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Abstract

Echinocandins are a new generation of novel antifungal agent that inhibit cell wall b(1,3)-glucan synthesis and are normally
cidal for the human pathogen Candida albicans. Treatment of C. albicans with low levels of echinocandins stimulated chitin
synthase (CHS) gene expression, increased Chs activity, elevated chitin content and reduced efficacy of these drugs.
Elevation of chitin synthesis was mediated via the PKC, HOG, and Ca2+-calcineurin signalling pathways. Stimulation of Chs2p
and Chs8p by activators of these pathways enabled cells to survive otherwise lethal concentrations of echinocandins, even
in the absence of Chs3p and the normally essential Chs1p, which synthesize the chitinous septal ring and primary septum of
the fungus. Under such conditions, a novel proximally offset septum was synthesized that restored the capacity for cell
division, sustained the viability of the cell, and abrogated morphological and growth defects associated with echinocandin
treatment and the chs mutations. These findings anticipate potential resistance mechanisms to echinocandins. However,
echinocandins and chitin synthase inhibitors synergized strongly, highlighting the potential for combination therapies with
greatly enhanced cidal activity.
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Introduction

In fungi, two covalently cross-linked polysaccharides, b(1,3)-

glucan and chitin, form a primary scaffold that is responsible for

structural integrity and shape of the cell wall [1–4]. Other b-linked

polysaccharides and glycosylated proteins are attached to this

glucan-chitin core, thus modifying the properties of the wall. The

integrity of the cell wall scaffold must, however, be monitored and

regulated constantly to ensure cell viability. This is not a trivial

challenge since surface expansion during growth and cellular

morphogenesis requires a delicate balance to be maintained

between the rigidity and the flexibility of the cell wall. The cell wall

must be able to expand under the outwardly directed and variable

force of cell turgor, whilst maintaining sufficient rigidity to prevent

cell lysis. This balance between plasticity and rigidification must

also be achievable in the presence of extrinsic factors such as

inhibitory molecules and enzymes in the environment that may

attack the integrity of the cell wall. Responses to cell wall damage

involve a sophisticated homeostatic mechanism that is mediated

via a signalling network which communicates information about

physical stresses at the cell surface to the biosynthetic enzymes that

orchestrate cell wall synthesis and repair. The signalling pathways

and transcription factors that mediate this repair response are

termed the cell wall salvage or cell wall compensatory mechanisms

[5–8].

Echinocandins are a new class of antifungal agent, which are

non-competitive inhibitors of b(1,3)-glucan synthase [9]. Caspo-

fungin is the first echinocandin to be approved for clinical use and

is fungicidal for Candida albicans, and other Candida species, and

fungistatic for Aspergillus fumigatus [10,11]. It is active against

isolates of Candida spp. that are resistant to other antifungals such

as fluconazole [12]. Deletion of both copies of the FKS1 gene is

lethal in C. albicans, although point mutations in FKS1 can arise

that result in reduced susceptibility to caspofungin [9,13–15]. FKS1

point mutations associated with resistance accumulate in two hot

spot regions that encode residues 641–649 and 1345–1365 of

CaFks1p in C. albicans and other species [14–17]. Fungi that are

inherently less susceptible to echinocandins, have a tyrosine at

residue 641 compared to phenylalanine in that position in CaFks1p

[16,18], suggesting sequence divergence around the hot spot

regions may contribute to reduced echinocandin susceptibility.

In Saccharomyces cerevisiae deletion of ScFKS1 is not lethal and

inhibition of b(1,3)-glucan synthesis or damage to b(1,3)-glucan

results in increased levels of chitin synthesized by ScChs3p [7,19].

Scchs3D mutants are hypersensitive to caspofungin [20] and

ScCHS3 and ScFKS1 are synthetically lethal [21,22] suggesting

that Scfks1D mutants depend on chitin synthesis for their survival.

In addition microarray analyses have shown that CaCHS2

expression increases in response to caspofungin treatment

[23,24]. Treatment of S. cerevisiae [25] and Cryptococcus neoformans

[26] with caspofungin results in activation of the PKC cell integrity

pathway via phosphorylation of the mitogen activated protein

kinase, ScSlt2p/ScMkc1p. C. albicans MKC1 expression has been

found to increase in response to caspofungin treatment [27] and
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deletants in ScSLT2 are hypersensitive to caspofungin [20,25].

Damage to the cell wall involves cell wall protein sensors which

transmit signals that lead to activation of the ScRho1p GTPase,

which activates b(1,3)-glucan synthase as well as ScPkc1p and

hence the PKC cell integrity MAP kinase cascade [8]. The

downstream target of this cell wall salvage pathway is the ScRlm1p

transcription factor, which activates transcription of cell wall

related genes [28].

The Ca2+-calcineurin pathway has also been implicated in the

regulation of cell wall biosynthesis [29–31]. C. albicans calcineurin

mutants are hypersensitive to caspofungin, suggesting that the

calcineurin pathway is involved in the response to cell wall damage

caused by caspofungin [32]. Combined treatment with caspofun-

gin and the calcineurin inhibitor, cyclosporin A, prevents the

paradoxical effect of increased survival that is sometimes seen at

echinocandin concentrations well above the typical minimal

inhibitory concentration (MIC) [27]. The calcineurin inhibitors,

FK506 and cyclosporin A, have also been shown to act

synergistically with caspofungin against Aspergillus fumigatus and

Cryptococcus neoformans [26,33–35].

