimising the

AIC. The best performance was obtained with a mixture-model

with four substitution matrices (271 adjustable model parameters),

which achieved a log-likelihood value of –4339.2 for a substantially

lower AIC = 9,946.4. This indicates that an evolutionary model

including qualitatively-different forms of selective pressure at

different locations fits the data significantly better than a single

substitution matrix with a Gamma distribution of rates.

Allowing changes of selective pressure during the evolutionary

process (Model 3) increased the log-likelihood to 24319.8. Model

2 (no changes of selective pressure) is nested in Model 3, meaning

we can use the likelihood ratio test to demonstrate that the extra

parameters can be justified (P,1024). We then tried a more

elaborate model (Model 4), where the branches that involved

changes of antigenic cluster had a greater amount of change of

selective pressure. This increase of one additional adjustable

parameter resulted in an increase in the log-likelihood to 24311.8,

indicating that this extra complexity is justified (P,1024 with the

likelihood-ratio test), and that the increased rate of selective-

pressure change between antigenic clusters is statistically-signifi-

cant. We can then reject the null hypothesis that changes in

selective pressure occur independently of jumps in antigenic

properties, in favour of a model where changes in selective

pressure occur preferentially coincident with such jumps. The rate

of substitution-matrix change for the inter-cluster branches was

c= 0.77; that is, the extra amount of substitution matrix (selective

pressure) changes is equivalent to what would be observed if the

branch lengths corresponding to antigenic cluster transitions were

increased by this amount.

Changes in glycosylation
We performed ancestral reconstruction, and predicted glyco-

sylation states of the various ancestral nodes. We restricted our

analysis of glycosylation sites to the sites predicted on the ancestral

nodes with probability .0.95. We did not consider changes in

glycosylation of the terminal sequences, as these might represent

deleterious mutations, cannot be associated with changes in

selective pressure with our model (as there is no sequence

evolution observed following the terminal sequence), and are

independent of changes in antigenic cluster.

Predicted glycosylation states are tabulated in Table S1. We

observe a sharp increase in the amount of predicted glycosylation

sites from 6 sites (HK68) to 11 (FU02), as shown in Figure 1.

Interestingly, there seems to be no correlation between changes in

glycosylation and major changes in antigenic properties, with no

transition between antigenic clusters corresponding to a difference

in glycosylation. Conversely, some antigenic clusters contain a

multiplicity of different glycosylation sites; WU95 viruses, for

instance, contain between 7 and 10 glycosylation sites per subunit.

This suggests that the rapid change of glycosylation is disjoint from

the major changes in antigenic properties.

We identified branches corresponding to a change in glycosyl-

ation. We then developed a substitution model (Model 5) where

the branches involving changes in glycosylation state were affected

by an additional amount of selective-pressure change. There was a

minimal change in log likelihood, indicating that there was not a

significant observed correspondence between changes in glycosyl-

ation and changes in selective pressure, given the available data

(P = 0.8). We find no evidence that changes in glycosylation

correspond to significantly increased probability of changes in

selective pressure.

Evaluation of model
The results described in more detail below refer to Model 4,

unless specified otherwise.

The amino-acid preferences of the four substitution matrices

representing the four categories of selective pressure are

represented in Figure 2. The distribution of types of locations

described by the different substitution matrices is shown in

Figure 3A, while Figure 3B shows how the number of substitution

matrix changes during the evolutionary process corresponds to

various types of locations. In model 4, locations can change
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Figure 1. Changes in the number of glycosylation sites with
time. Clusters are indicated as block colouring. Thick red line
represents the main branch of the tree. Dates for the internal nodes
were estimated based on extrapolating a linear least-squares fit of the
acquisition time of the available sequences.
doi:10.1371/journal.ppat.1000058.g001

Changing Selective Pressure in Human Influenza

PLoS Pathogens | www.plospathogens.org 3 May 2008 | Volume 4 | Issue 5 | e1000058



between the different substitution matrices during the evolutionary

process. The average rate of change between the different

substitution matrices is tabulated in Table S2.

Substitution matrices one and two, representing 34% and 46% of

all locations, respectively, are the slowest changing, with relative

amino-acid substitution rates (vk) of 0.28 and 0.46 respectively. (The

substitution rates are normalised so that the substitution rate averaged

over all sites is 1.0) The preferred set of amino acids is largely

complementary between substitution matrices one and two, with

substitution matrix one having an above-average hydrophobicity

compared with substitution matrix two, although substitution matrix

one contains an abundance of asparagine and glutamic acid while

substitution matrix two has a propensity towards aromatic residues.

