
Entamoeba histolytica Phagocytosis of Human
Erythrocytes Involves PATMK, a Member
of the Transmembrane Kinase Family
Douglas R. Boettner

1
, Christopher D. Huston

2,3
, Alicia S. Linford

1
, Sarah N. Buss

1
, Eric Houpt

4
, Nicholas E. Sherman

1
,

William A. Petri, Jr.
1,4,5*

1 Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America, 2 Department of Medicine, University of Vermont, Burlington,

Vermont, United States of America, 3 Department of Microbiology, University of Vermont, Burlington, Vermont, United States of America, 4 Department of Medicine,

University of Virginia, Charlottesville, Virginia, United States of America, 5 Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America

Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and
utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue.
The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A
member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK), was identified in a proteomic
screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated
that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized
with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated
by: (i) incubation of ameba with anti-PATMK antibodies; (ii) PATMK mRNA knock-down using a novel shRNA expression
system; and (iii) expression of a carboxy-truncation of PATMK (PATMKD932). Expression of the carboxy-truncation of
PATMKD932 also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of
amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In
conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is
uniquely required for intestinal infection.
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Introduction

Entamoeba histolytica, the causative agent of amebiasis, is
estimated to be the second leading cause of morbidity and
mortality among protozoan parasites worldwide [1]. Phagocy-
tosis has been one of the most recognized behaviors of E.
histolytica. Erythrophagocytosis has even been used as a
diagnostic indicator of invasive E. histolytica infection by
microscopy [2]. Still, little is known concerning why host cells
are ingested and/orwhat affect this has on the course of disease.

Invasive infection by E. histolytica leads to dramatic tissue
destruction [3–6], including hallmarks of both apoptotic and
necrotic host cell death [7–9]. Previous work has demon-
strated that following contact by E. histolytica, host cells
display many features of apoptosis including DNA laddering,
caspase 3 activation and phosphatidylserine (PS) exposure.
Apoptotic host cells are subsequently ingested by the ameba
[10], an interaction which has been shown to involve exposed
phosphatidylserine (PS) on the host cell surface [10,11]. In
vitro, calcium treatment of erythrocytes causes external-
ization of phosphatidylserine and an increase in amebic
uptake, providing a convenient and physiological model for
analysis of this process [11]. Although little is known
concerning the role of this behavior in disease, phagocytosis
has been suggested as a virulence determining factor [12].
Amebic clones [13], and engineered mutants by either
expression of dominant negative constructs [14], or by
chemical mutagenesis [15] which display defective in vitro
phagocytosis are less virulent in vivo. In addition, use of pan-

caspase inhibitors to interfere with apoptotic induction in
vivo has also reduced infection by this parasite [16]. Given
these results we hypothesized that the identification of
proteins which participate in the ingestion of the apoptotic
corpse would be key to understanding virulence.
Many individual groups have used the process of ingestion

of beads to identify essential proteins required for phag-
ocytosis in organisms ranging from amebae to man [17–19].
Criticisms concerning the physiological relevance of bead
ingestion have recently been dispelled by data demonstrating
that bead ingestion is sensitive to inhibition by Annexin V,
similar to uptake of apoptotic cells [20]. Although large scale
proteomic analysis has revealed many interesting proteins,
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there appears to be much more left to discover. Controversies
concerning both the PS receptor [21] as well as the role of the
endoplasmic reticulum in phagocytosis [22,23] indicate that
these efforts have not been exhaustive.

Two independent groups have published work using latex
beads that were either carboxylated or opsonized with IgG to
identify the constituents of the E. histolytica phagosome [24–
28]. These proteomic screens taken together with the E.
histolytica genome [26] have identified homologues of phag-
osome maturation proteins seen in metazoans. Rab7, Rab11,
Rap2, PI3K, Rac1 and Rho all appear, consistent with other
systems. However, some metazoan proteins including EEA1,
RIN1, and LAMPs do not have discernable homologues in the
E. histolytica genome. These recent screens have identified only
a small number of surface proteins that could act early in the
phagocytic pathway, including Hgl, Igl, ABC transporter, p-
glycoprotein-2 and 6, and M17. Of these, only Hgl and Igl
have been confirmed as constituents of phagosomes [24].

Amebic adherence to apoptotic host cells has been shown
to require receptors in addition to the amebic Gal/GalNAc
adherence lectin that mediates adherence to and killing of
the live cell [11]. Our previous work identified the exposure
of PS on the host cell surface as one of the recognized ligands
leading to ingestion. The goals of these studies were to
identify possible candidate amebic surface proteins with a
role in the process of host cell ingestion.

Results

Sequencing of Magnetic Bead Preparations Revealed
Proteins with Conserved Function in Phagocytosis

Ingested carboxylated magnetic beads within intact phag-
osomes were separated from amebic lysate and subjected to
delipidation and mass spectrometry sequencing. Phagosome
preparations were performed at 0, 5, 10, and 60 minutes
following centrifugation of the beads into contact with
trophozoites. In addition lysed ameba were incubated with
beads and subjected to the same steps to account for
background binding to the carboxylated beads. This resultant
proteome identified many proteins previously associated with
phagocytosis in the literature, including: the galactose bind-
ing lectin, small GTPases, hydrolytic proteins, cytoskeleton
proteins, and endoplasmic reticulum proteins (Tables 1 and

