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Abstract

The final stage of bacterial cell division requires the activity of one or more enzymes capable of degrading the layers of
peptidoglycan connecting two recently developed daughter cells. Although this is a key step in cell division and is required
by all peptidoglycan-containing bacteria, little is known about how these potentially lethal enzymes are regulated. It is likely
that regulation is mediated, at least partly, through protein–protein interactions. Two lytic transglycosylases of
mycobacteria, known as resuscitation-promoting factor B and E (RpfB and RpfE), have previously been shown to interact
with the peptidoglycan-hydrolyzing endopeptidase, Rpf-interacting protein A (RipA). These proteins may form a complex at
the septum of dividing bacteria. To investigate the function of this potential complex, we generated depletion strains in M.
smegmatis. Here we show that, while depletion of rpfB has no effect on viability or morphology, ripA depletion results in a
marked decrease in growth and formation of long, branched chains. These growth and morphological defects could be
functionally complemented by the M. tuberculosis ripA orthologue (rv1477), but not by another ripA-like orthologue (rv1478).
Depletion of ripA also resulted in increased susceptibility to the cell wall–targeting b-lactams. Furthermore, we demonstrate
that RipA has hydrolytic activity towards several cell wall substrates and synergizes with RpfB. These data reveal the unusual
essentiality of a peptidoglycan hydrolase and suggest a novel protein–protein interaction as one way of regulating its
activity.
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Introduction

Though not formally considered virulence factors, genes

required for bacterial cell division clearly are necessary for the

growth, and thus, pathogenesis, of bacteria. The distinction

between homeostatic and virulence genes is blurred when

nonessential genes involved in vegetative cell division become

essential under specific stressful conditions encountered inside a

host. Such an example is seen with the resuscitation-promoting

factors (Rpf) encoded by many different bacteria, including

mycobacteria. These proteins are named for their ability to

resuscitate nonreplicating dormant bacteria. The single Rpf-

encoding gene in Micrococcus luteus [1] is essential, but as many as

three of the five genes encoding RpfA-E can be deleted in

Mycobacterium tuberculosis without markedly affecting in vitro growth.

However, one single deletion (rpfB) and several of the triple

combinations yielded strains unable to grow or divide in stressful

conditions in vitro and in vivo [2,3]. This suggests that certain

potential cell division proteins that appear to play nonessential

roles in homeostatic processes can become vital in conditions of

stress.

The vital processes of cell growth and division involve the

temporal and spatial coordination of events such as peptidoglycan

and cell wall extension, DNA replication, chromosomal partition-

ing, Z-ring assembly, septum formation, and cytokinesis. Much of

the mechanism behind this coordination involves inhibiting and

stabilizing proteins that regulate the eventual assembly of a Z-ring

at the midcell of bacteria [4,5]. This Z-ring consists primarily of a

polymerized ring of tubulin-like FtsZ on the cytoplasmic side of the

plasma membrane, stabilized by membrane-associated and

integral membrane proteins. Assembly occurs in an ordered

fashion that is not entirely linear, with some components

assembling before joining the Z-ring [6,7,8]. Some of the last

proteins to be recruited to the Z-ring are thought to be the

peptidoglycan hydrolyzing enzymes, such as AmiC [9] and EnvC

[10] in E. coli. These enzymes digest the peptidoglycan layers

connecting two recently developed daughter cells in the final stage

of cell division [11]. While crucial to cell division, the regulation of

these potentially lethal enzymes is poorly understood. It is thought

that protein-protein interactions play a role in regulating activity

and localization [12]. Studying cell wall hydrolases has proven

difficult due to the large number encoded in most bacterial

genomes and the high degree of functional redundancy. For

example, seven hydrolases can be deleted from a strain of E. coli

without loss of viability [13].