As would be expected, the sequence changes of buried locations are

preferentially described by the predominantly-hydrophobic substitu-

tion matrix one, while exposed locations not categorised as receptor-

binding or in the canonical antigenic sites are preferentially described

by the more hydrophilic substitution matrix two.

Substitution matrices three and four, representing 9% and 11%

of the locations in the protein, change relatively rapidly, with

relative substitution rates vk equal to 2.93 and 3.90. Substitution

matrix three is biased towards positively charged amino acids

(arginine and lysine), while substitution matrix four has a bias

towards small polar amino acids. Locations associated with the

antigenic response–locations in the canonical antigenic sites and

locations whose identity distinguishes the various antigenic clusters

[5]–are predominantly described by these matrices, and also more

likely to undergo changes in selective pressure. Loop regions are

preferentially describable by substitution matrix four, in contrast to

exposed coils. Receptor-binding sites are also more likely to

correspond to these rapidly-evolving substitution matrices, corre-

sponding to the high overlap between the receptor-binding and

canonical antigenic sites. It is also possible that changes in the virus

to prevent antibody neutralisation might involve modulating the

receptor-binding properties directly, rather than inhibiting anti-

body binding.

Table 1 shows the sites in the protein that undergo significant

changes in selective pressure during transitions between antigenic

clusters. As is shown, most of the changes occur in locations in the

canonical antigenic sites, but there does not seem to be a

 

 

Figure 2. Characteristics of the four substitution matrices. Each substitution matrix is represented by the Venn diagram of physical properties
devised by Taylor [43]. Non disulfide-bonded cysteines have been excluded from the figure, as all cysteines in HA1 are disulfide bridged. Each
substitution matrix is characterized by a relative overall substitution rate and different propensities for the various amino acids represented by
equilibrium frequencies. Amino acids in this figure are colored according to these equilibrium frequencies compared with the overall average. Blue
indicates a frequency is less than the mean, with red amino acids greater. More intense colors are proportionally further from the mean [44].
doi:10.1371/journal.ppat.1000058.g002
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preponderance of selective pressure changes in any particular site.

Some of the locations undergoing selective pressure changes

correspond to locations of the cluster-difference amino acid

substitutions identified by Smith and co-workers [5] (the K156Q

substitution during the WU95RSY97 transition, and H75Q

during the SY97RFU02 transition), while other changes in

selective pressure occur near the cluster-difference substitutions

(e.g. location 157 near the G158E substitution during the

EN72RVI75 transition). There is evidence for a change in

selective pressure at location 124 during the TX77RBK79

transition, with a G124D cluster-difference substitution occurring

during the subsequent BK79RSI87 transition. Many changes in

selective pressure, however, occur in locations that are not directly

associated with cluster-difference substitutions. Haemagglutinin

must fulfil a number of functional requirements. Changes in

antigenic properties might be correlated with adjustments of other

properties, such as receptor binding, which could then be

associated with changes in selective pressure not directly associated

with the antigenic response. Finally, there might be compensatory

changes due to, for instance, the effect of some substitutions on

thermodynamic stability.

The locations of different substitution matrices and changes in

substitution matrix, compared with the canonical antigenic sites

and those determined as being under positive selection are

illustrated in Figures S2 and S3, respectively. We observe rapid

substitutions, as well as rapid changes of substitution matrix, in the

central exposed ‘pore’ at the top of the protein. These locations are

not identified either as being under positive selection, or as

changing during changes in antigenic property, although they are

centrally-located and surrounded by such locations. Changes

involved in cluster transitions BE92RWU95 and WU95RSY97

are shown in Figures S4 and S5, respectively.