A primary response of fungi to cell wall damage is to up-regulate

chitin synthesis. In C. albicans there are four chitin synthase

enzymes, CaChs1p, CaChs2p, CaChs3p and CaChs8p. CaChs1p is

an essential class II enzyme that synthesizes the chitin of the

primary septum and contributes to lateral wall integrity [36];

CaChs2p and CaChs8p are two class I enzymes that account for

almost all measured chitin synthase activity in vitro [37–39] and

CaChs3p is a class IV enzyme that synthesizes the majority of cell

wall chitin, including the septal chitin ring [40]. While CaChs3p is

predominantly regulated at the post-transcriptional level, CaCHS1,

CaCHS2, and CaCHS8 can all be transcriptionally activated in

response to stimulants of the PKC, Ca2+-calcineurin and HOG

signalling pathways [31]. Here we show that pre-treatment of cells

with activators of these pathways activates CaCHS transcription

and leads to the selection of cells with increased cell wall chitin that

survive otherwise lethal concentrations of caspofungin. We also

show that activation of the cell wall compensatory pathways can

induce the synthesis of a novel salvage septum even in the absence

of CaChs3p and CaChs1p which are normally required for septum

formation and viability. Rescue of such cells was strictly dependent

on chitin synthesis from residual class I enzymes and combinations

of echinocandins and chitin synthase inhibitors exhibited synergy

in the killing of C. albicans.

Results

Echinocandins induce CHS expression via three signalling
pathways

To test whether exposure to echinocandins induced chitin

synthesis we first used a lacZ-reporter system to measure the

response of the four C. albicans CHS promoters to echinocandins at

concentrations below their MICs. Caspofungin (Figure 1) and

echinocandin B, cilofungin and anidulafungin (data not shown)

activated expression of CHS1, CHS2 and CHS8. The level of

expression of the class IV CHS3 was only increased significantly

with anidulafungin (data not shown). Previously we showed that

the PKC, Ca2+-calcineurin and HOG pathways all regulated CHS

expression [31]. We then used reporter constructs to establish

Author Summary

Fungal pathogens are increasingly important agents of
human disease and are also difficult to treat since few
antifungal agents kill the invading organism. The cell wall
of a fungus is essential for its viability and this can be
attacked by a new generation of antifungal antibiotics
called echinocandins. Echinocandins such as caspofungin
are normally cidal for the human pathogen Candida
albicans. These inhibit the synthesis of b(1,3)-glucan, a
major strength-imparting polysaccharide in the cell wall.
Treatment of C. albicans with echinocandins in vitro
stimulated the formation of a second cell wall polysaccha-
ride—chitin, which rescued the cells. Treatments that
increased the chitin content of the C. albicans cell wall
reduced the efficacy of echinocandins and could even
induce the formation of novel structures such as a salvage
septum that enabled the cells to continue to undergo cell
division under otherwise lethal conditions. Combined
treatments with echinocandins and chitin synthase inhib-
itors synergized strongly, highlighting the potential for
potent combination therapies with enhanced fungicidal
activity.

Figure 1. Upregulation of CHS expression in response to
caspofungin is dependent on the PKC, HOG and Ca2+-
calcineurin pathways. Response of CHS promoter-lacZ reporters in
the absence (empty bars) and presence (solid bars) of caspofungin in
signal transduction mutants. Error bars are S.D. (n = 9 from three
separate experiments). Asterisks indicate significant differences
(p,0.05) compared to the untreated control in the same genetic
background. # indicates significantly different (p,0.05) to the wild
type cells in the same growth conditions. The fold inductions for LacZ
activity upon caspofungin exposure are shown in Table S2.
doi:10.1371/journal.ppat.1000040.g001

Chitin Protects against Echinocandins
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which signalling pathways were required to activate these

transcriptional responses to echinocandins. The mutants tested

had the following genes deleted; HOG1 encoding the MAP kinase

of the HOG pathway, MKC1 encoding the MAP kinase of the

PKC pathway, and the calcineurin catalytic subunit CNA1.

Mutations in these pathways affected both the basal level of gene

expression and the response to caspofungin. Mutant strains with

deletions in the HOG pathway (hog1D) showed no increase in

expression of CHS1, CHS2 and CHS8 when caspofungin was

applied (Figure 1). Up-regulation of CHS1 was not seen in cna1D
mutants after caspofungin addition, therefore the Ca2+-calcineurin

pathway was involved in the regulation of CHS1. Equivalent

analyses showed that the PKC pathway contributed to the up-

regulation of the expression of CHS2 and CHS8 upon exposure to

caspofungin.