Little is known about the hydrolases involved in mycobacterial

cell division. CwlM and Rv2719c were both shown to be

mycobacterial cell wall hydrolases [14,15]. Two recently identified

hydrolases, RpfB and RpfE, were shown to interact with rpf-

interacting protein (RipA), a peptidoglycan endopeptidase [16].
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Rpf proteins constitute a family of lytic transglycosylase enzymes

capable of hydrolyzing the glycosidic bonds in the essential stress-

bearing, shape-maintaining peptidoglycan layer [17]. RpfB has a

structure similar to the E. coli soluble lytic transglycosylase 70

(Slt70) [18] and is known to hydrolyze the beta-1,4-glycosidic

bond between N-acetyl muramic acid and N- acetyl glucosamine

[19]. RipA has been shown to be a peptidoglycan hydrolase [16].

It is predicted to function as an L,D-endopeptidase, capable of

hydrolyzing D-glutamyl-meso-diaminopimelic acid [20], two

amino acids that are part of the crosslinking peptides vital for

keeping peptidoglycan rigid and stable [21]. Both RpfB and RipA

localize to the septa of dividing bacteria [16] and thus may play a

role in the late stages of mycobacterial cell division, possibly during

regrowth from a stressed state.

Here we show that depletion of ripA in a strain of M. smegmatis

results in a significant decrease in growth, formation of long,

branched chains, and increased sensitivity to a cell wall–targeting

antibiotic. These defects can be functionally complemented with

the M. tuberculosis allele of ripA. We demonstrate that the

peptidoglycan hydrolytic activity of RipA synergizes with RpfB.

Thus, this protein is an unusual example of an essential

peptidoglycan hydrolase whose activity may be partially regulated

through protein-protein interactions.

Results

Depletion of RipA blocks normal cell division
RipA interacts with RpfB, a lytic transglycosylase, and

colocalizes at the septum [16]. We hypothesized that the RipA-

RpfB complex may be involved in degrading peptidoglycan at the

septum during cell division. To further investigate the function the

individual components of this complex, we attempted to make

deletion strains of ripA and rpfB in M. smegmatis. Though disruption

of rpfB was successful, we were unable to disrupt the ripA gene in

M. smegmatis. We have previously reported that the ripA gene in M.

tuberculosis appears to be essential for in vitro growth [22],

suggesting that it might also be essential in M. smegmatis.

To test this possibility we constructed depletion strains of M.

smegmatis in which ripA (MSMEG3153) or rpfB (MSMEG5439) are

transcribed from an inducible tetracycline promoter (Ptet,

Figure 1A). We found that the ripA depletion strain had

dramatically reduced growth in media lacking inducer

(Figure 1B), while the rpfB depletion strain had normal growth

in the absence of inducer. Both ripA and rpfB depletion strains grew

normally in the presence of inducer. The growth phenotype seen

with ripA depletion, as measured by optical density, was dose-

dependent. While the optical density of ripA depleted cultures

failed to increase in the absence of inducer, we did observe that

bacteria formed visible clumps that increased in size during

incubation. These clumps (due to filamentation) failed to suspend

well and, therefore, were poorly measured using spectrophotom-

etry. Remarkably, this phenotype is reversible, as addition of

inducer to growth-arrested, ripA depleted cells resulted in the

resumption of normal growth (Figure 1C). This indicates that the

frequency of septum resolution can be uncoupled from septum

formation and cell elongation. High levels of inducer did not result

in gross morphological changes or lysis.

To further confirm the requirement of ripA for growth, we

plated ripA-depletion or rpfB-depletion strains of M. smegmatis on

plates containing a gradient of inducer. The ripA-depletion strain

grew in a Tet-dependent manner, with the highest growth in the

center corresponding to the highest concentration of inducer and

no growth near the edges of the plate where inducer was the

lowest, confirming the requirement of ripA for growth. Conversely,

the rpfB-depletion strain grew similarly throughout the plate in a

Tet-independent manner, indicating that rpfB is not required for

growth under these conditions.

Depletion of RipA results in abnormal morphology
While rpfB depleted cells had normal morphology, ripA depleted

cells had markedly abnormal shape (Figures 1C and 2A). They

grew in long, branched chains that account for the clumps seen

grossly. Staining with the fluorescent membrane dye, TMA-DPH,

revealed periodic septa along the chains of bacteria. DNA staining

with SYTO 9 revealed nucleoids along the length of the chained

bacteria, separated by septa, indicating that DNA segregation and

septum formation processes are intact (Figure 2B). Occasional

patches where the cell wall appeared pinched or partially degraded

were also observed. It is not clear if these represent defective

division sites or locations where bacteria had begun to lyse.