S1–S4). Our prediction was that molecules important for
regulating ingestion of the host cell would appear in early
phagosomes, but would not be present in late preparations.
Therefore, the data were sorted for proteins that appeared at
0, 5 and/or 10 minutes. A member of the transmembrane
kinase family stood out in this analysis, which we named
PATMK (Phagosome-associated transmembrane kinase). This
putative receptor kinase appeared at 5 and 10 minutes but in
no other preparations.
The amino acid sequence of PATMK (Figure 1A) predicted

a 146 kDa protein, containing a 21 amino acid signal peptide
sequence, an ectodomain containing 25 CXXC repeats, a 22
amino acid membrane spanning domain and an intracellular
domain with the catalytic residues of a kinase (Figure 1B and
1C) [29]. The kinase specificity for PATMK could not be
predicted given that its sequence contained the necessary
residues for both serine/threonine and tyrosine kinase family
members. Attempts to biochemically define the in vitro
kinase activity by expressing the kinase domain in E. coli or by
immunoprecipitating PATMK from trophozoites were un-
successful (data not shown). Whether PATMK is a pseudoki-
nase, as the lack of a conserved ATP-orienting glycine-rich
motif suggests (domain I, Figure 1C), will require additional
studies. We concluded that the presence of PATMK in the
early phagosome proteome was consistent with it having a
role in phagocytosis of the apoptotic corpse.

Antibodies against the Ectodomain of PATMK Reveal a
Surface Protein on E. histolytica
Rabbit anti-serum against a peptide specific for the

ectodomain of PATMK (EIQKQNPISTSLKISKISSD) (under-
lined in Figure 1A) revealed a single band at ;140 kDa. This
band disappeared when antibody was pre-absorbed against 50
lM but not 5 nM of the antigen peptide (Figure 2A). Affinity-
purified anti-PATMK antibodies stained the surface of both
permeabilized and non-permeabilized trophozoites, whereas
pre-immune serum yielded little staining (Figure 2B). We
concluded that PATMK was expressed in E. histolytica
trophozoites as a plasma membrane protein of the expected
mass and with the amino-terminus extra-cellular.

PATMK Co-Localizes with Ingested Beads
In order to understand the role PATMK played in

ingestion, E. histolytica trophozoites were stained with anti-
PATMK after ingestion of 2 lm carboxylate-modified
fluorescent beads. To ensure that the PATMK antibody did
not directly bind beads, we used identical methods to stain
beads and bead containing cells and imaged the cells using
the Amnis Imagestream imaging cytometer (Amnis Corpo-
ration; Seattle, WA). There was no evidence of non-specific
binding of anti-PATMK to the carboxylate-modified beads
(Figure 3A). Additionally, no staining was observed with
secondary antibody alone (Figure 3B). However, the location
of PATMK aggregates in both permeabilized and non-
permeabilized trophozoites did correlate with that of the
ingested bead (Figure 3C and 3D), suggesting that PATMK
may directly interact with cargo during ingestion.

Anti-PATMK Pre-Incubation of Ameba Blocks Ingestion of
Human Erythrocytes
Amebae were tested for their ability to ingest healthy or

calcium-treated (apoptotic) erythrocytes following a 20
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Author Summary

There is a highly ordered process by which the parasite Entamoeba
histolytica interacts with human cells. Adherence via a parasite lectin
is followed in seconds by killing, with only the corpse and not a
living cell ingested by the ameba. This process is so central to
pathogenesis that clinicians use the presence of ingested eryth-
rocytes to identify E. histolytica and distinguish it from harmless
commensal amebae of the gut. We hypothesized that identification
of molecules involved in the ingestion of the corpse might provide
insight into how amebae cause colitis. We identified a member of
the transmembrane kinase family as an early component of the
phagosome. Inhibition of this kinase blocked red cell ingestion and
prevented amebae from colonizing and invading the gut. There was
no impact on dominant-negative parasites to cause liver abscess,
suggesting the pathogenesis program differs between anatomic
sites. Future studies of the transmembrane kinanse in erythropha-
gocytosis may provide insight into how amebae colonize and invade
the gut, with the ultimate goal of preventing disease.
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minute pre-incubation on ice in medium containing 50 lg/ml
of anti-PATMK antibodies (Figure 4A). Anti-PATMK anti-
bodies reduced the ingestion of calcium-treated (15.0% 6

4.0% vs. 30.7 6 1.5%, p � 0.003), as well as healthy
erythrocytes (5.3% 6 2.5% vs. 22.0% 6 3.0%, p � 0.002).
Inhibition was also observed for the ingestion of calcium
treated erythrocytes in the presence of 55 mM galactose
(2.7% 6 2.1% vs. 12.7 6 5.7, p � 0.046). The effect of anti-
PATMK antibodies could be reversed by pre-absorbing the
antibodies against the antigen peptide at a concentration of
25 lM (Figure 4A). As expected, anti-Lgl antibodies (used as a
control) had no affect on ingestion of either healthy or
calcium-treated erythrocytes. We concluded that the ability
of the anti-PATMK antibodies to block phagocytosis of not
only healthy, but also calcium-treated, erythrocytes indicated
a role for PATMK in erythrophagocytosis at a step after
apoptotic killing of the red cell by the amebae.

PATMK Localizes to the Interface of Ameba with
Erythrocytes

In order to understand the role PATMK played in
ingestion, E. histolytica trophozoites were stained with anti-
PATMK in the presence of fluorescently labeled (CFSE)
erythrocytes (Figure 4B). PATMK staining on non-permeabi-
lized trophozoites enriched at the site of contact with CFSE
labeled erythrocytes (arrows, Figure 4B), suggesting that
PATMK may directly interact with the erythrocyte during
ingestion.