Caspofungin treatment of cells also led to a 2.5-fold increase in

specific chitin synthase activity measured in mixed membrane

preparations (Figure 2A), and a near 3-fold increase in the chitin

content of the cells (Figure 2B). The measured stimulation of chitin

synthase activity was dependent on the presence of two class I

enzymes Chs2p and Chs8p and on the Ca2+-calcineurin, PKC and

HOG pathways (Figure 2A). The total chitin content stimulated by

caspofungin was largely dependent on Chs3p and this also

required a functional PKC pathway and the presence of

calcineurin (Figure 2B). The HOG pathway also had a significant

influence on the stimulation of chitin content by caspofungin. The

effect of point mutations in FKS1 was also determined by

measuring cell wall chitin content (Figure 2B). Strain NR3, which

was resistant to caspofungin as a result of homozygous point

mutations in the b(1,3)-glucan synthase gene FKS1 [9] had an

almost three-fold increase in chitin content and lost the stimulation

of chitin synthesis by caspofungin (Figure 2B). We further

implicated the PKC pathway in the response to caspofungin by

showing phosphorylation of Mkc1p in wild type cells treated with

caspofungin (Figure 2C). We also quantified an increase in Chs3p

upon caspofungin treatment by western analysis using anti-GFP

antibodies and a strain engineered with a C-terminal YFP tag

fused to Chs3p [41] (Figure 2D). Therefore, the HOG, PKC and

Ca2+-calcineurin signalling pathways were found to mediate the

elevation of chitin synthase gene expression, chitin synthase

activity and chitin content in response to caspofungin.

Activation of cell wall salvage pathways protects against
echinocandin treatment

Having shown previously that Calcofluor White (CFW) and

Ca2+ are activators of the cell wall compensatory signalling

pathways that could stimulate chitin synthesis [31]; we determined

whether pre-treatment of cells with such agonists could protect

cells from the cidal affects of caspofungin. Inocula of wild type or

various mutant strains of C. albicans were grown in YPD, with and

without added CaCl2 and CFW, before washing, dilution and

plating onto agar containing caspofungin and other supplements

(Figure 3). The homozygous fks1 point mutant, strain NR3, which

was greatly reduced in sensitivity to caspofungin [9,14] was

included as a control. Under normal growth conditions, the cna1D,

mkc1D and chs3D mutants were hypersensitive to a low

concentration of caspofungin (0.032 mg/ml) compared to wild

type cells. The strains did not show significant sensitivity to

100 mg/ml CFW alone but CFW was found to act synergistically

with 0.032 mg/ml caspofungin to enhance killing (Figure 3). Only

the fks1 point mutant was able to grow at a higher caspofungin

concentration (16 mg/ml). Pre-treatment of the inoculum by

growth in CaCl2 and CFW (rows marked with asterisks)

significantly reduced the efficacy of 16 mg/ml caspofungin against

wild type cells and was dependent upon MKC1, HOG1, CNA1, and

CHS2, CHS3 and CHS8 (Figure 3). At lower caspofungin

concentrations less dependency on these genes was found. These

results suggest that stimulation of chitin synthesis accounted for

decreased caspofungin sensitivity and inhibition of chitin assembly

increased caspofungin toxicity. Combining FK506 with caspofun-

gin phenocopied the effects of the cna1D mutation (data not

shown). Experiments were also carried out using CaCl2 or CFW

pre-treatments alone. Priming cells with CaCl2 alone conferred

more caspofungin protection than treatment with CFW alone

(data not shown).

Pre-growing cells in CaCl2 and CFW supplemented medium

was also found to protect cells against caspofungin in liquid culture

on YPD or RPMI 1640. Using the CLSI method we determined

that pre-growing cells with CaCl2 and CFW significantly increased

the MIC for caspofungin by up to 6 doubling dilutions (Figure 4).

The MIC to anidulafungin and micafungin was also increased by

pre-treatment of wild type strains with CaCl2 and CFW however,

MIC to fluconazole, amphotericin B, terbinafine and 5-flucytosine

remained unchanged (data not shown).

Growth of S. cerevisiae on glucosamine–supplemented medium

has been shown to stimulate chitin synthesis [42]. Therefore, C.

albicans yeast cells were pre-grown on glucosamine-supplemented

YPD to establish whether this would also lead to protection against

caspofungin. Cells grown in YPD supplemented with 23 mM

glucosamine had an almost two-fold increase in chitin content

compared to the control cells (data not shown) and glucosamine-

grown cells were considerably less sensitive to caspofungin

(Figure 5). This protection did not require Chs3p, Cna1p and

Mkc1p. Therefore, this compensatory mechanism could occur

even in mutants with deletions in individual signalling pathways of

the cell wall compensatory response and in the absence of Chs3p -

the chitin synthase responsible for synthesizing the majority of

chitin in wild type cells.

Cells with elevated chitin content have reduced
sensitivity to caspofungin

Wild type cells were grown in media containing CaCl2 and

CFW, and then washed, diluted and plated onto YPD agar

containing 16 mg/ml caspofungin. Colonies emerged that con-

tained punctate rich zones of growth within a lawn of cells that

when re-grown were resistant to 16 mg/ml caspofungin (Figure 6A,

left panel). In contrast to the inoculum these resistant cells stained

brightly with CFW indicating higher chitin content (Figure 6B)

and they excluded the vital dye propidium iodide indicating they

were viable (Figure 6C). In contrast, sensitive cells surrounding

these rich zones of growth were susceptible to caspofungin, stained

poorly with CFW, and were propidium iodide-sensitive and non-

viable (Figure 6B and 6C). However, when inocula taken from

parts of the colony outside the rich zones of growth were plated

onto caspofungin-agar a few colonies arose which contained cells

that were caspofungin insensitive and of high chitin content

(Figure 6A, right panel). All colonies emerging on such plates could

be propagated indefinitely on caspofungin-containing agar. When

such cells were grown without caspofungin selection, they reverted

quickly to become caspofungin-sensitive, and the reverted cells

stained poorly with CFW (Figure 6D). Pre-treatment with CaCl2
and CFW stimulated the emergence of resistant colonies at a

higher rate than occurred when cells were pre-treated with sub-

MIC levels of caspofungin. For example, when cells were pre-

treated with CaCl2 and CFW the rate at which resistant colonies

emerged was approximately 1 in 120 cells. This compared to the

emergence of resistant colonies from approximately 1 in 1.36106

cells that were pre-treated with 0.032 mg/ml caspofungin.