Discussion

There is evidence of changes in selective pressure during HA

evolution. For instance, Wolf et al. recently observed transient

‘adaptive bursts’ characterised by positive selection occurring in

epitopic regions [9]. In between these bursts there is little evidence

for positive selection, and newly-emergent lineages only slowly

replace existent lineages. There has also been evidence for non-

transient shifts of selective pressure. For instance, while changes in

the 18 locations identified by Bush et al. as under positive selection

from 1983 to 1997 [10] seemed to be correlated with the

subsequent phylogenetic trajectories [11] and changes in antigenic

properties [5] during this same time period, changes in these 18

locations over a longer time-range were only weakly correlated

with changes in antigenic properties [5,12]. A study of sequence
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Figure 3. A) Log2-odds representation of the propensity of various types of locations for various substitution matrices in HA1,
indicating the log2 of the relative frequency of a given substitution matrix in each of the types of locations divided by what would
be expected at random. Substitution-matrix assignments are averaged over all of the internal nodes of the phylogenetic tree. Eight different types
of location types are considered: antigenic (‘Antigenic’), receptor binding sites (‘Binding’), non-antigenic non-binding exposed sites (‘Surface’), buried
sites (‘Buried’), sites of ‘cluster-difference’ substitutions (Smith et al. 2004) (‘Difference’), and positively-selected sites (‘+Sel’). Substitution matrices are
substitution-matrix 1 (horizontal lines), substitution-matrix 2 (stippled), substitution-matrix 3 (diagonal lines), and substitution-matrix 4 (cross-
hatched). Locations are considered buried or exposed based on whether their accessible side-chain area is larger or smaller than 10% of the areas
calculated by Ahmad et al. [44]. Positively-selected sites were based on the Maximum Likelihood analysis of Yang [45]; consistently less significant
correlations were observed when positively-selected sites identified by Bush et al. [10] were used. B) Log2-odds representation of the propensity of
various types of locations for various numbers of substitution-matrix changes. A posteriori probabilities of changes of substitution matrix over the
tree are calculated for each site. (Probabilities of substitution-matrix change less than 5% are neglected.) Sites are then assigned into one of three
categories of rate of change in selective pressure from the number of changes found: slow (white, 0–1 changes), medium (gray, 1–2 changes), and
fast (black, .2 changes). Arrows in the plot refer to log2-odds of negative infinity.
doi:10.1371/journal.ppat.1000058.g003
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change and sequence variability suggests that antigenic drift

involves changes in a local region, but that the location of this

region varied from transition to transition [13]. All of this suggests

that positive selection is a feature of influenza evolution, but that

the locations undergoing positive selection may change and new

antigenic sites may emerge.

As described in the introduction, the punctuated nature of the

antigenic changes can be explained if different locations had

different impacts on antigenic properties, and cluster-changes

corresponded to changes at the more critical locations. In this case,

the selective pressure might still be relatively constant or change in

a way not correlated with the changes in antigenic properties.

Alternatively, jumps in antigenic properties might represent

change in the mechanism of immune-avoidance for the virus or

changes in the antibody response. This latter alternative has been

recently simulated with an epidemiological model [6]. The

majority of substitutions occur within a cluster as populations

evolve within a set of sequences with similar antigenic properties.

These changes progress until a single or set of (rare) mutations

cause a jump to a new antigenic variant with higher fitness. This

sequence and its descendents replace the old cluster, resulting in

the collapse of the population to a new single lineage that

undergoes a new cycle of diversification. Our model provides

evidence for the second explanation, that the antigenic clusters

correspond to changing relationships in the ‘arms-race’ between

influenza and the immune system, resulting in significant changes

in selective pressure at different locations in the protein. These

changes in selective pressure are quite rapid, corresponding to the

amount of selective pressure change that would occur in a branch

of length 0.7, while the branch lengths for the transitions are on

the order of 0.01 to 0.03: this represents a 20- to 70-times increase

in the rate of changes of selective pressure.

Consistent with this model, the changes in selective pressure

occur predominantly in the canonical antigenic sites. These

changes also occur at locations occupied by different amino acids

in the different antigenic clusters [5]. It is important to note that

these are not necessarily cluster-defining changes, in that some of

these changes might have occurred independently of any changes

in antigenic properties. Still, there is a strong correlation between

sites undergoing such amino acid changes between antigenic

clusters and locations where there are corresponding changes in

selective pressure. There is also a significant tendency for changes

in selective pressure in the regions surrounding the cluster-

difference changes.

Interestingly, we cannot detect a significant increase in the rate

of substitution matrix change during changes in glycosylation. As

is clear from Figures S1 and 1, we also observe no correlation

between changes in glycosylation and changes in antigenic

clusters. None of the cluster-changing transitions involve a change

in glycosylation site; conversely, many single antigenic clusters

contain different HA with a wide range of different glycosylation

states. This result is surprising, given the experimental evidence

that glycosylation can reduce antibody binding [2,14–17],

although it is important to note that significant changes in

antigenic properties can occur within the antigenic clusters.