Branches, not observed in wild-type cells, were seen in almost all

ripA-depleted bacteria visualized (.95%). Interestingly, 91% (203/

223) of the branches visualized originated directly adjacent to

septa.

M. tuberculosis ripA allele functionally complements M.
smegmatis ripA

The M. tuberculosis ripA gene encodes a 472 amino acid protein

that has been shown to degrade peptidoglycan [23]. Its C-terminal

105 amino acids contain a putative endopeptidase domain, which

has 40% identity with the Listeria monocytogenes p60 protein

(Figure 3A). p60 has been shown to be a cell wall endopeptidase

by its ability to degrade cell wall [24,25]. ripA is the first gene in a

bicistronic operon. rv1478, the downstream gene, encodes a 241-

amino acid protein, consisting of a signal sequence followed by a

sequence homologous to the C-terminal half of RipA (70%

putative hydrolase domain identity and 27% overall amino acid

identity). Both genes in the apparent ripA operon encode predicted

endopeptidase domains similar to a known p60 hydrolase [24]

(Figure 3A). Because the inserted tetracycline-inducible promoter

lies upstream of the operon, presumably transcription of both is

dependent on the presence of inducer. Thus, either gene could be

Author Summary

Mycobacteria, like all peptidoglycan-containing bacteria,
must extend and cleave the surrounding structurally rigid
layer of peptidoglycan to grow and divide. The peptido-
glycan hydrolases responsible for this cleavage often have
redundant functions, both revealing their importance and
making them difficult to study. Furthermore, such
hydrolases must be tightly regulated, due to their
potentially lytic nature. We recently demonstrated the
interaction between a lytic transglycosylase (Rpf) and an
endopeptidase (RipA) at the septum of dividing bacteria.
To investigate the role of these two hydrolases, we
generated conditional mutants of each and were surprised
to find that depletion of ripA resulted in long chains of
cells. This phenotype was reversed upon induction of ripA,
indicating that cell wall expansion and septum formation
can be decoupled from the process of septum resolution.
In addition, we present data showing that the combination
of Rpf and RipA results in enhanced hydrolysis of
peptidoglycan in an in vitro assay, suggesting protein–
protein interactions as one potential mechanism of
regulation.

A Mycobacterial Enzyme Essential for Cell Division
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responsible for the observed phenotype. There are at least five

p60-like genes in many of the mycobacterial species, including M.

tuberculosis, M. smegmatis, and M. bovis BCG. These include rv0024,

rv1477 (ripA), rv1478, rv1566c, and rv2190c. These genes lie in

various genomic contexts and there is no function discernable

from genomic synteny (Figure 3B).

To identify the responsible gene we tested if the M. tuberculosis

allele of ripA (ripA-mtb) was able to complement the M. smegmatis

with diminished native ripA (ripA-smeg) production. We expressed

ripA-mtb from a zeocin-marked episomal plasmid. A ripA-smeg

depletion strain containing the ripA-mtb construct grew similarly to

wildtype in the absence of inducer, while a strain carrying an

empty plasmid formed chains when ripA-smeg was depleted

(Figure 3C). In contrast, the M. tuberculosis allele of the ripA

paralogue, rv1478, was not able to complement an M. smegmatis

ripA depletion. These results confirm that ripA is sufficient for

complementing the strain depleted of the ripA (ripA-MSMEG3154)

operon and show that ripA-mtb is functionally similar to ripA-smeg.

Depletion of RipA increases susceptibility to a cell wall–
targeting antibiotic

Because depletion of ripA may have a marked effect on cell wall

structure, we reasoned that strains with diminished expression of

ripA might have altered susceptibility to antibiotics that target the

cell wall. To test this, we grew the M. Smegmatis regulated ripA

strain in the presence of inducer, then washed and spread on plates

containing various amounts of inducer (0, 10, 100 ng/ml Tet). A

sterilized disc of Whatman paper was placed in the middle of the

plate and 10 ul of a single antibiotic was added to the disc. After

incubating for 3–4 days, the size of the zone of inhibition was

measured (Figure 4). Complete depletion of ripA resulted in a

remarkably high level of susceptibility to b-lactams (carbenicillin).