Chitin Protects against Echinocandins

PLoS Pathogens | www.plospathogens.org 3 April 2008 | Volume 4 | Issue 4 | e1000040



Figure 2. Activation of chitin synthesis by caspofungin. Chitin synthase activity (A) and chitin content (B) of various chitin synthase, signal
transduction and fks1 point mutants (fks1/FKS1 = NR2; fks1/fks1 = NR3) in the absence (empty bars) and presence (solid bars) of 0.032 mg/ml
caspofungin. Isolation of NR2 and NR3 are described in Douglas et al (1997) [9]. Asterisks indicate significant differences (p,0.05) compared to the
untreated control for each strain. # indicates a significant difference (p,0.05) to the wild type cells in the same growth conditions. Chitin synthase
assays were performed in triplicate (average 6SD, n = 3). Cell wall chitin assays were performed five times on three biologically independent samples
(average 6SD, n = 15). Time course (min) of Mkc1 phosphorylation in wild type cells in response to 0.032 mg/ml caspofungin (C). Western analysis of
Chs3p levels in cells exposed to 0.032 mg/ml caspofungin, strain NGY477 carries Chs3p C-terminally tagged with YFP and BWP17 is the untagged
parental strain (Table S1) (D).
doi:10.1371/journal.ppat.1000040.g002
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The intensity of CFW fluorescence of yeast cells was found to be

an accurate reflection of the relative chitin content. Within a

population of cells the average chitin content was found to be

stimulated by treatment with CaCl2 + CFW or by sub-MIC

concentrations of caspofungin (Figure 6E). Cells that were pre-

treated with CaCl2 and CFW and then cultured in sub MIC

concentrations of caspofungin had the highest levels of chitin

(Figure 6E, and Figure S1). Thus exposure to CaCl2 and CFW and

to caspofungin led to both an increase in the average chitin

content of cells (Figure S1) and the selection of a sub-population of

caspofungin resistant cells that formed zones of rich growth within

colonies. When chitin-rich, caspofungin-insensitive cells were

transferred to fresh YPD medium lacking caspofungin their chitin

content declined to control unstimulated levels within 4–5 h

equivalent to approximately 3–4 generations (Figure 6F). Thus the

activation of chitin in response to caspofungin was a transient

adaptation and upon removal of the drug chitin content returned

to wild type levels.

Salvage chitin synthesis involves multiple CHS
isoenzymes and can generate a novel septum that
rescues cell division and viability

Having established that treatment with echinocandins leads to a

compensatory up-regulation of chitin synthesis, we next used a

panel of single and double chs mutants to determine which chitin

synthase enzymes were required to rescue the cells from the effects

of echinocandins. By measuring the pattern and relative amount of

CFW fluorescence we observed that Chs3p was responsible for

synthesising the majority of chitin induced by caspofungin

treatment (Figure 7 panels 1–16). Pre-growing the wild-type,

chs2Dchs8D, chs2D and chs8D mutants in CaCl2 and CFW (Figure 7

panels 17, 19, 21 & 24) led to an overall increase in cell wall chitin

content. Significant amounts of chitin accumulated at the poles of

the chs3D and chs2Dchs3D mutants when pre-grown in CaCl2 and

CFW (Figure 7 panels 20 & 23) suggesting that pre-treatment

stimulates the remaining chitin synthase enzymes to synthesize

salvage chitin in the absence of Chs3p. Likewise, the chs1D and

chs1Dchs3D mutants had concentrated areas of chitin at the septum

after pre-treatment with CaCl2 and CFW (Figure 7 panels 18 and

22). In all cases, pre-treatment and then exposure to caspofungin

stimulated production of salvage chitin (Figure 7 panels 25–32) via

activation of multiple Chs enzymes. Moreover, mutants lacking

Chs3p and Chs1p were able to survive in the presence or absence

of caspofungin when pre-grown in CaCl2 and CFW-containing

medium (Figure 7 panels 22 and 30). This is remarkable in view of

the fact that CHS1 is essential for C. albicans and that Chs3p has

been thus far been considered to be the key chitin synthase of the

cell wall salvage pathway in S. cerevisiae [7]. In this double mutant,

the cells grown in CaCl2 and CFW-containing medium had

unusually bright CFW-staining and thickened septa that formed

proximal to the normal location at the mother-bud neck region

(Figure 7 panel 22 and Figure 8A–C). These salvage septa also

stained with Wheat Germ Agglutinin (WGA)-Texas Red indicat-

ing that they were chitin rich (data not shown). Chs3p and Chs1p

normally collaborate to form the chitin ring and primary septal

plate of wild type septa respectively, but these salvage septa were

Figure 3. Pre-growing cells in CaCl2 and CFW reduces their susceptibility to caspofungin. Plate dilution sensitivity tests of wild type
(SC5314), a fks1 homozygous point mutant (NR3) and a range of signalling and chitin synthase single and double mutants on YPD agar containing
CFW, caspofungin or CFW and caspofungin. Rows marked with * indicate pre-growth of the inoculum in YPD containing both CaCl2 and CFW to raise
the chitin content of the cells. Cell numbers per spot are from 5000, 500, 50 to 5 cells, from left to right.
doi:10.1371/journal.ppat.1000040.g003
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formed in the absence of these two chitin synthases. The salvage

