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Abstract: Retroviral replication proceeds through a
stable proviral DNA intermediate, and numerous host cell
factors have been implicated in its formation. In particular,
recent results have highlighted an important role for the
integrase-interactor lens epithelium-derived growth factor
(LEDGF)/p75 in lentiviral integration. Cells engineered to
over-express fragments of LEDGF/p75 containing its
integrase-binding domain but lacking determinants es-
sential for chromatin association are refractory to HIV-1
infection. Furthermore, both the levels of HIV-1 integra-
tion and the genomic distribution of the resultant
proviruses are significantly perturbed in cells devoid of
endogenous LEDGF/p75 protein. A strong bias towards
integration along transcription units is a characteristic
feature of lentiviruses. In the absence of LEDGF/p75, HIV-1
in large part loses that preference, displaying concomitant
integration surges in the vicinities of CpG islands and
gene promoter regions, elements naturally targeted by
other types of retroviruses. Together, these findings
highlight that LEDGF/p75 is an important albeit not
strictly essential cofactor of lentiviral DNA integration, and
solidify a role for chromatin-associated LEDGF/p75 as a
receptor for lentiviral preintegration complexes. By now
one of the best characterized virus–host interactions, the
integrase-LEDGF/p75 interface opens a range of oppor-
tunities for lentiviral vector targeting for gene therapy
applications as well as for the development of novel
classes of antiretroviral drugs.

Introduction

A key step in the retroviral lifecycle is the formation of the

provirus, the integrated form of the viral cDNA that is produced

during reverse transcription. Retroviral integration is promoted by

the viral integrase (IN) enzyme, which enters the cell as a

component of the virion particle. IN catalyzes two spatially and

temporally distinct reactions within the context of the preintegra-

tion complex (PIC), a large structure derived from the virus core

[1,2]. During the initial reaction, which is called 39 processing and

happens soon after the cDNA is made, IN hydrolyzes a

dinucleotide from each end of HIV-1 DNA [2,3] (Figure 1). The

second reaction, DNA strand transfer, takes place at the site of

integration in the cell nucleus. IN uses the recessed 39-OH groups

created during 39 processing to cut opposing strands of

chromosomal DNA in a staggered fashion, concomitantly

connecting the viral DNA 39 ends to the generated 59 overhangs

[4]. The resultant DNA recombination intermediate harbors

single-strand discontinuities that must be repaired to complete

provirus formation (Figure 1). See [5] for a thorough overview of

the mechanism of HIV-1 integration as well as the host cell factors

that are implicated in the final DNA repair step.

Retroviral IN enzymes purified from a variety of sources display

39 processing and DNA strand transfer activities in vitro [6–10].

These seminal results highlighted that IN alone sufficed to form

DNA strand transfer reaction products; however, numerous

subsequent studies indicated that other proteins play important

auxiliary roles in the context of virus infection (see [5,11–13] for

recent reviews). This review focuses on the IN interactor lens

epithelium-derived growth factor (LEDGF)/transcriptional co-

activator p75, whose critical role in lentiviral DNA integration has

been highlighted by a number of recent studies [14–18].

LEDGF/p75: A Cellular Interactor of Lentiviral INs

LEDGF/p75, a member of the hepatoma-derived growth factor

(HDGF) related protein (HRP) family, was initially implicated in

lentiviral biology through its association with ectopically expressed

HIV-1 IN in 293T cells [19]. Significantly, purified recombinant

LEDGF/p75 protein stimulated HIV-1 IN catalytic function in

vitro [19]. The interaction was independently discovered by

analyzing proteins associated with HIV-1 IN in HeLa cells [5] and

in a yeast two-hybrid screen for HIV-1 IN interactors [20].

HRPs are characterized by a conserved N-terminal PWWP

domain, an ,90– to 135–amino acid module found in a variety of

nuclear proteins [21,22]. Six human HRP family members have

been described: HDGF, HRP1, HRP2, HRP3, LEDGF/p75, and

LEDGF/p52 [23–25], of which two, LEDGF/p75 and HRP2,

possess affinity for HIV-1 IN [25]. Significantly larger than the rest

of the HRPs, LEDGF/p75 and HRP2 contain a second

evolutionarily conserved domain within their extended C-termini.

It is this domain that mediates the interaction with HIV-1 IN,

hence the term ‘‘IN-binding domain (IBD)’’ [25,26] (Figure 2A).