It is unclear why depletion of ripA results in such an increase in

susceptibility to b-lactams, which target the transpeptidase

reaction required for cross-linking peptidoglycan during cell

elongation and division. Susceptibility to cycloserine, an analog

of D-alanine that inhibits the formation of the cytoplamsic

Figure 1. Depletion of RipA results in a reversible arrest in growth of M. smegmatis. (A) Diagram showing the strategy used to replace the
native promoter of the ripA-B operon (Prip) with a tetracycline-inducible promoter (Ptet) through homologous recombination (strategy and diagram
adapted from [28]). OriE: E. coli origin of replication. (B) ripA depletion strain of M. smegmatis was grown with inducer (Tet), then inoculated into
media with decreasing amounts of inducer and followed by OD600 over time. Cultures with none or 2 ng/ml inducer grew in tight clumps that
resulted in underestimation by OD600. Data are represented as mean+/2SEM. (C) Series of DIC micrographs of the ripA depletion strain of M.
smegmatis. Depicts bacteria first grown with 50 ng/ml tetracycline inducer (i), then transferred to media lacking inducer for 24 hours (ii), and finally
transferred to media with inducer for 24 hours (iii). Bacteria were visualized with a 1006objective. (D) Depletion strains of M. smegmatis grown on
plates containing a gradient of inducer created by placing 10 ml of 10 ng/ml Tet on a paper disc in the center of the plate, resulting in a concentration
of inducer highest at the middle of the plate and lowest at the edges. Colonies formed in a Tet-dependent manner for the RipA-depletion strain,
while colonies from the RpfB-depletion strain grew independent of inducer.
doi:10.1371/journal.ppat.1000001.g001

A Mycobacterial Enzyme Essential for Cell Division
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pentapeptide that is eventually transported across the cell membrane

and used to cross-link PG strands, was independent of induction of

ripA. While increased permeability is often attributed to an observed

increase in susceptibility to an antibiotic, depletion of ripA did not

affect susceptibility to cycloserine, suggesting a more specific defect.

RipA degrades multiple cell wall substrates
RipA has been predicted and shown to degrade M. luteus cell

wall material [25,26]. To test if RipA hydrolyzes peptidoglycan

and cell wall material from other species of bacteria, we

determined the enzymatic activity of RipA using a variety of

FITC-labeled, cell wall–derived substrates. We expressed RipA as

a fusion protein with GST in E. coli and purified the fusion protein

using affinity chromatography. We found that GST-RipA, but not

GST alone, was able to hydrolyze cell wall derived from M.

smegmatis as well as peptidoglycan purified from Streptomyces, and

had minimal activity against M. luteus cell wall (Figure 5B–D).

Therefore, RipA is capable of hydrolyzing cell wall material from

several bacterial species.

The interaction of RipA and RpfB results in synergistic
hydrolysis of peptidoglycan

The predicted activity of RipA is to cleave the peptide cross-

linkages in peptidoglycan and is distinct from Rpf, which is

predicted to cleave glycosidic bonds in peptidoglycan (Figure 5A).

Given the close proximity of these predicted cleavage sites, we

Figure 2. Depletion of RipA results in branching and chaining of M. smegmatis. (A) Micrographs of M. smegmatis strains with membranes
imaged by staining with TMA-DPH. i. ripA depletion strain chains and branches when depleted of ripA for 24 hours (no inducer), ii. Wild-type.
Arrowheads indicate regions where the cell wall appears pinched or lysed. Bacteria were visualized with 1006objective. (B) Micrograph of a branch of
ripA depleted M. smegmatis or wild-type strains. Membranes (green) and DNA (red) were stained with TMA-DPH or SYTO 9, respectively, revealing
apparent functional septation and DNA segregation. Bacteria were visualized with 1006 objective.
doi:10.1371/journal.ppat.1000001.g002
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hypothesized that the interaction of RpfB with RipA may result in

enhanced hydrolytic activity. To test this possibility we expressed a

portion of RpfB as a fusion protein with GST in E. coli and

purified it using affinity chromatography.