septum was able to restore the capability for cell division, so that

the formation of septum-less chains of cells and subsequent cell

lysis normally associated with the lack of Chs1p was abrogated and

viability was restored (Figure 8D, E and Figure 8F). Abrogation of

these phenotypes associated with the chs mutations was entirely

dependent upon chitin synthesis and could be inhibited completely

by treatment with nikkomycin Z (Figure 8F). In pre-treated wild

type cells or the fks1 point mutant, inhibition of chitin assembly by

CFW or chitin synthesis by nikkomycin Z was strongly synergistic

with caspofungin in killing cells even under conditions that

maximally induce cell wall compensatory mechanisms (Figure 9).

Treatment with RO-09-3143, a selective chitin synthase inhibitor

developed by Roche against the class II enzyme Chs1p [43],

phenocopied all the effects of the chs1 conditional mutation (data

not shown). These observations strongly support the conclusion

that the Chs2p and/or Chs8p class I chitin synthases are

responsible for synthesizing the chitin in the salvage septum that

rescues the cells under these conditions.

Discussion

The echinocandins are proving to be a safe and efficacious new

class of antifungal drug for the treatment of systemic mycoses

[11,44]. Laboratory-generated point mutations in the Fks1p target

around the 645Ser hotspot region alter the affinity for these non-

competitive inhibitors and results in reduced susceptibility [9,15].

However, there are a few recorded cases of failed echinocandin

therapy in the treatment of Candida infections caused by C. albicans

[45–48], C. glabrata [49], C. parapsilosis [50,51] and C. krusei [52]. In

two cases, the decreased echinocandin sensitivity of recovered C.

albicans isolates was shown to be due to mutations in FKS1 [47,48].

In addition, the emergence of a C. krusei isolate with decreased

caspofungin susceptibility [53] was found subsequently to have a

heterozygous mutation in the FKS1 hotspot region [17]. It has also

been suggested that an increase in cell wall chitin may explain the

so-called ‘‘paradoxical effect’’ whereby some clinical isolates exhibit

decreased sensitivity to increased concentrations of caspofungin

[54]. Collectively these observations suggest that the sensitivity of a

strain of Candida may relate in part to aspects of fungal physiology

other than the affinity of the Fks1p target protein for echinocandins.

We have shown by in vitro experiments that C. albicans can rapidly

respond to the presence of echinocandins by elevating chitin content,

and that this response protects the cells from cell wall damage due to

inhibition of b(1,3)-glucan synthesis. This may occur either by

selection of a sub-population of naturally occurring chitin-rich cells,

and/or by induction of the cell wall compensatory mechanisms that

activate chitin synthesis. Our data predict that elevation in chitin

content can offset the loss of cell wall integrity caused by echinocandin

treatment. Although no direct measurements of the mechanical

robustness of the cell wall have been devised in fungi, we show that

survival against high levels of echinocandins is chitin synthesis-

dependent and that the class I enzymes, Chs2p and Chs8p play vital

roles in this respect. All treatments and conditions that led to elevation

of chitin content also increased the MIC to echinocandins. It is also

formally possible that changes in the cell wall, other than induction o

chitin synthesis, also contribute to the changes in sensitivity to

caspofungin that we have observed.

As demonstrated previously [31], at least three signal transduc-

tion pathways participate in the compensatory responses - PKC,

Ca2+-calcineurin and HOG. Of these, the Ca2+-calcineurin

pathway plays a key role in activating class I chitin synthases that

are important for the compensatory response to caspofungin.

Caspofungin treatment activated these pathways and led to

increased transcription of CHS1, CHS2 and CHS8 and increased

levels of Chs3p in cells.

The class II enzyme of C. albicans, Chs1p, is normally essential

for viability and is responsible for synthesis of the primary septum

and for stabilizing lateral cell wall integrity [36]. As in S. cerevisiae,

the class IV enzyme Chs3p synthesizes the chitin ring around the

rim of the primary septal plate and makes 80–90% of the total cell

wall chitin of both yeast and hyphal cells [38,40]. Remarkably,

when pre-treated with CaCl2 and CFW, the conditional double

Figure 4. Pre-growing cells in CaCl2 and CFW increases their caspofungin MIC. The MIC of C. albicans strain SC5314 was measured in RPMI
1640 and YPD medium supplemented with caspofungin. The effect of growing the inoculum on YPD or YPD with CaCl2 and CFW was tested; cells
pre-grown in CaCl2 and CFW had an increased MIC for caspofungin.
doi:10.1371/journal.ppat.1000040.g004