ShRNA Knockdown of PATMK Led to a Reduction in
Erythrophagocytosis

In order to further address the role of PATMK in
phagocytosis, RNA interference using a novel short hairpin

RNA (shRNA) system was used to knock down its expression.
ShRNAs were stably expressed in amebae using the E.
histolytica U6 promoter (RNA polymerase III) (Figure 5A).
ShRNAs were expressed to three regions of PATMK (Figure
5B). Knockdown of PATMK protein was seen upon expres-
sion of shRNA to two regions of PATMK, nucleotides 2273–
2302, and 3552–3581, but not to a scrambled shRNA of
identical composition to nucleotides 3552–3581 (Figure 5C).
Knockdown of PATMK inhibited erythrophagocytosis: in the
absence of galactose, ingestion of calcium-treated erythro-
cytes was statistically significantly reduced by 48.3% by the
3552–3581 corresponding hairpin (58.0% 6 9.8% vs. 30.0%
6 2.6%, p � 0.0176) and 35.6% by the 2273–2302 hairpin
(58.0% 6 9.8% vs. 37.3% 6 6.4%, p � 0.0383) compared
with the scrambled control. In the presence of 55 mM
galactose, both constructs (2273 and 3552) reduced ingestion
of calcium treated erythrocytes by more than 65% (22.0% 6

6.6% (scrambled 3552 control) vs. 5.7% 6 2.5% (3552) or
7.0% 6 2.6% (2273), p � 0.02) (Figure 5D). The amino-
terminus most construct (325–354) neither reduced PATMK
protein levels nor had a significant affect on ingestion of
calcium treated erythrocytes. No off-target effects on mRNA
levels were observed with the shRNA technique (Table 2). We
concluded both that shRNA is a promising technique for
gene knockdown in E. histolytica, and that inhibition of the
ingestion of calcium-treated erythrocytes by PATMK knock-
down supported a role for PATMK in the ingestion of dead
red cells.

Expression of a Truncated Form of PATMK at Residue 932
(PATMKD932) Caused a Reduction in Host Cell Ingestion
Because gene replacement is not currently possible in E.

histolytica, we sought a fourth (in addition to shRNA knock-

Figure 1. Sequence and Domain Structure of PATMK (NCBI ID: XP_655593)

(A) Amino acid sequence with the sequence used to produce anti-peptide antibodies underlined, and the boxed sequence showing the peptide found
in 5- and 10-minute phagosome preparations.
(B) Domains of PATMK. The transmembrane domain begins at amino acid 841.
(C) Alignment of PATMK with Hank’s consensus of conserved residues for serine/threonine or tyrosine kinase. Upper cased residues are conserved, and
positions requiring any amino acid are denotated by ‘‘X,’’ whereas positions requiring hydrophobic residues are denoted by ‘‘O’’.
doi:10.1371/journal.ppat.0040008.g001
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down, anti-PATMK antibodies and proteomics identification
of PATMK in the early phagosome) independent approach to
test the role of PATMK in erythrophagocytosis. PATMK1279

(full length carboxy-FLAG epitope-tagged PATMK),
PATMKD932 (a truncated, carboxy-FLAG epitope-tagged
PATMK), and empty vector control (Figure 6A) were stably
transfected into trophozoites. Immunoprecipitations were
performed using anti-FLAG binding resin, and Western blots
revealed that both PATMK1279, and PATMKD932 were ex-
pressed (Figure 6B). Interestingly, the truncated form of
PATMKD932 was co-immunoprecipitated with native PATMK,
as indicated by western blots of the immunoprecipitate
indicating interaction of the truncated and wild type proteins
(Figure 6B, lane 3). The expression of the carboxy-terminal
truncated form of PATMK reduced erythrophagocytosis by
67% (11.33 6 2.52 vs. 34.33 6 4.93, p � 0.002), and by 81% in
the presence of 55 mM D-galactose (3.33 6 2.08 vs. 17.67 6

3.06, p � 0.003) compared with the empty vector control
(Figure 6C). Expression of PATMK1279 had no statistical
impact on erythrophagocytosis. To ensure that the expression
of PATMKD932 did not dramatically alter the amebic surface,
transfectants were stained with anti-Gal/GalNAc lectin heavy
subunit polyclonal serum, and analyzed using flow cytometry
(Figure 6D). There were no differences observed in lectin
staining between any of the transfectants. We concluded that
the ability of the truncated form of PATMK to inhibit
erythrophagocytosis was consistent with all of the previous
experiments implicating PATMK in ingestion of the dead red

cell. The co-immunoprecipitation with anti-FLAG antibody
of the carboxy-truncated PATMK with the native full-length
PATMK suggested that the truncated protein was interfering
with PATMK via a direct interaction.

Expression of PATMKD932 Reduces Virulence of E.
Histolytica in the Intestinal Model of Amebiasis, but Has
No Affect on Formation of Liver Abscesses
Because parasite erythrophagocytosis is pathognomonic of

amebic colitis, we tested the ability of amebae expressing
carboxy-truncated PATMK to infect the colon in the murine
model of amebic colitis. As expected, the infection rate of
trophozoites transfected with PATMKD932 (Table 3) was
significantly decreased (2/24 PATMKD932 vs. 9/24 empty
vector, p � 0.0157). Amebae cultured from the sacrificed
animals still contained the transfected plasmids. The
decreased virulence in the intestine was not due to a general
enfeeblement of these amebae, as no reduction was seen in
the ability to cause liver abscesses in gerbils (Table 4).