Using the same assays described above, we found that GST-

RpfB alone had minimal ability to degrade cell wall extracts or

purified peptidoglycan. However, when GST-RpfB was combined

with GST-RipA, activity was more than the sum of individual

enzyme activities. The same result was found with all substrates

tested (Figure 5B–D). No increase was detected when GST was

combined with GST-RpfB or GST-RipA (data not shown).

Addition of twice as much Rpf yielded no increase in hydrolysis,

while twice as much RipA yielded twice the hydrolysis (data not

shown) indicating the assay is in the linear range.

Discussion

In this work, we demonstrate that RipA is essential for normal

cell division in M. smegmatis, with its depletion resulting in long,

branched filaments and increased susceptibility to a specific cell

wall targeting antibiotic. Furthermore, RipA cleaves peptidoglycan

and synergizes with RpfB. Taken together, these data support a

model where RipA is 1) required for the final stage of cell division,

where daughter cells are separated and 2) has peptidoglycan

hydrolytic activity that may be modulated by RpfB under certain

conditions.

It is unusual that RipA is essential for normal cell division in M.

smegmatis and, apparently, M. tuberculosis [22]. Because bacteria

encode a number of hydrolytic enzymes that are, at least in part,

functionally redundant, strains carrying deletions of single

hydrolase genes are generally viable, though combinations of

mutations can result in lack of viability [13]. In M. smegmatis and

M. tuberculosis, ripA does not appear to be redundant. Conversely,

while M. marinum strains carrying mutations in the homologous

gene, iipA, do have abnormal morphology, they are still able to

divide. Mutations in the hydrolytic domain of IipA abolished

complementation of the defect, confirming the importance of the

Figure 3. M. tuberculosis ripA allele complements depletion. (A) Predicted domains of M. tuberculosis RipA-like proteins and L. monocytogenes
p60. The NLPC_P60 putative domain in p60 was previously shown to have endopeptidase activity against cell wall material and defines the family. (B)
Gene neighbors and predicted operons of rip genes in M. tuberculosis. Operons are indicated with black arrows, rip genes are in black text, gene
numbers are given above arrows and further annotation for some genes is provided below arrows. One gene on either side of the rip-operon is
shown with gray arrows. (C) A ripA-smeg depletion strain containing the M. tuberculosis ripA allele, ripA-mtb, on an episomal construct with its native
promoter grew like wildtype when depleted of ripA-smeg (no tetracycline), while a strain carrying an empty plasmid formed chains when ripA-smeg
was depleted. The M. tuberculosis allele of the ripA paralogue, rv1478, was not able to complement M. smegmatis depleted of ripA. All strains grew like
wildtype in the presence of inducer, though the RipA and RipA-like strains grew slightly shorter than empty vector in the presence of Tet. Membranes
were visualized with TMA-DPH. Bacteria were visualized with 1006 objective.
doi:10.1371/journal.ppat.1000001.g003
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hydrolytic activity of IipA [27]. In M. marinum, different rip

paralogues might be able to complement for loss of iipA.

None of the rpf genes appears to be essential in M. tuberculosis

and combinations of at least three rpf genes can be deleted in M.

tuberculosis strains while still maintaining normal in vitro vegetative

growth [2]. We demonstrate that RpfB is also not essential in M.

smegmatis. It logically follows that the interaction between RpfB

and RipA must not be essential for RipA function during

vegetative growth. Of course, it is possible that another Rpf

protein is able to compensate for the absence of RpfB, resulting in

increased RipA-dependent activity. For example, RpfE is able to

interact with RipA [16]. It is also possible that the RipA-RpfB

interaction, and subsequent enhanced hydrolytic activity, is

required only under special circumstances, such as growth under

specific conditions of stress. As noted, RpfB is required for

resuscitation of M. tuberculosis in a reactivation mouse model [3].

Likewise, deletion of several combinations of three rpf genes results

in viable bacteria that are unable to resuscitate from in vitro and in

vivo resuscitation assays [2]. Thus, the RipA-RpfB interaction may

be necessary under certain conditions.