Figure 5. Cells pre-grown in glucosamine have reduced
susceptibility to caspofungin. Pre-growing strains that were
hypersensitive to caspofungin (chs3D, cna1D, mkc1D) in YPD plus
23 mM glucosamine reduced their susceptibility to 0.032 mg/ml
caspofungin. Cell numbers per spot are from 5000, 500, 50 to 5 cells,
from left to right.
doi:10.1371/journal.ppat.1000040.g005
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chs1Dchs3D mutant grown under restrictive conditions for CHS1

expression was viable, had a normal morphology and was able to

construct a chitin-containing septum that enabled cell division. In

these cells, the only enzymes available for chitin synthesis were the

two class I enzymes, Chs2p and Chs8p, which thus far have not

been considered to be relevant for septum formation. Reinforcing

this, nikkomycin Z which is selectively active against class I chitin

synthases, prevented salvage septum synthesis and synergized

strongly with caspofungin in killing the fungal cells. C. albicans is

relatively insensitive to these inhibitors under normal conditions and

a class II (CaChs1p) inhibitor has been shown to be cidal in a genetic

background that lacks CaChs2p. We observed potent synergistic

effects when chitin assembly and synthesis, were inhibited, even

partially, by CFW and nikkomycin Z in the presence of b(1,3)-

glucan synthesis inhibitors. This underlines the potential for new

combination treatments, which inhibit both b(1,3)-glucan and chitin

synthesis. Cidal combinations of chemotherapeutic agents can also

be devised by using inhibitors of b(1,3)-glucan synthesis along with

agents that block the cell wall compensatory pathways of fungi [35].

These experiments point simultaneously to the remarkable

robustness and potential vulnerability of fungal cell wall biosynthesis

to chemotherapeutic intervention.

Materials and Methods

Strains, media and growth conditions
C. albicans strains used in this study are listed in Table S1 provided in

the Supporting Information section. C. albicans cultures were

Figure 6. Transient elevation of chitin in cells with reduced susceptibility to caspofungin. CaCl2 and CFW pre-treated cells grown on
medium containing 16 mg/ml caspofungin formed rich zones of growth within a lawn of surrounding cells (A, top panel). Inocula from the richer
zones of the colony contain resistant cells that grew well on 16 mg/ml caspofungin (A, left hand panel), while the surrounding cells grow poorly to
give few resistant colonies (A, right hand panel). DIC images and fluorescence micrographs of CFW and DAPI-stained cells (B, D) and propidium iodide
stained cells (C). In (B) cells from the 16 mg/ml caspofungin-resistant, richer zones of the colony have a higher chitin content, i.e. stain more strongly
with CFW, than caspofungin-sensitive cells and the inoculum. Caspofungin-sensitive cells are non-viable and take up propidium iodide whereas
caspofungin-insensitive cells are viable and do not (C). Increased CFW staining of resistant cells was lost upon sub-culture under non-selective
conditions, in the absence of caspofungin (D). The average relative chitin content of yeast cells, measured by intensity of CFW fluorescence, is shown
for cells in untreated controls and after pretreatment with 0.32 mg/ml caspofungin or CaCl2 and CFW and for cells pre-treated with CaCl2 and CFW
then grown in 0.32 mg/ml caspofungin (E). In (E) statistical differences are shown compared to untreated control (*P,0.001) and compared to Ca/
CFW pre-treated cultures (# P,0.001) (by t-test). Under-non-selective conditions, the relative chitin content of resistant cells decreased progressively
to that of the wild type (W.T.) as shown by the loss of CFW fluorescence (F). Error bars are S.D. (n = 6 from 3 separate experiments). Scale bars are
2 mm.
doi:10.1371/journal.ppat.1000040.g006
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maintained on solid YPD medium (1% (w/v) yeast extract, 2% (w/v)

mycological peptone, 2% (w/v) glucose, 2% (w/v) agar) and yeast cell

cultures were grown at 30uC in YPD with shaking at 200 rpm. Hyphae

were induced by growing cells in RPMI-1640 at 37uC. The MRP1p-

CHS1/chs1D conditional mutant was maintained in medium contain-

ing maltose and grown in YPD to repress expression of CHS1 [36].

Figure 7. The role of chitin synthase isoenzymes in elevation of chitin levels in response to caspofungin. DIC (top panels) and
fluorescent images (bottom panels) of wild type and chsD mutant strains grown in the presence and absence of 0.032 mg/ml caspofungin with and
without pre-treatment of the inoculum with CaCl2 and CFW. Scale bars are 2 mm. Enlarged images are presented on the bottom panel showing the
chitin distribution in cells induced by CaCl2 and CFW in the chs3D (20) and chs1Dchs3D (22) mutants, with the latter showing induced synthesis of
salvage septa. In (23) increased chitin formation is shown as induced by CaCl2 and CFW and subsequent culture in caspofungin.
doi:10.1371/journal.ppat.1000040.g007
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Antifungal agents
Cells were grown in YPD supplemented with the following

antifungal agents: 0.032 mg/ml to 16 mg/ml caspofungin (Merck

Research Laboratories, New Jersey, USA) dissolved in sterile

water, 1.6 mg/ml cilofungin (Eli Lilly Laboratories, Indianapolis,

USA) dissolved in 100% ethanol, 0.3 mg/ml echinocandin B (Eli

Lilly Laboratories) dissolved in 50% (v/v) methanol, 10 mM

nikkomycin Z (Bayer, Chemical Co., Leverkusen, Germany)

dissolved in sterile water and 0.032 mg/ml anidulafungin (Pfizer,

Sandwich, Kent) dissolved in 100% DMSO. In some experiments

the inoculum was pre-treated by growing in YPD containing

0.2 M CaCl2 and 100 mg/ml CFW. Cultures were incubated at

30uC overnight with shaking at 200 rpm.