Discussion

The most important finding of this study was the
identification of PATMK as a member of the TMK family
that participates in erythrophagocytosis and is uniquely
required for intestinal but not hepatic infection. In addition
this manuscript introduced a novel technique of gene
knockdown using shRNA in E. histolytica that could find

Figure 2. PATMK Is Expressed on the Surface of Trophozoites as a Type 1 Integral Membrane Protein

(A) Western blot with affinity-purified anti-PATMK peptide antibodies was performed on amebic lysates in the absence (lane 1) or presence of 50-lM
(lane 2) and 5-nM (lane 3) competing peptide, or pre-immune sera (lane 4).
(B) Confocal microscopy of E. histolytica trophozoites stained with pre-immune or affinity purified anti-PATMK antibodies with or without cell
permeabilization with 0.2% Triton X-100. Magnified 403.
doi:10.1371/journal.ppat.0040008.g002
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general usefulness in a parasite for which there is not the
ability to replace genes.

The participation of PATMK in ingestion of the dead
human red cell was demonstrated not only by shRNA but by
identification in the early phagosome proteome, co-local-
ization with erythrocytes, and inhibition with anti-peptide
antibodies and by expression of a carboxy-truncated mutant.
Enzymatic activity of the kinase domain was not demon-
strated when PATMK was expressed and purified from E. coli
or immunoprecipitated from E. histolytica, Further studies will
therefore be required to understand if PATMK is acting as a
receptor for apoptotic red cells or as a regulator of ingestion
via its kinase domain.

A comprehensive analysis of the phagosome proteome was
not the goal of this work, as several groups have accomplished
this for E. histolytica. However it is interesting that each group
has identified new molecules of interest. The first analysis of
this type in E. histolytica, published by Okada et al., revealed
many of the GTP binding proteins that are important for
maturation of phagosomes [24]. However, this screen did not
reveal any of the endoplasmic reticulum resident proteins
identified in metazoan systems [17,22]. More recent work by
Marion et al. identified ER resident proteins in E. histolytica
phagosomes such as calreticulin as well as significant involve-
ment by myosin IB, actin and actin accessory proteins [25].
Later this group identified a small number of surface proteins
which were suggested as possible receptors [27]. The screen
reported here was focused on early time points following

ingestion with the goal of identifying new surface molecules
with roles in this process. In addition proteins were identified
such as amoebapore A and B, which were known to be
involved in phagocytosis but had remained absent in other
screens. The most obvious conclusion from this collection of
proteomics is that not one effort has taken its screen to
saturation. Incompleteness of these screens may also explain
the differences that have been published between clinical
isolates of E. histolytica [28].
Manipulation of PATMK by binding the ectodomain with

antibody (75% reduction of ingestion of calcium treated
erythrocytes in M199S with 55mM D-galactose), reducing the
protein levels with interfering RNA (65% reduction in M199S
with 55mM D-galactose), or by expressing a truncated protein
(81%), all produced a similar reduction of erythrophagocy-
tosis in vitro. The mechanism of this interference is not
entirely clear. Given that anti-PATMK serum co-localizes with
erythrocytes in contact with ameba, we assume that antibody
against this protein blocks uptake of erythrocytes by
interfering with receptor function, but it is very possible
that this could be blocking interaction with a different
molecule by steric hinderance or by interfering with signaling
(as opposed to receptor) functions of PATMK. Clearly all of
the experimental approaches supported a role for this
protein in host cell ingestion by E. histolytica.
Although no kinase activity has been demonstrated, we

hypothesize that PATMK is in fact a receptor kinase. The Mer
family of tyrosine kinases provide a paradigm for receptor

Figure 3. PATMK Co-Localizes with Carboxylate-Modified 2.0-mm Beads during Phagocytosis

(A) Anti-PATMK did not directly bind to beads in the absence of amebae. 2 lm carboxylate-modified fluorescent beads were stained with anti-PATMK
and RPE-conjugated goat-anti-rabbit antibodies as described and representative images are shown.
(B) Ingested beads did not co-localize with anti-rabbit IgG:PE in a permeabilized cell. Ameba were allowed to ingest beads, fixed and stained with RPE-
conjugated goat-anti rabbit antibodies.
(C) PATMK co-localized with an ingested bead at the surface of an unpermeabilized cell.
(D) PATMK co-localized with ingested beads in a permeabilized cell. Amebae were allowed to ingest beads, left unpermeabilized (C) or permeabilized
(D) and stained as described with anti-PATMK and secondary antibody.
doi:10.1371/journal.ppat.0040008.g003
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kinase involvement in phagocytosis [30–32]. Mer tyrosine
kinase interacts with the bridging molecule GAS6 to
recognize PS on apoptotic cells. The identification of the
TMK family was one of, if not the most exciting finding from
the genome project, because of its lack of precedent in a
unicellular eukaryote. Implication of PATMK in erythropha-
gocytosis is an important step towards understanding the role
of this family of kinases in parasite biology.

Virulence of E. histolytica has been long associated with the
parasite’s ability to ingest host cells. This work suggests that
this may be more important in intestinal disease than in liver
abscesses. Ameba expressing PATMKD932 had reduced ability
to infect the intestine but were not impaired in causing liver
abscess when directly injected into the liver. A varying
requirement for virulence factors in different environments
for the amebae has been seen before. For example cysteine
protease 2 over-expression was found to reduce in vitro
monolayer destruction but had no effect on liver abscess
formation [33], and amoebapore A silencing led to inability to
cause liver abscesses although these parasites still caused
tissue damage in a colonic xenograft model of amebiasis [34].