A similar analysis of glycosylation changes in H9 evolution in

birds, thought to represent a situation of viral ‘stasis’ in a natural

host, do not demonstrate any significant increase in glycosylation

state (data not shown). Similarly, the glycosylation state of H1 in

humans does not show a substantial increase, with the number of

glycosylation sites fluctuating between about 8 and 10 per subunit

(data not shown). The amount of glycosylation may represent a

balance between antibody shielding and other requirements such

as the need to modulate receptor affinity [18–20] and avoid the

innate immune response; increased haemagglutinin glycosylation

results in reduced virulence in mice due to virus binding by

collagenous lectins [21]. Reduced binding of influenza viruses by

this mechanism in humans might alter the balance towards

increased glycosylation. Another possible explanation is that

glycosylation-induced antigenic changes that might occur in

humans would not be detected in ferrets, and thus do not show

up in the antigenic property analysis of Smith et al. It is known, for

instance, that humans contain a significant number of antibodies

for galactose compared with ferrets [22]. It is not clear how this

would explain the absence of correlation between glycosylation

changes and changes in selective pressure.

We note that we are examining changes in the predicted, rather

than observed, glycosylation state. It is likely that a large fraction of

these locations are, in fact glycosylated. The crystal structure of

haemagglutinin from H3N2 A/Aichi/2/1968 (PDB designation

5HMG) is predicted to have six glycosylation sites per subunit,

four of which are observed in the structure [23]; the remaining two

might have been lost through protein expression, purification, or

crystallisation. Furthermore, we consider it unlikely that the

inaccuracy of the predictions is responsible for the lack of

correlation between antigenic changes and glycosylation changes,

as there is no reason to believe that there are significant numbers

of predicted glycosylation sites that change their occupancy during

changes in antigenic cluster while there are no sites that change

their predicted state. Similarly, it is difficult to imagine that there is

a correlation between undetected changes in occupancy of these

predicted sites that correspond to increased changes in selective

pressure when no such correlation is observed with changes in the

predicted sites.

We find strong support for a model where the selective pressure

changes preferentially during transitions between antigenic

clusters. This suggests that evolution of human H3 consists of

periods of amino acid variation according to a relatively constant

set of rules, interspersed with periods where the rules governing

variation change. These issues have important consequences for

Table 1. Most significant changes in selective pressure.
Locations with significant probability of a given substitution-
matrix change are tabulated.

2R4 4R2 3R4 4R3 1R2

HK68REN72 275(C) 229(D)

EN72RVI75,TX77 164 157(B)

TX77RBK79 124(A) 138(A)

214(D)

BK79RSI87 135(A)

SI87RBE89 78(E)

SI87RBE92 226(D)

BE92RWU95 275(C) 92(E)

WU95RSY97 156(B) 233

SY97RFU02 25 92(E) 222

75(E)

225

The magnitude of the probability of a change are given as 0.3 to 0.4 (italics), 0.4
to 0.5 (normal), and 0.5 and above (bold). Because it is difficult to separate the
transitions from EN72 to VI75 and TX77, the transition between these three
states are considered a single transition. Antigenic region (where appropriate) is
indicated.
doi:10.1371/journal.ppat.1000058.t001
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the predictability of antigenic drift. If the selective pressure at

different locations in the protein are relatively constant, we could

directly extrapolate future changes from past changes, an

assumption explicit in previous analyses [11]. If, however, changes

in antigenic properties are associated with changes in virus-

immune system interactions, we might have to model changes in

this relationship in order to perform reasonable extrapolations, as

important sequence changes during one interval of antigenic drift

might not be the same as ones that are important during other

intervals. In addition to modelling how amino acids change during

time, we also may need to develop models for how the selective

pressure changes. These results also suggest that the notion of

canonical ‘antigenic sites’ might be overly simplistic. It appears

that there are a wide range of different locations with different

propensities towards antibody recognition, and that the specific

haemagglutinin locations so targeted may change with time. If so,

the distinction between antigenic and non-antigenic sites may be

subtle and time-dependent.

Methods

Evolutionary models
As described above, we develop a series of increasingly complex

models. Each increase in complexity, if justified by the data,

demonstrates a simplifying assumption that can be rejected,

providing increased understanding of the nature of the evolution-

ary process in influenza.

Early simple evolutionary models, that assume that the rate of

substitutions at all locations in all proteins at all times followed the

same substitution matrix, have been gradually supplemented by

mixture models that allow differences in the absolute substitution

rates [24], relative substitution rates at different locations [25–28],

and differences in the substitution rates at different times [29,30].