LEDGF/p75 and LEDGF/p52 are expressed from the same gene

(human PSIP1) [27]. The smaller p52 isoform, produced by

alternative RNA splicing [27], lacks the IBD and fails to engage

HIV-1 IN in vitro or in live cells [28] (Figure 2A).

LEDGF/p75 is a ubiquitous nuclear protein, tightly associated

with chromatin throughout the cell cycle [19,26,28–31]. Chro-
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matin association is primarily mediated by three conserved

sequence elements within the N-terminal half of the protein: the

PWWP domain, nuclear localization signal (NLS), and a dual copy

of the AT-hook DNA binding motif [31,32] (Figure 2A). LEDGF/

p75 binds a variety of DNA substrates in vitro, an activity that

appears relevant to its association with chromatin [31]. We note

that the sequence-specific DNA binding of LEDGF/p75 to stress

response and heat shock elements [33] could not be independently

verified [31]. Recent results have revealed that the association with

chromatin is essential for LEDGF/p75 function during HIV-1

infection ([16,18]; see below), highlighting the importance of

clarifying the mechanism of LEDGF/p75 chromatin binding.

The cellular functions of LEDGF/p75 and closely related

HRP2 remain largely uncharacterized, although initial reports

have indicated a role for LEDGF/p75 in transcriptional regulation

[27,33,34]. The protein is not essential for cell survival [18],

though the majority of LEDGF-null mice died soon after birth or

showed a range of developmental abnormalities in adulthood [35].

Of note, the eye lens developed normally in LEDGF knockout

mice [35], highlighting that its most often used name, which was

coined during the second isolation of the gene [36], reflects the use

of lens epithelial cells for cDNA isolation more so than biological

function. The finding that LEDGF/p75 associates with JPO2, a

known interactor of c-MYC, will hopefully help efforts to link its

function to an established cellular mechanism [37,38].

HIV-1 and feline immunodeficiency virus (FIV) INs predom-

inantly localize to nuclei upon ectopic expression in a variety of

cell types [30,39–42]. In mitotic cells, and likely throughout the

cell cycle, the lentiviral INs stably associate with chromatin

[30,40,41]. Three important consequences on IN expression

occurred when levels of endogenous LEDGF/p75 protein were

reduced using RNA interference (RNAi). First, in interphase cells,

Figure 1. Retroviral Early Events and the Mechanism of HIV-1 DNA Integration. (A) The early phase of the retroviral lifecycle is divided into
nine steps, spanning from step 1, when the extracellular virus initially engages its cellular receptor, to step 9, with the completion of provirus
formation. Steps 5–8, which encompass IN 39 processing of the nascent reverse transcript in the cytoplasm to the formation of the DNA strand
transfer reaction product in the nucleus (highlighted in blue font), could potentially be affected by the IN–LEDGF/p75 interaction. Among these steps,
lentiviruses display unique nuclear import and chromatin targeting properties (blue boxes). (B) Details of phosphodiester bond breakage and joining
during HIV-1 integration. Small vertical arrows denote the bonds cleaved by IN, using water as the chemical nucleophile for 39 processing, and the OH
groups at the 39 ends of the processed viral DNA for DNA strand transfer [4]. Results of in vitro experiments indicate that a dimer of HIV-1 IN suffices
to process each viral DNA end, whereas a tetramer is required for DNA strand transfer activity [92–94]. IN is known to function as a multimer during
infection [95,96]; notably, though, its functional PIC-associated multimeric form has not been determined. A tetramer is represented at each step here
for simplicity. The open and filled triangles at the ends of the viral DNA represent U3 and U5 sequences, respectively, important for IN function
(reviewed in [97]). Host cell factors are likely to repair the single strand gaps present within the DNA recombination intermediate (reviewed in [5]).
doi:10.1371/journal.ppat.1000046.g001
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the vast majority of HIV-1 and FIV IN re-localized to the cell