The data presented here concerning a retention of virulence
in the liver abscess model as well as the analysis showing that
lectin expression on the surface has not been altered
illustrate that the ameba are otherwise competent to attach
to the host and cause disease. This may indicate that
expression of PATMKD932 does not simply produce an
impaired ameba, but an ameba which fails to colonize the
intestine possibly because of failure to clear dead and dying
host cells. It also suggests that the virulence program required
for the parasite’s success in the gut differ from that of the
liver.
The rationale behind phagocytosis of host cells by this

parasite is still a mystery, but erythrophagocytosis is a
hallmark of E. histolytica infection. One could envision that
this behavior provides an advantage during infection by
clearing dying and dead cells and thereby reducing the
infiltration of inflammatory cells and release of toxic cellular
content. PATMK may have a pivotal role in allowing this
parasite to persist longer in the host. Interfering with this
pathway may produce a more robust immune response to E.
histolytica and clearance of infection.

Figure 4. Affinity-Purified Anti-PATMK Antipeptide Antibodies Block Erythrophagocytosis by E. histolytica

(A) Phagocytosis of calcium-treated or healthy erythrocytes by amebae was assayed in the presence of PBS (black), 50 lg/ml anti-Gal/GalNAc lectin light
subunit (Lgl) (white), pre-immune (gray), 10 lg/ml anti-PATMK (horizontal hatch), 50 lg/ml anti-PATMK (vertical hatch), and 50 lg/ml anti-PATMK serum
pre-absorbed with 25 lM of peptide (diagonal hatch). Data are reported as means 6 SD. p Values were determined by a two-tailed t-test compared to
controls (*, p , 0.003 compared with pre-immune in M199s; #, p , 0.046 compared to pre-immune in 50 mM D-galactose; �, p , 0.002 compared to
pre-immune in M199s [healthy erythrocytes], n¼ 6).
(B) E. histolytica trophozoites interacting with CFSE-labeled erythrocytes were stained with pre-immune or anti-PATMK serum, magnified 1003.
doi:10.1371/journal.ppat.0040008.g004
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Materials and Methods

Cells and storage conditions. E. histolytica trophozoites (HM-
1:IMSS) were grown axenically in TYI-S-33 (Trypticase-yeast extract
iron serum) medium supplemented with 100 U of penicillin/ml and
100 lg of streptomycin sulfate/ml at 37 8C [35]. Trophozoites were
harvested during log-phase growth by incubation on ice for 10 min,
centrifugation at 2003 g and 4 8C for 5 minutes, and resuspension in
either HEPES buffer or medium 199 (Gibco BRL, Grand Island, NY)
supplemented with 5.7 mM cysteine, 25 mM HEPES, and 0.5% bovine
serum albumin at pH 6.8, (M199S) [36]. Human blood type B Rhþwas
collected, heparinized and sedimented by centrifugation (1,0003 g ; 4
8C; 10 minutes) through Ficoll-Paque PLUS (Amersham Biosciences,
Piscataway, NJ) to separate erythrocytes from other blood constitu-
ents. Pelleted erythrocytes were washed twice in HEPES buffer (10mM
hydroxyethylpiperazine-N9-2-ethanesulfonic acid (HEPES) [pH 7.2],
140 mM NaCl and 0.1% bovine serum albumin with or without 2.5
mM CaCl2), and resuspended at 1 3 107 cells per ml in HEPES buffer
and stored for up to 48 hours [37,38]. Calcium-treated erythrocytes
were prepared by incubation in HEPES buffer supplemented with 2.5
mM CaCl2 at 37 8C for 48 hours.

Preparation of amebic phagosomes using magnetic beads. Adher-
ent amebae in log phase growth were washed three times with warm
PBS and carboxylated 2.7 lm magnetic beads (M-270 Dynabeads,
Dynal, Inc.) (2 3 108 beads/ml in medium 199 (Gibco BRL)
supplemented with 5.7 mM cysteine, 25 mM HEPES, and 0.5% BSA
at pH 6.8 (M199s) were added to the cultures. Phagocytosis was then
initiated by centrifugation (2003 g, 5 min, room temperature) of the

Figure 5. Expression of Short Hairpin RNA against PATMK Reduced PATMK Protein Levels and the Rate of Amebic Ingestion of Erythrocytes

(A) Short hairpin RNAs (shRNA) were created using a two-step PCR strategy that utilized overlapping 39 primers to create a hairpin loop controlled by an
RNA polymerase III (U6) promoter.
(B) The shRNAs corresponded to nucleotides 325–354 (325), 2273–2302 (2273), and 3552–3581 (3552), as well as a control which contained the same
nucleotide makeup of 3552 in random order (scrambled).
(C) Amebic cell lysate (105 cells per lane) was separated on an 8% SDS polyacrylamide gel, transferred to PVDF, and blotted with anti-PATMK or anti-Lgl
serum (as a loading control).
(D) Phagocytosis of calcium-treated erythrocytes by amebae transfected with the shRNAs were assayed in M199S (black bars) or M199S competed with
55 mM D-galactose (hatched bars). Data are reported as means 6 SD. p Values were determined by a two-tailed t-test compared to scrambled controls
(*, p , 0.039, compared to Scrambled 3552; #, p , 0.021 compared with Scrambled 3552 in 50 mM D-galactose, n¼ 6).
doi:10.1371/journal.ppat.0040008.g005

Table 2. shRNA against PATMK but Not the Scrambled Control
shRNA Decreased PATMK mRNA Levels without Evidence of Off-
Target Effects