Figure 4. An M. smegmatis strain depleted of RipA is sensitive to
a cell wall–targeting antibiotic. The ripA depletion strain of M.
smegmatis was spread on LB agar plates containing different amounts
of anhydrotetracycline inducer (ng/ml concentrations) to regulate the
amount of ripA expressed. A filter disc with 10 ml antibiotic was placed
in the center of plate and the diameter of inhibition of growth was
measured after 4 days of growth. Antibiotic concentration on disc:
carbenicillin (100 mg/ml) and cycloserine (100 mg/ml).
doi:10.1371/journal.ppat.1000001.g004

Figure 5. Recombinant RpfB and RipA combine to synergistically hydrolyze peptidoglycan. (A) Diagram of the structure of
peptidoglycan, indicating where RpfB and RipA are predicted to have hydrolytic activity. One unit of the peptidoglycan is magnified to show the
structure of NAG and NAM as well as the amino acids that are part of the DAP-DAP crosslinkage. Lines connecting NAG to NAM represent b-1,4-
glycosidic bonds, while residues connecting NAM to NAM depict peptide cross-linkages. NAG: N-acetylglucosamine, NAM: N-acetylmuramic acid. (B–
D) N-terminal GST fusion proteins were expressed and purified from E. coli. Equal molar amounts of individual or combinations of proteins were
incubated with insoluble FITC-labeled substrate: M. smegmatis cell wall (B), Streptomyces peptidoglycan (C), or M. luteus cell wall (D). The extent of
hydrolysis was determined by measuring the amount of soluble FITC remaining after centrifugation, and thus released during hydrolysis of the
insoluble substrate. GST alone, as well as buffer alone, were used to determine background release of FITC and were subtracted from final values.
Data are from representative experiments, each done in triplicate. Data are represented as mean +/2SEM.
doi:10.1371/journal.ppat.1000001.g005
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There are several models that might explain the cooperativity

seen between RipA and RpfB. One protein might allosterically

activate the other, resulting in increased peptidoglycan degrada-

tion. Alternatively, both proteins might be fully active, but their

association might bring their active sites in close proximity, thus

producing cleavage of bonds located near to one another in the

peptidoglycan. Since peptidoglycan is a highly cross-linked

polymer, nearby cleavages are more likely to effectively degrade

peptidoglycan and release fragments.

Several of the most effective antibiotics, including many

important antimycobacterial agents, target cell wall synthesis.

RipA appears to represent a particular vulnerability for

M. tuberculosis. In addition to its possible role in reactivation

through interaction with Rpf, RipA is essential for normal cell

division and is accessible to drugs, given its external localization.

Inhibiting the enzymatic activity should block the ability of

daughter cells to separate from one another, while blocking

protein-protein interactions could result in dysregulation of

activity. Thus, RipA is an attractive target for antimycobacterial

drug development.

Materials and Methods

Strains and culture conditions
E. coli XL-1 (Stratagene) strains were used for cloning and E. coli

BL21 (DE3) (Stratagene) was used for expression of recombinant

proteins from the pET41a (Novagen) or pMal (NEB). Mycobacterium

smegmatis (mc2155) and Mycobacterium tuberculosis (H37Rv) strains

were grown at 37uC in Middlebrook 7H9 broth supplemented

with ADC and Tween80 and antibiotic when appropriate.

Recombinant protein production
The E. coli expression strain, BL21(DE3) was used to synthesize

each protein following the Novagen manual protocol. Protein

concentrations were measured using the Bradford assay, normal-

ized, and confirmed by coomassie-stained polyacrylamide gels.

Western blotting
Protein samples were combined with 46Laemmli’s SDS PAGE

buffer and boiled at 100uC for 10 minutes. Proteins were

separated on 10% Tris-tricine polyacrylamide gels by electropho-

resis, transferred to nitrocellulose, and probed with specific

antibodies using standard techniques.

Preparation and FITC-labeling of cell wall material
M. smegmatis cell wall was prepared as previously described [14].