cytoplasm [28,30]. Second, and perhaps more significant, IN

proteins lost their chromosomal association, as was most clearly

observed in mitotic cells [28,30]. Finally, at least in case of HIV-1

IN, the redistribution was accompanied by significant reductions

in steady-state levels of the viral protein [43]. These observations

implicated LEDGF/p75 as the dominant cellular interactor of

lentiviral INs and indicated that the cellular protein was essential

for IN-chromatin association, likely acting as a receptor or

molecular tether. LEDGF/p75 thus contributes to the karyophilic

properties of lentiviral INs. Indeed, the cell factor contains a

classical NLS (residues 148–156; Figure 2A) [26,44,45], and over-

expression of a NLS defective form of LEDGF/p75 trapped HIV-

1 IN in the cytoplasm [26,44]. However, the viral protein has not

been formally proven to piggyback into the nucleus through its

interaction with LEDGF/p75. In one report, a primarily nuclear

IN population was observed when knockdown cells were treated

with proteasome inhibitors [20]. Although the association of

ectopically expressed HIV-1 IN with chromatin is attributable to

the LEDGF/p75 interaction, these data suggest the viral protein

might access nuclei in a LEDGF/p75-independent manner. The

mechanisms of lentiviral IN/PIC nuclear import remain ongoing

areas of investigation (see [46,47] for recent reviews).

Additional studies revealed that LEDGF/p75 binds to a variety

of lentiviral IN proteins, but, significantly, fails to interact with IN

proteins derived from five (a, b, d, c, and Spuma) of the six other

tested retroviral genera [30,48,49]. These observations implied

that the IN-LEDGF/p75 interaction underlies a unique aspect of

lentiviral biology. Of note, lentiviral PICs access cell nuclei and

target chromatin (Figure 1A, steps 6 and 7) using mechanisms that

distinguish them from other retroviruses [46,47,50].

Structural Aspects of the IN–LEDGF/p75
Interaction

HIV-1 IN is composed of three functional domains: the N-

terminal domain (NTD), the catalytic core domain (CCD), and the

C-terminal domain (CTD) (Figure 2B). Initial mapping experi-

Figure 2. Domain Organization of LEDGF/p75 and HIV-1 IN Proteins. (A) LEDGF/p75 and related proteins. The binding of LEDGF/p75 to DNA
in vitro is mediated by the NLS and a nearby dual copy of the AT-hook DNA binding motif [31], whereas the N-terminal PWWP domain supplies a
critical chromatin recognition function [31,32]. Charged regions (CRs) 1–3 work in concert with the PWWP domain and AT-hooks to affect the wild-
type chromatin binding phenotype as determined by biochemical fractionation [32]. The function of the HRP2 AT-hooks, identifiable though
sequence gazing [25], has not been established experimentally. A patch of conserved amino acids known as homology region III (HR3) was also
identified via aligning multiple HRP2 orthologs [25]. The LEDGF/p75 IBD is critical for stimulation of HIV-1 IN function in vitro [25,31,51,77,78,98] and
for HIV-1 infection [16,18]. The N-terminal 325 residues within LEDGF/p75 and LEDGF/p52 are identical, whereas the p52 isoform harbors a unique 8–
amino acid residue tail [27]. (B) The three IN domains as defined by a number of structural and functional studies are shown (refer to [5] and [13] for
details). Amino acid residues within each domain that are conserved across Retroviridae are indicated. The Asp and Glu residues highlighted in red
within the CCD coordinate Mg ions for catalysis during 39 processing and DNA strand transfer.
doi:10.1371/journal.ppat.1000046.g002

PLoS Pathogens | www.plospathogens.org 3 March 2008 | Volume 4 | Issue 3 | e1000046



ments using fluorescent fusions expressed in live cells revealed that

the CCD is minimally required for the interaction with LEDGF/

p75, and highlighted a role for the NTD as an affinity enhancer

[28]. A number of single amino acid substitutions within the CCD,

including V165A [5], R166A [51], and Q168A [20], were soon

thereafter shown to impair the IN–LEDGF/p75 interaction. Each

of these changes rendered HIV-1 replication defective [20,52–54],

suggesting that the IN–LEDGF/p75 interaction might be essential

for HIV-1 replication [20,51,55]. However, many mutations in IN

exert so-called ‘‘class II’’ pleiotropic effects, whereby poorly

understood aspects of IN biology extending beyond its innate

catalytic function contribute to the overall replication defect [55–

57]. Recent results indicate that PICs formed in the absence of

LEDGF/p75 protein in vivo are fully competent to integrate the

endogenous cDNA made during reverse transcription into

exogenous target DNA in vitro [18]. Based on this, one would

predict that IN mutant viruses defective for growth solely due to

the inability to interact with LEDGF/p75 would yield PICs fully

competent for integration in vitro. The replication defect caused

by the Q168A mutation was suggested to result from the lack of

cofactor binding [20], though a follow-up study indicated HIV-

1Q168A behaved as a class II IN mutant virus [55]. PICs derived

from class II mutants fail to support in vitro integration activity

[58], indicating that PIC analyses would help to shed light on the

specificity of the HIV-1Q168A replication defect.