Gene Amplifieda Average CT for

PATMK Scrambled

Average CT for

PATMK 3552

Actin 16.03 6 1.51 15.66 6 0.82

115m.00124 28.13 6 2.49 26.89 6 1.51

115m.00129 32.34 6 2.74 31.36 6 1.97

93m.00137 30.14 6 1.29 29.43 6 1.04

99m.00167 32.66 6 1.31 32.81 6 0.94

TMK32 (72m.00194) 34.00 6 1.93 34.30 6 1.09

243.m00179 32.54 6 2.91 30.25 6 0.45

TMK11 (15m.00355) 28.42 6 0.84 28.94 6 1.69

TMK56 (5m.00482) 28.94 6 2.51 28.92 6 1.54

TMK79 (71m.00130) 30.61 6 1.58 28.39 6 2.13

PATMK (26.m00300) 30.53 6 2.26 .45

amRNA levels were determined for nine genes with 80% identity to the shRNA sequence
#3552 used to knock-down expression of PATMK. mRNA was measured by reverse
transcriptase-qPCR for amebae transfected with the 3552 shRNA and the scrambled
control.
doi:10.1371/journal.ppat.0040008.t002
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beads onto amebae using a plate spinner. After incubation at 37 8C
for 0, 5, or 10 min, uningested beads were removed by washing 33
with warm PBS followed immediately by addition of cold PBS and
incubation on ice for 5 min to harvest the amebae. For longer time
points, beads were removed after incubation for 10 min and a
‘‘chase’’ incubation at 37 8C was performed. Amebae were then
resuspended in cold PBS supplemented with a protease inhibitor
cocktail and mechanically disrupted using a Dounce homogenizer.
Douncing was continued until approximately 90% of amebae were
lysed, leaving the nuclei intact. Phagosomes containing ingested
magnetic beads were isolated using a magnetic column, washed three
times with PBS, and de-lipidated by methanol:chloroform precip-
itation in preparation for peptide sequencing [39].

Peptide sequencing and analysis. The sample was dissolved in 10–
20 ll of 1% SDS and then slowly diluted to a final concentration of
0.1% SDS with 100mM ammonium bicarbonate pH 8.0. The sample
was reduced with 100mM DTT for 30 minutes at room temperature
and alkylated with 500mM iodoacetamide for 30 minutes at room

temperature (RT) before addition of 1 lg of modified trypsin
(Promega, Madison, WI) for 24 hours at RT. A second 1 lg of trypsin
was added for an additional 24 hours at RT. The sample was acidified
with acetic acid to 5% by volume. The resulting digest was desalted
on a C18 column (10lm particle size – 10cm 3 150lm id) and then
SDS removed by strong cation ion exchange (10lm particle size –
10cm 3 150lm id). 25% of the sample was injected into the mass
spectrometer. The LC-MS system consisted of a Finnigan LCQ ion
trap mass spectrometer system with a Protana nanospray ion source
interfaced to a self-packed 8 cm 3 75 um id Phenomenex Jupiter
10lm C18 reversed-phase capillary column. The peptides were eluted
from the column by an acetonitrile/0.1 M acetic acid gradient at a
flow rate of 0.5lL per minute over 2 hours. The nanospray ion source
was operated at 2.8 kV. The digest was analyzed using the double play
capability of the instrument acquiring a full scan mass spectrum to
determine peptide molecular weights and four product ion spectra to
determine amino acid sequence in sequential scans. The data were
analyzed by database searching using the Sequest search algorithm

Figure 6. Expression of Carboxy-Truncated PATMK Reduced Ingestion of Eythrocytes by E. histolytica

(A) Two constructs were assembled by PCR and cloned behind the cysteine synthase promoter in the vector pEhEx and transfected into HM1:IMSS
trophozoites: a full-length, carboxy Flag epitope tagged PATMK (PATMK1279), and a truncation at residue 932, with a carboxy Flag epitope tag
(PATMK_932).
(B) Amebic lysates (107 cells of PATMK1279, PATMK_932, or empty vector) were subjected to immunoprecipitation using anti-Flag resin. Proteins from
the IP were separated on an 8% polyacrylamide gel, transferred to PVDF and blotted with anti-PATMK or pre-immune serum. (In every lane, the heavy
chain from the immunoprecipitating antibody appears at ;50 kDa).
(C) Phagocytosis of calcium-treated erythrocytes by amebae expressing PATMK_932, PATMK1279, and empty vector controls were assayed in M199S
(hatched bars) or M199S competed with 55 mM D-galactose (black bars). Data are reported as means 6 SD. p Values were determined by a two-tailed t-
test compared to empty vector controls (*, p , 0.003, n¼ 6).
(D) Amebic surface staining was performed on non-permeablized fixed E. histolytica trophozoites using pre-immune (bold line) or anti-Gal/GalNAc Hgl
specific serum (thin line) and analyzed by flow cytometry.
doi:10.1371/journal.ppat.0040008.g006

Table 3. Expression of a PATMK Truncation Reduced E. histolytica Infection and Inflammation in the Intestine

Infection Rate (Gross)a Culture Positive Cecal-Antigen Positive Histology Positive Average Score Inflammation

Control 9/24 9/24 8/24 8/24 2.125

PATMKD932 2/24* 2/24* 2/24 1/24* 1.125

aPATMKD932 and empty vector control ameba were introduced via cecal inoculation. Mice were sacrificed 72–96 h later, and infection was assayed by culture and cecal antigen ELISA, and
the cecum was sectioned for histological analysis. p Values were determined by a two-tailed t-test (*, p¼ 0.016 compared to vector control).
doi:10.1371/journal.ppat.0040008.t003
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against the non-redundant database from NCBI and against the E.
histolytica ORFs generated from the TIGR sequenced genome data-
base. Search results were analyzed using minimum cutoffs (Xcorr
.1.5 for þ1, .2.0 for þ2 and .2.5 for þ3). Any proteins of interest
were confirmed by manual validation of the spectra.