Each component of the mixture model, represented by a distinct

substitution matrix, reflects a different degree or form of selective

pressure. In the simplest models (such as Gamma-distributed rate

classes), we can consider different components as having different

magnitudes of selective pressure, resulting in different absolute

substitution rates. In the mixture models considered here, we allow

for differences in the magnitude of the selective pressure as well as

differences in the preferences for the different types of locations for

the various amino acids. For instance, one component may model

the inside of the protein, and so have a bias towards hydrophobic

amino acids.

Details of the various models are described in Protocol S1. (For

an overview of standard approaches to evolutionary modelling, see

e.g. [31].) Model 1 involves a standard single substitution matrix

with Gamma-distributed rate variation [24]. In Model 2, we

consider that different locations in the protein follow, or ‘are

assigned’, to one of a number of different possible substitution

matrices [25–28]. We do not initially know which sites belong to

which substitution matrix. Instead, each substitution matrix k has a

specified a priori probability P(k) of representing any given site in

the protein at any time. (As all sites must belong to some

substitution matrix,
P
k

P(k)~1). The different substitution

matrices are characterised by an overall substitution rate nk, the

relative frequencies for the twenty diverse amino acids {pi,k}, and a

symmetric rate parameter matrix Si,j (Si,j = Sj,i) that is optimised over

the entire dataset and is the same for all substitution matrices. The

overall substitution rates are normalised so
P
k

P(k)nk~1. Model 3

includes a rate at which a substitution matrix describing any given

location can change to another during the evolutionary time,

representing variations in the selective pressure on the protein over

time. The various parameters for the substitution matrix model

without changes in selective pressure are {Sij, P(k), nk, pi,k}.

Allowing changes in substitution matrix adds {Zkl}, a new

symmetric matrix (Zk,l = Zl,k) adding an additional Nk (Nk21)/2

parameters for Nk substitution matrices.

Models 4 and 5 consider the possibility that the rate of change of

selective pressure, that is, the rate at which a single location

changes from one substitution matrix to another, might depend

upon the specific branch of the tree, depending, for instance,

according to whether that branch involved a change in antigenic

properties (Model 4) or glycosylation state (Model 5). In these

cases, we consider a model where these specific branches are

subject to an additional substitution-model change matrix which

only includes substitution matrix change but no additional changes

of amino acid. We can then use the likelihood ratio test to see if the

resulting improvement in the log likelihood justifies the addition of

this additional parameter.

Data and adjustment of model parameters
To evaluate the models we have used the dataset of Smith et. al.

[5] which contains 254 Human H3 HA1 sequences sampled from

1968 to 2003. An avian H3 sequence (A/Duck/Hokkaido/33/80,

M16739) was used as an outgroup to root the tree. Sequences were

extracted from the Influenza Sequence Database [32]. The

Maximum Likelihood phylogenetic tree was derived using

PHYML [33] with the WAG substitution model [34] and a

Gamma-distributed rate [35]. Various parts of the tree were

assigned to different antigenic clusters according to the designa-

tions of Smith et al [5]. The listings of these antigenic clusters as

well as the abbreviations used in the text are in the legend for

Figure 1. After the computation of the phylogenetic tree, the

parameters of the model were optimised to maximise the log-

likelihood, using software available from the authors.

The probability of the different substitution matrices and amino

acids at each location in the protein for each ancestral state were

calculated using standard maximum-likelihood ancestral recon-

struction methods [36,37], as were the probability of changes in

selection pressure.

Ancestral glycosylation states were determined by searching for

locations containing the sequence Asn-Xaa-Ser/Thr with proba-

bility .0.95. Homology models of a representative set of ML

ancestral sequences were made with SwissModel [38] based on the

1MQN structure [39]. When glycosylation states were predicted

by the GlyProt server [40], all potential locations were predicted to

be glycosylated.

Model choice
We are often confronted with the choice of one model or

another, of varying degrees of complexity and resulting fit to the

sequence data. The relative fit of two different models is quantified

by the ratio of their likelihoods (that is, the probability that the

observed data would be generated by the model), or equivalently,

the magnitude of the change in log-likelihood. In some cases, these

models are ‘nested’, that is, one model (A) is a restricted form of

model (B), in which case we can use the likelihood ratio test to see

if the added complexity is justified by the resulting increase in log-

likelihood [41]. We cannot use the likelihood ratio test to evaluate

the performance of non-nested models. Instead, we use the Akaike

Information Criterion (AIC) [42], which is defined as

AIC = 2Np22L, where Np is the number of adjustable parameters

and L is the log-likelihood. The preferred model is that which

minimises the resulting AIC. According to this criterion, a more

complex model is only justified when it causes an increase in the

log likelihood greater than the number of additional parameters.
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Supporting Information

Table S1 Rate of change of substitution matrix. Average rates of

substitution-matrix change are represented, given by

SQkl
ii Ti~

X
i
pk

i Qkl
ii .