The 3-D structure of the LEDGF/p75 IBD solved by nuclear

magnetic resonance spectroscopy revealed a compact a-helical

domain possessing topological and structural similarities to HEAT

repeat domains [51]. The HEAT repeat, an a-helical hairpin

module containing 37–47 amino acid residues, is a versatile

building block found among diverse protein families, and derives

its name from Huntingtin, elongation factor 3, the regulatory

subunit of protein phosphatase 2A, and PI3-kinase TOR [59].

Whereas HEAT repeat proteins typically contain numerous

individual hairpins, the LEDGF/p75 IBD is comprised of only

two repeats and was therefore classified as a pseudo-HEAT repeat

analogous topology (PHAT) domain [51]. Substituting Ala for

either Ile-365, Asp-366, or Phe-406 ablated the IN–LEDGF/p75

interaction in vitro, defining these amino acids as hotspot contact

residues [51]. Their principal involvement in the protein–protein

interaction was confirmed through determination of the crystal

structure of the IBD in complex with the IN CCD [60] (Figure 3).

The LEDGF/p75 binding site on IN notably forms via tertiary

structural interactions, as the IBD burrows into a cleft created by

the IN dimer interface [60] (Figure 3A). The side chain carbonyl of

LEDGF/p75 Asp-366 forms a bidentate hydrogen bond with the

backbone amides of residues Glu-170 and His-171 from one IN

monomer, while Ile-365 and Phe-406 participate in multiple

hydrophobic interactions with residues primarily donated from the

other monomer. In particular, the side chain of Ile-365 becomes

buried within a hydrophobic pocket (Figure 3B). Substituting Asn

for Asp-366 ablated the IN–LEDGF/p75 interaction in vitro [51]

and in yeast cells [55], highlighting the central role of the bidentate

hydrogen bond in the interaction. Several critical contacts with the

IN polypeptide backbone explain the mechanism whereby

LEDGF/p75 binds to a variety of lentiviral proteins, although

the INs fail to reveal recognizable sequence conservation at these

amino acid positions [49,60]. The main chain traces of other

Figure 3. Crystal Structure of the LEDGF/p75-IN Interaction. (A) Cartoon representation of the CCD-IBD complex (the complete asymmetric
unit) [60]. IN CCD molecules are colored green and blue, whereas the LEDGF/p75 IBDs are magenta and yellow. The side chains of IN active site
residues Asp-64, Asp-116, and Glu-152 (Figure 2B) are shown as red sticks. The region within the dashed box is expanded in (B). (B) Details of the CCD-
IBD interface. LEDGF/p75 hotspot residues Ile-365 and Asp-366, situated at the base of the loop between IBD helices 1 and 2, project into a pocket at
the CCD dimer interface. The bidentate hydrogen bond contact between Asp-366 and the backbone amides of IN residues Glu-170 and His-171 is
critical for the protein–protein interaction in vitro [51], in yeast cells [55], and during HIV-1 infection [18]. Ile-365 is buried into a hydrophobic pocket
predominantly formed by IN residues Ala-128, Trp-132, Leu-102, and Met-178. Hydrogen bonds and salt bridges are shown as dotted lines. The figure
was drawn using PyMOL [99].
doi:10.1371/journal.ppat.1000046.g003
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retroviral INs would appear to differ significantly at key points of

IBD–CCD contact, accounting for the lentiviral specificity of the

LEDGF/p75–IN interaction [60].

LEDGF/p75 and HIV-1 Replication

Initial RNAi-based studies were central to establish important

links between endogenous LEDGF/p75 protein and lentiviral IN

expression levels and subcellular localization, yet they failed to

reveal an important role for the cell factor in HIV-1 replication. In

some RNAi-based studies, despite achieving what appeared to be

very efficient reductions in cellular protein [30,61], specific HIV-1

replication defects were not observed despite rigorous effort to

identify them. At the time it was suggested that intracellular

LEDGF/p75 levels might significantly exceed those required to

effect normal lentiviral DNA integration [61], a hypothesis

supported by subsequent RNAi-based work [16,62,63] and a

gene knockout study [18]. Llano and colleagues [16] performed an

elegant study whereby the expression of short-hairpin RNA

(shRNA) was linked to that of green fluorescence protein (GFP)