Production of anti-PATMK rabbit serum. The peptide EIQKQN-
PISTSLKISKISSD, (amino acids 130–150 of PATMK) was synthesized,
conjugated to KLH and used to immunize New Zealand White
Rabbits (Covance, Princeton, NJ). Resultant serum was protein G
purfied using packed protein G columns (Pierce, Rockford, IL) and
affinity purified against bound peptide. The resultant serum was
dialyzed against PBS and stored at �20 8C until use.

Fluorescent labeling and antibody pre-incubation. Prior to calcium
treatment, erythrocytes were fluorescently labeled by incubation at
37 8C for 20 to 25 minutes in phosphate-buffered saline (PBS)
containing 5lM 5 (and 6)-carboxyfluorescein diacetate succinimidyl
ester (CFSE) (Molecular Probes, Eugene, OR). Unbound dye was
quenched by incubation with an excess of fetal bovine serum at 37 8C
for 20 min, and the cells were washed twice more with M199s medium
before use. Where indicated, erythrocytes were washed once in
M199S and re-suspended at 106 cells/ml and incubated with (antibody
concentration) per 25 minutes at 4 8C. The cells were then washed
twice in M199S before they were added to amebae [40].

Immunopreciptiation and western blotting. Soluble proteins were
extracted from ameba by harvesting 53 107 trophozoites expressing
FLAG epitope-tagged PATMK by incubation on ice for 10 minutes,
followed by centrifugation (200 3 g at 4 8C for 5 minutes). The
amebae were lysed in Lysis Buffer (150mM NaCl, 50mM Tris-HCl,
and 1% NP-40, supplemented with protease inhibitor cocktail I
[Sigma, St. Louis, MO] per the manufacturer’s directions). The
amebic lysate was incubated with anti-FLAG-M2 affinity gel (Sigma,
St. Louis, MO) for 30 minutes at 4 8C. Resin was washed once in lysis
buffer and twice in PBS pH 7.4, then boiled in SDS-PAGE loading
buffer. All samples were then separated on 8–10% polyacrylamide
gels and subjected to immuno-blotting by standard techniques [41]
with either 5 lg/ml anti-PATMK rabbit serum or pre-immune
serum.

Confocal microscopy. E. histolytica trophozoites (1 3 106) were
bound to glass coverslips in a 24-well plate for 30 minutes at 37 8C in
TYI-S-33 medium. Adherent amebae were washed twice in phosphate
buffered saline (PBS) and fixed in 3% paraformaldehyde for 30
minutes at room temperature. Where indicated 107 CFSE-labeled
erythrocytes were incubated for 10 minutes with washed ameba in
M199S at 37 8C, prior to formaldehyde fixation. Next, amebae were
solubilized in 0.2% Triton X 100 in PBS for 1 minute. Nonspecific
binding was blocked by incubation with 20% goat serum and 5%
bovine serum albumin (Sigma, St. Louis, MO) in PBS for 1 h at 37 8C.
Detection of kinases was performed by incubation with protein A
purified anti-PATMK rabbit polyclonal antibody (anti-PATMK)
diluted to 200 lg/ml and incubated with fixed cells for 1 hour at 37
8C. Detection of the Gal/GalNAc adherence lectin was detected by
addition of anti-lectin rabbit polyclonal antibody [41] diluted to 6 lg/
ml. Two quick washes were performed before Cy3-conjugated goat
anti-rabbit secondary antibodies (Jackson Laboratories, Bar Harbor,
ME) were added at a 1:160 dilution for 1 hour at 37 8C. The coverslips
were washed twice more and mounted with Gel/Mount (Biomeda,
Foster City, CA) and sealed to slides. Confocal images were visualized
using a Zeiss LSM 510 laser scanning microscope.

Construct assembly. Cloning of PATMKcterm, for expression of
6XHIS tagged protein: the kinase containing region of PATMK was

PCR amplified with the primers: CAATTTAGAGAAGGAATTCCT (59
primer) and TCACATTAATTGAAGATGTTTTAAAACAACA (39
primer). This 1000 bp fragment was then cloned into TOPO NT/T7
(Invitrogen, Carlsbad, California), in frame with an amino-terminal
6X HIS tag.

Cloning of U6 driven RNAi hairpin constructs for PATMK
knockdown (Figure 2A, lane 1): short hairpin RNAs were expressed
from by the E. histolytica RNA polymerase III, U6 promoter (GenBank
[http://www.ncbi.nlm.nih.gov/] accession number U43841) [42]. This
approach utilized a 29-base base pair stem, with a 9 bp loop. Four
sequences were targeted and construction of the vector was done in 2
parts. Three experimental constructs were made (325, 2273, and
3552) each corresponding to the corresponding beginning nucleotide
sequence as well as a control with the same nucleotide content as
3552, but in random order (scrambled). These constructs were made
using two rounds of PCR, each using the same 59 oligo for each round,
(CTACTGAAGCTTGTTTTTATGAAAAAGTGTATTTGC) but differ-
ent 39 oligos as listed: 325 first round TCTCTTGAAAGAATCTTAT-
CAACTGATAAGTCTCCAGGGCCCAATTTTATTTTTCTTTT-
TATCC, second round GAATGCGGCCGCAAAAAATGGAGACTT
ATCAGTTGATAAGATTCTTCTCTTGAA; 2273 first round
TCTCTTGAAACACTCATATTGTTCTAAATAATACCCTTGGGCC-
CAATTTTATTTTTCTTTTTATCC, second round GAATGCGGCCG-
CAAAAAAGGGTATTATTTAGAACAATATGAGTGTTCTCTTGAA;
and 3552 first round TCTCTTGAAGCCATATAAATTGGACTTCC-
TATTCCCTTGGGCCCAATTTTATTTTTCTTTTTATCC, second
round GAATGCGGCCGCAAAAAAGGGAATAGGAAGTCCAATT-
TATATGGCTCTCTTGAA. PCR products were cloned into pBlue-
script II, sequence-verified, then subcloned into the amebic
expression vector pGIR310 [43].