Caspofungin sensitivity testing
Caspofungin was incorporated into YPD plates at 0.032 mg/ml

and 16 mg/ml. In some experiments caspofungin was used in

combination with 100 mg/ml CFW (Sigma-Aldrich, UK). Yeast

cells were grown to late log phase in YPD and serially diluted to

generate suspensions containing 16106 to 1000 cells/ml in fresh

YPD. Plates were inoculated with 5 ml drops of each cell

suspension and incubated for 24 h at 30uC.

Antifungal susceptibility testing
Minimum inhibitory concentrations were determined by broth

micro-dilution testing using the CLSI (formerly NCCLS) guide-

lines M27-A2 [55]. Drug concentrations ranged from 2 ng/ml to

16 mg/ml for caspofungin, anidulafungin and micafungin,

0.032 mg/ml to 16 mg/ml for amphotericin B, terbinafine and

itraconazole and 0.13 mg/ml to 64 mg/ml for fluconazole and

flucytosine. Each drug was serially diluted with sterile water in flat

bottomed 96 well plates. Exponentially grown cultures were

diluted and 20 ml of a 16106 culture was inoculated in either

11 ml 26 RPMI-1640 or 26 YPD and 100 ml of culture was

added to each well. Plates were incubated for 24 h at 30uC for

YPD plates and 37uC for RPMI-1640 plates. After incubation

each well was mixed thoroughly and optical densities were read in

a VERSAmax tunable microplate reader (Molecular Devices,

California, USA) at 405 nm for RPMI-1640 plates and 600 nm

for YPD plates.

Measurement of CHS expression
Plasmid placpoly-6 was used for the lacZ promoter reporter

system [56] (Uhl and Johnson, 2001). A 1 kb upstream region from

the ATG start codon of each CHS1, CHS2, CHS3 and CHS8 ORF

was cloned into the PstI-XhoI sites of placpoly-6 generating

pCHS1plac, pCHS2plac, pCHS3plac, pCHS8plac respectively as

described previously [31]. C. albicans cultures were grown

overnight on YPD at then inoculated into fresh YPD medium

for 4 h, with or without echinocandins (0.032 mg/ml caspofungin

and the others at the concentrations stated above). Cells were

harvested after 4 h incubation, with shaking, at 30uC. Quantifi-

cation of b-galactosidase activity was determined using the method

previously described [31]. Specific b-galactosidase activities were

expressed as nmol o-nitrophenol produced min/mg/protein.

Statistical significant differences in the assay results were

determined with SPSS software using ANOVA and Post Hoc

Figure 8. The salvage septum of C. albicans in the chs1Dchs3D
double mutant (under repressing conditions for the condition-
al MRP1p-CHS1 mutant). (A, B) The chained septum-less phenotype of
the chs1Dchs3D mutant (A) is abrogated by pre-growth on YPD with
CaCl2 and CFW to stimulate chitin synthesis prior to growth of the
mutant cells under repressing conditions (B,C). (C) Shows CFW-
fluorescence image of cells shown in (B). TEM images of proximal
offset thickened septa and (D,E). Scale bars are 2 mm for (A–D) and
0.2 mm for (E). Growth of the inoculum in YPD with CaCl2 and CFW
allows the chs1Dchs3D mutant to grow in the presence of caspofungin
while treatment of these cells with 10 mM nikkomycin Z leads to
inhibition of growth and cell lysis (F).
doi:10.1371/journal.ppat.1000040.g008

Figure 9. Synergistic inhibition of growth of a wild type strain
(SC5314) and an fks1 homozygous point mutant (NR3) by
16 mg/ml caspofungin and 100 mg/ml CFW or 10 mM nikkomy-
cin Z as chitin synthase inhibitors is further demonstrated in
plate sensitivity tests.
doi:10.1371/journal.ppat.1000040.g009
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Dunnett’s T-test, P,0.05. When the results displayed unequal

variance the Dunnett’s T3 test was applied.

Measurement of chitin synthase activity
Mixed membrane fractions (MMF) were prepared from

exponential phase yeast cells and their chitin synthase activities

were measured as described previously [31].

Measurement of cell wall chitin content
Cell walls were prepared from exponential C. albicans yeast

cultures grown in YPD and the chitin content was measured as

described previously [31].

Western analysis of Chs3p
Overnight cultures of yeast cells of NGY477 (Chs3p-YFP) and

BWP17 (untagged) were diluted 1:100 into 50 ml YPD supple-

mented with uridine and 0.032 mg/ml caspofungin and incubated

with shaking for 4 h at 30uC. BWP17 [57], the untagged parent

strain of NGY477, provided a negative control for the anti-GFP

antibody [41]. After treatment, cells were harvested by centrifu-

gation (1 5006g, 2 min, 4uC), washed in 1 ml cold Lysis Buffer

(50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% NP40, 2 mg/ml

Leupeptin, 2 mg/ml Pepstatin, 1 mM PMSF) and finally resus-

pended in 250 ml cold Lysis Buffer. Cells were broken using a

FastPrep machine and acid-washed glass beads. The extracts were

clarified by centrifugation (16 0006g, 5 min, 4uC). Protein

samples (15 mg each) were separated by SDS-polyacrylamide gel

electrophoresis (SDS-PAGE) using the XCell SureLockTM Mini-Cell

system with NuPAGEHNovex Bis-Tris 4-12% pre-cast gels in

NuPAGEH MOPS-SDS Running Buffer containing NuPAGEH
Antioxidant (Invitrogen Ltd, Paisley, UK) as per the manufactur-