within the same lentiviral-based vector. Sorting the brightest green

cells therefore ensured for selection of potent LEDGF/p75

knockdowns. Selected cells were moreover fractionated to analyze

levels of chromatin-bound protein. In this way, HIV-1 infectivity

levels were correlated to residual levels of chromatin-associated

LEDGF/p75. In the absence of detectable protein, infection was

reduced to 3.5% of that observed in the presence of normal

LEDGF/p75 levels. Similarly significantly reduced levels of HIV-1

infection were observed in mouse embryo fibroblasts (MEFs)

derived from LEDGF knockout as compared to littermate control

animals [18]. The block in both cases was at integration: reverse

transcription and the formation of two long terminal repeat

(LTR)–containing DNA circles, a surrogate marker for PIC

nuclear import, were normal, whereas integration was severely

reduced [16,18]. Although these results would seem to exclude a

role for LEDGF/p75 in the nuclear import of the PIC, the baffling

ability of lentiviruses to infect non-dividing cell types with high

efficiency calls for further scrutiny of lentiviral PIC nuclear import

in LEDGF-depleted cells under conditions of growth arrest. It is

important to stress that even in a genetic knockout model

completely devoid of LEDGF/p75 protein, HIV-1 integration

was not ablated: LEDGF-null MEFs supported ,10% of the level

of HIV-1 integration achieved in control cells [18]. Hence,

although important for lentiviral integration, LEDGF/p75 is

clearly not strictly essential. The infectivity of Moloney murine

leukemia virus (Mo-MLV), a c-retrovirus, importantly did not

depend on the presence of LEDGF/p75 in target cells [16,18],

providing biological relevance to the observations of lentiviral

specificity in the IN–LEDGF/p75 interaction.

HIV-1 infection was fully restored to LEDGF/p75-depleted

cells by ectopic expression of the cell factor [16,18,62], allowing

detailed mutational analyses of cofactor function. Mutagenesis

studies highlighted two regions within LEDGF/p75, the IBD and

N-terminal PWWP domain/AT-hook DNA binding motifs that

mediate chromatin binding (Figure 2A), as crucial for HIV-1

infection [16,18]. The requirement for the N-terminal sequence

elements lent credence to early conjectures that LEDGF/p75

might primarily function to tether HIV-1 PICs to chromatin for

integration [19,28,30].

The isolated IBD competitively inhibited LEDGF/p75-depen-

dent stimulation of IN activity in vitro [25], and GFP-IBD fusion

proteins over-expressed in target cells rather potently restricted

HIV-1 infection [15,16]. The inhibitory effect was specific, since

Mo-MLV was not affected, and altering IBD hotspot residue Asp-

366 negated the block to HIV-1 infection. Importantly, reverse

transcription and nuclear localization proceeded normally, with a

significant reduction in total HIV-1 DNA levels observed after

approximately six cell divisions. These data were fully consistent

with an integration block, though the lentiviral vectors used to

create cell lines precluded direct measurements of HIV-1

integration [15]. These observations indicate that IBD binding

in large part precluded IN from engaging chromatin-associated

LEDGF/p75. It is noteworthy that IBD over-expression, when

combined with shRNA-mediated depletion, yielded a multiplica-

tive antiviral effect [16] that would appear to exceed that observed

in cells completely devoid of LEDGF/p75 protein [18]. It seems

plausible that IBD-bound IN is crippled in its capacity to

effectively engage target DNA in the absence of effective levels

of competing chromosomal LEDGF/p75.

An HIV-1 mutant selected for its ability to replicate in MT-4 T

cells engineered to express the C-terminal portion of the p75

isoform (residues 326–530; Figure 2A) acquired two mutations in

IN, A128T and E170G [17]. Predictably, the mutations affected

residues whose side chains directly participate in the LEDGF/p75-

binding interface. As illustrated by the IBD-CCD crystal structure,

Glu-170 is involved in a salt bridge with Lys-364 of LEDGF/p75,

whereas Ala-128 contributes to the hydrophobic pocket that buries

LEDGF/p75 hotspot residue Ile-365 [60] (Figure 3B). As

expected, these mutations reduced the apparent affinity of the

interaction with LEDGF/p75 [17]. Altering IN residue Ala-128 to

the bulkier Gln had been previously shown to reduce the affinity of

the protein–protein interaction [55]. Intriguingly, HIV-1A128T/

E170G was partially defective,and its replication capacity was

reduced further upon LEDGF/p75 knockdown, suggesting that

the mutant IN still depended on LEDGF/p75 for integration [17].