Streptomyces peptidoglycan and lyophilized M. luteus cell wall were

both obtained from Sigma. The fluorescein isothiocyanate (FITC)-

labeled bacterial cell wall was prepared by covalently linking FITC

to amine groups in the cell wall. 10 mg FITC (Molecular Probes)

was used to label 10 mg of insoluble peptidoglycan or cell wall

material following the protocol from Molecular Probes.

Enzyme assay
Recombinant M. tuberculosis proteins were incubated with

several FITC-labeled cell wall substrates and assayed for activity

by measuring FITC release. 25 mg of Rpf or RipA alone or 25 mg

of Rpf and 25 mg RipA combined, were added to 25 ml of 2 mg/

ml substrate and 25 ml 46 reaction buffer (50 mM Tris, 10 mM

MgCl, 50 mM KCl, 2 mM MnCl, 0.01% Chaps, 100 mM

KH2PO4, pH 5.75). The final volume was brought to 100 ml

with H2O. As a control, 50 mg of lysozyme was added to M.

smegmatis cell wall. Similar combinations with GST were also

tested. GST alone, as well as buffer alone, were used to determine

background release of FITC. After incubating at 30uC with

enzyme and buffer for 3–5 days, the insoluble substrate was

centrifuged (18,0006g) and soluble FITC was measured with

filters for excitation 485 nm and emission 538 nm.

Generation of depletion strains
Depletion strains were generated as previously described [28].

Briefly, M. smegmatis, with the tetracycline repressor gene

integrated into the attB site, was transformed with a suicide vector

containing the first 600 nucleotides of M. smegmatis ripA gene under

control of the tetracycline operator/promoter system (Ptet).

Transformants were selected for hygromycin resistance. Appro-

priate recombination was confirmed using forward primers to Ptet

and Prip (native ripA promoter) paired with a reverse primer to the

39 end of ripA. The presence of a product of appropriate size for

the former and lacking in the latter, confirmed the desired strain.

Attempts to disrupt the ripA gene in M. smegmatis using a

nonreplicating suicide vector designed to recombine into the

middle of the gene were unsuccessful (though control knockouts,

such as rpfB, were successful).

Depletion strain growth and complementation
The ripA and rpfB depletion strains were initially grown in 7H9

media containing kanamycin (selecting for TetR) and hygromycin

(selecting for inserted pTet) as well as anhydrotetracycline (Tet).

Once cultures reached late log-phase or stationary phase, they

were centrifuged (25006g for 5 minutes), washed once with PBS,

and resuspended in media with varying amounts of Tet. To test

recovery of ripA depleted cells, Tet was either added directly to

cultures grown without Tet or to fresh media inoculated with cells

depleted of ripA. To test complementation, the ripA gene and its

native promoter from M. tuberculosis was amplified and cloned into

an episomal plasmid containing the zeocin gene as a marker. This

construct, or the isogenic empty vector, was transformed into the

ripA depletion strain of M. smegmatis. Strains were grown in the

presence of tetracycline inducer, washed and inoculated into

media lacking inducer. Cultures were monitored by OD600 and

microscopy. To confirm the essentiality of ripA, depletion strains of

M. smegmatis were grown on a plate with a gradient of inducer

generated by placing 10 ml of 10 ng/ml Tet on a paper disc in the

center of the plate, resulting in a concentration of inducer highest

at the middle of the plate and lowest at the edges.

Susceptibility to antibiotics assay
The ripA depletion strain of M. smegmatis was spread on LB agar

plates containing different amounts of anhydrotetracycline inducer

(ng/ml concentrations) to regulate the amount of ripA expressed. A

filter disc with 10 ml of carbenicillin (100 mg/ml), isoniazid

(10 mg/ml), or cycloserine (100 mg/ml) was placed in the center

of plate and the diameter of inhibition of growth was measured

after 4 days of growth.

Microscopy and imaging
M. smegmatis strains were centrifuged at 25006g for 2 minutes,

washed with 1ml PBS, and resuspended in 20 ml of PBS

containing 50 nM TMA-DPH or 5 mM SYTO 9 for staining

membranes or DNA, respectively. Samples were imaged with a

Nikon TE-200 1006 (NA 1.4) objective and captured with an

Orca-II ER cooled CCD camera (Hamamatsu). Final images were

prepared using Adobe Photoshop 7.0.
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