Cloning of carboxy-FLAG epitope tagged PATMK (PATMK1279)
and truncated PATMK at residue 932 (PATMKD932), was performed
by PCR of genomic DNA with the same forward oligo, which
added a BglII site to the 59 region of the gene (AAAGATCTTCAAT-
GAGCATTATTCCATTTCAATGGTGCTAT). Two different 39 oligos
terminating at nucleotide 3834 to create PATMK1279 (sequence:
AACTCGAGTTAGCCCTTGTCGTCGTCGTCCTTGTAGTCCAT-
TAATTGAAGATGTTTTAAAACAACATCAATGGGTAT) or
nucleotide2796 to createPATMKD932 (sequence: AACTCGAGT-
TAGCCCTTGTCGTCGTCGTCCTTGTAGTCAATTTTTAATG-
GATTTTTCCTTATGCTTGCTAT). Each 39 oligo also contained the
FLAG epitope tag and an XhoI site for detection and cloning
respectively. PCR products were cloned into vector pEhEX [44] at
BglII and XhoI sites. Vector pEhEx without an insert was used for the
empty vector controls.

Phagocytosis assays. Phagocytosis was assayed by microscopy as
previously described [11]. Extracellular erythrocytes were lysed by a
wash in distilled water prior to fixation in 3% paraformaldehyde.
Phagocytosis positive amebae were defined by microscopy as ameba
containing one or more ingested erythrocytes. Both the numbers of
positive amebae, as well as the numbers of intact, engulfed,
erythrocytes were counted. These results were expressed as a
phagocytic index, which was the percentage of amebic trophozoites
that had engulfed erythrocytes multiplied by the average number of
erythrocytes ingested per ameba [45]. Anti-PATMK blocking experi-
ments were performed using this same approach with the addition of
a 20 minute incubation on ice with the antibody, control antibody, or
antibody and the peptide-antigen. Excess antibody and peptide were
washed away in two rinses in M199s, prior to incubation with
erythrocytes.

Flow cytometry. Ameba cell surface changes were assessed by anti-
lectin staining (10 lg/ml anti-lectin, Rabbit IgG) of paraformaldehyde
fixed trophozoites for 1 hour at RT and analyzed by using a FACScan
cytometer and CellQuest 3.3 software (Becton Dickinson, Franklin
Lakes, N.J.).

ImageStream data acquisition. 23107 carboxylate-modified 2.0 lm
fluorescent yellow-green beads (Sigma, St. Louis, MO) and 2 3 106

washed E. histolytica trophozoites were mixed, centrifuged (200 3 g, 4
8C, 5 min) and incubated for 10 minutes in M199S at 37 8C. The
samples were washed 3 times in 110 mM D-galactose, 3 times in PBS
and then fixed with 3% paraformaldehyde. If indicated, amebae were
permeabilized with 0.2% Triton X 100 in PBS for 1 minute. In all
samples, paraformaldehyde was neutralized with 50 mM NH4Cl.
Nonspecific binding was blocked by incubation with 5% bovine
serum albumin (Sigma, St. Louis, MO) in PBS for 1 h at 37 8C. PATMK
was detected by incubation for 1 hour at 37 8C with 5 lg/ml protein A
purified anti-PATMK rabbit polyclonal antibody (anti-PATMK). Five
PBS washes were performed before R-PE-conjugated goat anti-rabbit
secondary antibodies (Jackson Laboratories, Bar Harbor, ME) were
added at a 1:200 dilution for 1 hour at 37 8C. Following the

Table 4. Expression of a PATMK Truncation Did Not Reduce Liver
Abscess Formation

Culture

Positivea
Average

Abscess Size

Average

% of Liver

Control 3/6 0.03 g 2.68%

PATMKD932 7/12 0.07 g 1.51%

aPATMKD932 and empty vector control ameba were introduced into gerbils through direct
hepatic inoculation. Animals were sacrificed 5–7 d later, and both the liver weight and the
weight of the abscesses were measured. None of the measures of abscess formation were
statistically significantly different between Control and PATMKD932 infected animals.
doi:10.1371/journal.ppat.0040008.t004
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incubation, samples were washed with PBS five times, resuspended in
200 ll PBS and plunged through a 26 3/8 -gauge needle 5 times. When
indicated the procedeure was carried out in the absence of ameba
(beads only) or in the absence of anti-PATMK antibody (seconday
only). Analysis was performed using the Amnis Imagestream imaging
cytometer (Amnis Corporation; Seattle, WA) and ImageStream Data
Exploration and Analysis Software (IDEAS). Prior to data analysis,
spectral compensation was performed using beads and stained cells.
At least 5000 images were collected and gating was performed to
generate a population of single, in-focus, bead positive cell images
(usually yielding ,500 images).

Animal models. CBA mice were challenged with 2 3 106

trophozoites by cecal inoculation, by previously described methods
[46]. Mice were sacrificed 72–96 hours following challenge and the
cecum removed for culture in TYI-S-33 medium and paraffin
embedding for histological scoring as previously described [47].

Gerbils were challenged with 53105 trophozoites by direct hepatic
inoculation by previously described methods [48]. Gerbils were
sacrificed 5–8 d following challenge and liver abscess weights were
determined and cultures started in TYI-S-33.
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