The estimated Kd of the interaction between wild type HIV-1 IN

and LEDGF/p75 is notably in the low nM range (PC and AE,

unpublished data). Conceivably, by slightly detuning the LEDGF/

p75-binding interface, the escape mutations afforded the dissoci-

ation of PIC-born IN from non-productive complex formation

with the LEDGF/p75 fragment. Following multiple cycles of

association/dissociation, the PIC would eventually engage a

functional cofactor molecule.

These results provided physiological evidence for previous

contentions that LEDGF/p75 is the dominant cellular binding

partner of HIV-1 IN. Indeed, cell factors that potentially bind to

other regions of IN were clearly unable to compensate for the loss

in LEDGF/p75 binding caused by the A128T/E170G mutations.

One interpretation is that LEDGF/p75 is the only cell protein

involved in tethering HIV-1 to chromosomes for integration [17],

though it remains plausible that other factors that bind IN with

lower affinity could play roles in this process. As the ability of

HRP2 to stimulate HIV-1 IN activity in vitro was inhibited by an

excess of the LEDGF/p75 IBD fragment, both HRP protein

family members are predicted to bind IN in similar manners [25].

Over-expression of human HRP2 in LEDGF-null cells rescued

HIV-1 infection [18], although the analogous experiment failed to

reveal a significant infectivity boost in severely knocked-down

human SupT1 cells [16]. The generation of mouse HRP2

knockout cells, currently under way in the Engelman laboratory,

should help to clarify whether this IBD-containing protein plays a

significant role in HIV-1 integration.

LEDGF/p75 and PIC Targeting during Lentiviral
Integration

Establishment of the stably integrated provirus is a hallmark of

retroviral replication, fundamental to the persistence of infection.
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However, mammalian genomic DNA is a vast target, a significant

proportion of which is not transcriptionally active. What’s more,

when integrated, the transcriptional activity of viral cDNA

becomes sensitive to the local chromosomal environment [64].

Hence, it is not surprising that retroviruses do not leave integration

entirely to chance, having evolved mechanisms for selecting

suitable target loci. Indeed, the observed distributions of integrated

proviruses along host chromosomal DNA are not random, and

biases at the level of local DNA sequences as well as on the

genomic scale have been described (reviewed in [13] and [50]).

These biases appear to be genus-specific, and although the

differences are sometimes subtle, three retroviral genera appear to

stand out most distinctly. Lentiviruses, including HIV (both type 1

and type 2) [65,66], simian immunodeficiency virus (SIV) [67,68],

FIV [69], and equine infectious anemia virus (EIAV) [70], are

strongly biased towards integration into transcription units (TUs),

with a preference for highly expressed genes. The c-retrovirus Mo-

MLV, in contrast to lentiviruses, prefers to integrate in the vicinity

of transcription start sites and CpG islands [67,71], while a

spumaretrovirus, simian foamy virus (SFV), is biased against

integrating into genes, yet nonetheless displays significant

preferences for gene start sites and CpG islands [72,73].

Disengagement of HIV-1 IN from chromatin upon knockdown

of endogenous cellular LEDGF/p75 strongly suggested that the

cofactor acts as a chromosomal receptor or molecular tether for IN

[28,30]. In addition, the interaction with LEDGF/p75 is

conserved among and unique to Lentivirus [30,48,49], essentially

paralleling the genus’ notable bias towards integration into TUs.

The anticipation that LEDGF/p75 is the lentiviral targeting factor

was initially confirmed by Ciuffi et al., who reported statistically

significant albeit modest reductions of HIV-1 integration into TUs

in two of three human cell lines following LEDGF/p75

knockdown [14]. More recently, a novel genetic knockout model

afforded the study of HIV-1 integration under LEDGF-null

conditions [18]. The observed frequency of HIV-1 integration into

TUs in LEDGF knockout cells was significantly lower than in the

littermate control condition. Importantly, the selectivity of HIV-1

for TUs in LEDGF-null cells was marginally less than the levels

observed for c- and a-retroviruses, as well as the adeno-associated

parvovirus, in normal human cells [18]. Integration distribution

and frequency positively correlated with local transcription activity

in the absence of LEDGF/p75, though this correlation was

significantly reduced compared with cells expressing the host

factor [18]. The frequency of HIV-1 integration in the vicinity of

CpG islands and transcription start sites was augmented in the

absence of LEDGF/p75 [18], yielding profiles more similar to a-,

c-, d-, and spuma-retroviruses, which naturally display affinity for

these genomic features [71–76]. These data suggest that Retroviridae

might exploit a common mechanism for intranuclear trafficking

and integration site selection, which lentiviruses have evolved to

override by the virtue of their interaction with LEDGF/p75.