er’s instructions. The proteins were transferred to InvitrolonTM

PVDF Membranes (Invitrogen) following the manufacturer’s

instructions. The membranes were then rinsed in PBS, blocked

in PBS-T+10% BSA (PBS, 0.1% Tween-20, 10% (w/v) BSA) for

30 min at RT and incubated overnight at 4uC in PBS-T+5% (w/

v) BSA (PBS, 0.1% Tween-20, 5% (w/v) BSA) containing a 1:2000

dilution of anti-GFP Antibody (Roche, Basel, Switzerland). The

membranes were washed five times for 5 min in PBS-T (PBS,

0.1% Tween-20) and then incubated for 1 h at RT in PBS-T+5%

(w/v) BSA containing a 1:4000 dilution of anti-mouse IgG, (Fab

specific) peroxidase conjugate Antibody (Sigma-Aldrich). The

membranes were washed three times for 5 min in PBS-T and the

signal was detected using LumiGLOTM Reagent and Peroxide

(Cell Signaling Technology, Massachusetts, USA) as per the

manufacturer’s instructions.

Western analysis of Mkc1p
Western blots were carried out as above with the following

modification; a 1:1000 dilution of Phospho-p44/42 Map Kinase

(Thr202/Tyr204) Antibody (Cell Signaling Technology) was used

as the primary antibody. The secondary antibody was Anti-rabbit

IgG, HRP-linked Antibody (Cell Signaling Technology) diluted

1:2000.

Fluorescence Microscopy
Samples were fixed in 10% (v/v) neutral buffered formalin

(Sigma-Aldrich) and examined by phase differential interference

contrast (DIC) microscopy. Cells were stained with 25 mg/ml

CFW to visualize chitin. Nuclei were stained by overlaying

samples with mounting media containing 1.5 mg/ml DAPI

(Vector Laboratories, Peterborough, UK). Cell membrane integ-

rity was determined by staining cells with 2 mg/ml propidium

iodide (Sigma-Aldrich). All samples were examined by DIC and

fluorescence microscopy using a Zeiss Axioplan 2 microscope.

Images were recorded digitally using the Openlab system (Open-

lab v 4.04, Improvision, Coventry, UK) using a Hamamatsu

C4742- 95 digital camera (Hamamatsu Photonics, Hamamatsu,

Japan). CFW fluorescence was quantified for individual yeast cells

using region of interest measurements. Mean fluorescence

intensities were then calculated for at least 35 individual cells. In

some experiments the exposure time for a series of fluorescence

images was fixed so the intensity of fluorescence relative to a

control of known chitin content was shown.

Electron Microscopy
Yeast cultures were harvested by centrifugation and the pellets

were fixed in 2.5% (v/v) glutaraldehyde in 0.1 M sodium

phosphate buffer (pH 7.3) for 24 h at 4uC. Samples were

encapsulated in 3% (w/v) low melting point agarose prior to

processing to Spurr resin following a 24 h schedule on a Lynx

tissue processor (secondary 1% OsO4 fixation, 1% Uranyl acetate

contrasting, ethanol dehydration and infiltration with acetone/

Spurr resin). Additional infiltration was provided under vacuum at

60uC before embedding in TAAB capsules and polymerising at

60uC for 48 h. 0.5 mm semi-thin survey sections were stained with

toluidine blue to identify areas of best cell density. Ultrathin

sections (60 nm) were prepared using a Diatome diamond knife on

a Leica UC6 ultramicrotome, and stained with uranyl acetate and

lead citrate for examination with a Philips CM10 transmission

microscope (FEI UK Ltd, Cambridge, UK) and imaging with a

Gatan Bioscan 792 (Gatan UK, Abingdon, UK).

Genes used in the study
Gene nomenclature is defined at the Candida genome database

(http://www.candidagenome.org/) and NCBI http://www.ncbi.

nlm.nih.gov/sites/entrez).

CHS1 (orf19.5188, XM_711849); CHS2 (orf19.7298,

XM_711340); CHS3 (orf19.4937, XM_712573); CHS8 (orf19.5384,

XM_712667); FKS1/GSC1 (orf19.2929, XM_716336); MKC1

(orf19.7523, X76708); HOG1 (orf19.895, XM_715923); CNA1

(orf19.6033).

Supporting Information

Figure S1 Population CFW fluorescence (chitin) heterogeneity

for wild type (WT) cells treated with 0.032 mg/ml caspofungin and

or 200 mM CaCl with 100 mg/m CFW (C&C). Cells were first

grown for 16 h in YPD in the absence of supplements, then grown

in YPD for 6 h at 30uC in the presence of caspofungin and, or

CaCl + CFW. The cells were then washed in water and stained

with 25 mg/ml CFW, and the relative fluorescence determined as

described in the Methods. The fluorescence of fifty cells per

treatment was then determined.

Found at: doi:10.1371/journal.ppat.1000040.s001 (0.69 MB

DOC)

Table S1 C. albicans strains used in this study

Found at: doi:10.1371/journal.ppat.1000040.s002 (0.15 MB

DOC)

Table S2 Fold induction of LacZ expression upon caspofungin

exposure

Found at: doi:10.1371/journal.ppat.1000040.s003 (0.04 MB

DOC)
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