Found at: doi:10.1371/journal.ppat.1000058.s001 (59 KB DOC)

Table S2 Glycosylated locations for the various antigenic

clusters. + refers to locations that are glycosylated in all ancestral

nodes in the cluster, while # indicates a location that is

glycosylated in some fraction of the nodes.

Found at: doi:10.1371/journal.ppat.1000058.s002 (39 KB DOC)

Figure S1 Characteristics Figure 1: Phylogenetic tree of

influenza H3 HA1 sequences. Regions of the tree are colour-

coded and labelled according to their antigenic cluster, as defined

in (Smith et al. 2004a); labels represent the location (Hong Kong

(HK), England (EN), Victoria (VI), Texas (TX), Bangkok (BK),

Sichuan (SI), Beijing (BE), Wuhan (WU), Sydney (SY), Fujian

(FU)) and year of the first identification. Changes in glycosylation

are represented by red lines. Note that no changes of antigenic

cluster correspond to changes in glycosylation.

Found at: doi:10.1371/journal.ppat.1000058.s003 (1763 KB TIF)

Figure S2 The mean substitution matrix (a) and number of

substitution-matrix changes (b) are shown on top and side

projections of a filled-sphere representation of the HA structure

1MQN [1]. Left) The mean posterior distribution of substitution

matrices for each node in the tree is used to find the assignment of

substitution matrix for each location. Substitution-matrix assign-

ment is indicated by amino-acid color. The first two (slowest)

substitution matrices are shown in white. Substitution-matrix three

is given in green, and four in red. Where assignment is

indeterminate (i.e. the posterior probabilities are spread between

the substitution matrices) this is indicated by mixing of the

appropriate colors. The unmodeled HA2 chain is shown in grey.

Bold black lines around an amino acid indicate that the location is

present in one of the five canonical antigenic sites. Right)The total

number of substitution-matrix changes is calculated for each

location over the entire tree and is shown by coloring each amino

acid an appropriate shade of red: from white (no changes) to dark

red (many changes). Black lines around an amino acid indicate

that the location is antigenic.

Found at: doi:10.1371/journal.ppat.1000058.s004 (15204 KB TIF)

Figure S3 The mean substitution matrix (Left) and number of

substitution-matrix changes (Right) are shown on 1MQN. Color

schemes are as Figure S3. Black lines indicate that a site is

predicted to be positively selected [2]. The positively selected sites

were determined from a dataset published in 1999, however

removal of all nodes from the tree after 1998 has a negligible effect

on the mean substitution-matrix or mean number of substitution-

matrix changes.

Found at: doi:10.1371/journal.ppat.1000058.s005 (17045 KB

TIF)

Figure S4 Left) The substitution-matrix assignments for the

node before the TX77RBK79 transition are plotted on the HA

structure 1MQN. Colors are as Figure S3. Centre) We calculate

the probability of each possible change in substitution matrix for

each site along the branch corresponding to the TX77RBK79.

These are indicated on the 1MQN structure by mixing the

appropriate colors. Green and red indicate changes towards

substitution matrices three and four respectively. Blue indicates a

change towards substitution matrices one and two. White sites are

unchanging. Intensity of color indicates the magnitude of the

change, and colors are mixed if more than one change is taking

place. Amino acids labeled with black edges are those designated

as cluster-difference mutations for TX77RBK79 by Smith et al.

[3]. Right) The substitution matrix assignments for the node after

the TX77RBK79 transition. Colors are as Figure 4.

Found at: doi:10.1371/journal.ppat.1000058.s006 (13815 KB

TIF)

Figure S5 Left) The substitution-matrix assignments for the

node before the WU95RSY97 transition are plotted on the HA

structure 1MQN. Colors are as Figure S3. Center) Transitions

between substitution matrices along the WU95-.SY97 transition

are marked in color as in Figure S-5(Center). Right) The

substitution-matrix assignments for the node after the

WU95RSY97 transition. Amino acids labeled with black edges

are those designated as cluster-difference mutations for WU95-

.SY97 by Smith et al. [3].

Found at: doi:10.1371/journal.ppat.1000058.s007 (12925 KB

TIF)

Protocol S1 Methods: Evolutionary models

Found at: doi:10.1371/journal.ppat.1000058.s008 (52 KB DOC)
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