These findings solidified that LEDGF/p75 is the principal

Lentivirus-specific integration targeting factor [18]. Nevertheless,

in our minds, it is impossible to rule out that other cellular factors

would contribute to the observed integration site distribution.

The Model for LEDGF/p75 Function in HIV-1
Integration

The question of how important LEDGF/p75 is to HIV-1

replication has caused fierce debates and remained controversial

until recently. On one hand, viral replication defects caused by

mutations in and around the LEDGF/p75-binding interface of

HIV-1 IN indicated that the cofactor might play an essential role

[20,51,55]. On the other hand, LEDGF/p75 depletion via RNAi

significantly reduced but fell short of abrogating HIV-1 integration

[16,62,63]. Since LEDGF knockout cells supported residual levels

of HIV-1 integration, we must conclude that the cofactor is not

essential for integration [18]. We concede that it is possible that

some additional mechanisms rescue HIV-1 integration in the

mouse knockout system, or that murine HRP2 takes over the role

of LEDGF/p75. Nevertheless, these results are in agreement with

a large body of experimental evidence demonstrating that the

isolated HIV-1 IN protein can perform its catalytic functions

[7,10] (reviewed in [5] and [13]). Furthermore, PICs assembled in

LEDGF-null cells were fully functional in vitro, indicating that the

cofactor is not essential for the assembly or intrinsic activity of the

HIV-1 complex. Though the endogenous cellular protein readily

co-immunoprecipitated lentiviral PICs [30], the equivalent

activities of PICs isolated from normal and LEDGF-null cells

strongly suggest that it is the chromatin-bound pool of the protein

that is functionally relevant (Figure 4).

In our model, chromatin-associated LEDGF/p75 acts as a

receptor for incoming PIC particles, and although the PICs possess

the capacity to engage target DNA, the interaction with LEDGF/

Figure 4. Model of LEDGF/p75 Function during HIV-1 Integra-
tion. (A) The basic unit of chromatin, the nucleosome, is depicted as a
gray oval of histone proteins in association with chromosomal DNA
(orange lines). LEDGF/p75 might engage chromatin via its NLS and AT-
hook motifs (A/T h) binding directly to DNA [31] and/or by the PWWP
domain and AT-hooks mediating protein interactions with histone
proteins or other currently unknown chromatin factors (labeled X)
[18,31,32]. Upon engaging the IBD, PIC-bound IN is encouraged to
integrate the viral cDNA at a nearby position, statistically favoring the
indicated palindromic target DNA sequence (indicated by short black
lines, and expanded to denote the sequence) [18,82–85]. The short
vertical lines indicate the sites of integration on the two chromosomal
DNA strands. (B) The PIC can still engage the consensus target DNA
sequence in the absence of LEDGF/p75, though overall levels of HIV-1
integration are reduced ,10-fold under this condition (represented by
the relative size of the arrow in [A] and [B]) [18].
doi:10.1371/journal.ppat.1000046.g004
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p75 encourages IN’s DNA strand transfer activity, thereby

directing integration to a nearby genomic locus (Figure 4A).

Concordantly, the cofactor robustly stimulates the enzymatic

activities of lentiviral INs in vitro [19,25,31,49,77,78]. The model

suggests that when the pool of chromatin-associated LEDGF/p75

is reduced or ablated, a larger fraction of PICs will rely on a

slower, cofactor-independent pathway (Figure 4B). Conceivably,

this will extend the time a PIC lingers in the non-integrated state,

widening the window of opportunity for the cell to destroy it, and

hence affecting overall integration levels. Indeed, the nucleopro-

tein complexes generated during reverse transcription [79,80] as

well as IN itself [41,43,81] are subject to degradation by the

cellular ubiquitin-proteasome system. The model accounts for the

retention of the weakly favored target DNA consensus sequence at

the sites of HIV-1 integration [82–85] in the absence of LEDGF/

p75 [18], and also explains why a detectable shift in the

distribution of HIV-1 integration sites occurred under partial

LEDGF/p75 knockdown conditions that nonetheless were

insufficiently weak to affect the overall level of virus infection [14].

Conclusions and Perspectives

LEDGF/p75 is an important host factor commandeering the

integration of HIV-1 and likely other lentiviruses to active TUs

[14,18]. Although LEDGF/p75 was required for efficient HIV-1

integration and replication [62,63], it is not essential, since

stringently knocked-down human SupT cells and knockout MEFs

supported residual provirus formation (approximately 10% of that

seen in the presence of endogenous LEDGF/p75 levels) [16,18].

Therefore, it appears that HIV-1 does not entirely rely on the host

factor, and furthermore, it can be assumed that there is a

background of LEDGF/p75-independent integration under nor-

mal infection conditions. Conceivably, integration into transcrip-

tionally repressed or gene-poor regions contributes to the

establishment of latent viral reservoirs and hence to the persistence

of clinical infection [86]. It remains to be determined if the

residual levels of integration in LEDGF-null cells depend upon

HRP2, a close kin of LEDGF/p75.

The potential for directed integration could alleviate concerns of

insertional mutagenesis and in theory greatly improve the safety of

retroviral vectors in gene therapy applications. Given the central

role it plays in directing lentiviral integration [14,18] and its

modular structural organization [25], LEDGF/p75 seems to be an

ideal candidate for creating a designer targeting factor for

lentiviral vectors. Indeed, a protein chimera containing the

LEDGF/p75 IBD and the DNA-binding domain of bacteriophage

l repressor stimulated HIV-1 integration in the vicinity of l
operator sequences in vitro [87]. Undoubtedly, the future will see

more work in this important direction. Also impending is focus on

clarifying the cellular functions of LEDGF/p75 and the related

HRPs. Broad changes (both increases and decreases) in the

transcriptional activity of ,2,000 genes were observed in silenced

human 293T cells [14], with significantly fewer (,200) genes

affected in LEDGF-null MEFs [18]. Although the chromosomal

distribution of LEDGF/p75 has not been addressed directly, based

on well-established HIV-1 integration site preferences [85], it is

expected to be associated with a large body of active genes,

distributed along the length of TUs [18,74]. A function in RNA

polymerase II transcription elongation or splicing would agree

with this distribution pattern.

The significant reductions in HIV-1 infectivity observed in cells

extensively depleted for LEDGF/p75 protein [16,18] and in those

engineered to over-express IBD-containing fragments [15–17], as

well as the remarkable conservation of the interaction among

divergent lentiviruses [49], highlight the protein–protein interac-

tion as a novel target for the development of antiviral drugs.

Though protein–protein interactions are traditionally more

challenging than enzyme active sites for targeted drug develop-

ment [88], LEDGF/p75 hotspot residues Ile-356 and Asp-366

notably extend down into a cleft formed at the IN dimer interface

(Figure 3B). It is not difficult to envision a small molecule with

sufficient binding affinity occupying the pocket and precluding

LEDGF/p75 from binding. A major hurdle in identifying such a

compound will be the strength of LEDGF/p75–IN interaction,

although recent results seem to suggest this may not be

insurmountable. A compound that ablated HIV-1 IN 39

processing and DNA strand transfer activities in vitro at the

relatively modest median inhibition concentration (IC50) of

150 mM bound the CCD at the IBD interaction site [60,89].

This region of IN is therefore amenable to small molecule binding.

Peptides derived from the face of the IBD that interacts with the

CCD were moreover reported to inhibit IN activity in a

noncompetitive manner [90]. At present, development of clinically

useful small molecules possessing sufficient affinity to preclude

LEDGF/p75 binding and inhibit HIV-1 replication remains an

inspiring challenge.

After the acceptance of this Review, Marshall et al. [91]

reported that the frequency and distribution of HIV-1 as well as

equine infectious anemia virus integration were significantly

altered in human cells knocked down for LEDGF/p75 expression

and in mouse cells carrying disrupted Psip1 sequences.

Supporting Information

Accession Numbers

Detailed information on the following genes and proteins can be

accessed at the National Center for Biotechnology Information

(http//:www.ncbi.nlm.nih.gov/) using the following accession

numbers: HIV-1 IN (NP_705928), LEDGF/p75 (NP_150091),

HDGF (NP_004485), HRP1 (NP_612641), HRP2

(NP_001001520), HRP3 (NP_057157), LEDGF/p52

(NP_066967), PSIP1 (GeneID 11168); JPO2 (Q96GN5), c-MYC

(NP_002458), and FIV IN (NP_040973). The Protein Data Bank

(http://www.rcsb.org/pdb) accession number for the CCD-IBD

complex is 2B4J.
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