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Human Neutrophils Kill Bacillus anthracis
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Bacillus anthracis spores cause natural infections and are used as biological weapons. Inhalation infection with B.
anthracis, the etiological agent of anthrax, is almost always lethal, yet cutaneous infections usually remain localized
and resolve spontaneously. Neutrophils are typically recruited to cutaneous but seldom to other forms of anthrax
infections, raising the possibility that neutrophils kill B. anthracis. In this study we infected human neutrophils with
either spores or vegetative bacteria of a wild-type strain, or strains, expressing only one of the two major virulence
factors. The human neutrophils engulfed B. anthracis spores, which germinated intracellularly and were then efficiently
killed. Interestingly, neutrophil killing was independent of reactive oxygen species production. We fractionated a
human neutrophil granule extract by high-performance liquid chromatography and identified a-defensins as the
component responsible for B. anthracis killing. These data suggest that the timely recruitment of neutrophils can
control cutaneous infections and possibly other forms of B. anthracis infections, and that a-defensins play an important
role in the potent anti-B. anthracis activity of neutrophils.

Citation: Mayer-Scholl A, Hurwitz R, Brinkmann V, Schmid M, Jungblut P, et al. (2005) Human neutrophils kill Bacillus anthracis. PLoS Pathog 1(3): e23.

Introduction

The Gram-positive bacterium Bacillus anthracis infects
through intradermal inoculation, ingestion, or inhalation of
spores. Spores are dormant forms of B. anthracis and are
extremely resistant to environmental stress. In the current
model of respiratory infections, the spores are first taken up
by macrophages where they germinate and become vegetative
bacteria [1]. Macrophages then transport the bacteria to the
regional lymph nodes [2]. In these organs, the bacteria escape
from the macrophage and spread through the lymphatics and
blood stream causing massive septicemia. Vegetative B.
anthracis express two essential virulence factors: the tripartite
anthrax toxin and the poly-y-D glutamic acid capsule [3]. The
toxin-protective antigen binds to its specific receptor and
translocates the edema and lethal factors into the cytosol [4].
Edema factor is an adenylate cyclase that causes tissue edema
[5], whereas lethal factor is a metalloprotease that inactivates
mitogen-activated protein kinase-kinase and provokes cell
death [6].

Neutrophils are a vital component of the acute inflamma-
tory response and play a key role in the resolution of
microbial infections. They are terminally differentiated cells,
incapable of cell division, and synthesize very low levels of
RNA and protein. Neutrophils engulf microbes into a
phagosome that fuses with intracellular granules to form a
phagolysosome. In the phagolysosome the bacteria are killed
through the interaction of reactive oxygen species (ROS) [7]
and oxygen-independent mediators such as enzymes and
antimicrobial peptides [8]. Antimicrobial peptides are pre-
dominantly cationic and are thought to permeabilize the
bacterial membrane and lyse microbes [9].

Inhalation B. anthracis infections result in sepsis and death,
while cutaneous anthrax almost always remains localized.
Interestingly, in untreated cutaneous cases, neutrophils
surround the necrotic, bacteria-containing tissue [10], where-
as neutrophil infiltration is rarely seen in the lung during
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inhalation anthrax [11]. Although there are reports of
pulmonary infiltration in B. anthracis infections [12], they
were thought to be due to preexisting lesions [13,14]. Pigs and
dogs also develop a cutaneous form when infected subcuta-
neously. This form is reminiscent of human cutaneous
anthrax and is accompanied by massive neutrophil infiltra-
tions [13]. Also, neutrophil recruitment is found in the lungs
of pulmonary infected dogs and pigs that survive high
infection doses [14]. Therefore, we hypothesized that neu-
trophils can kill B. anthracis.

Results/Discussion

Human Neutrophils Kill B.anthracis Spores Independent of
Reactive Oxygen Species

We tested wild-type B. anthracis and strains expressing only
the toxin or the capsule. We incubated neutrophils with a
wild-type strain at a multiplicity of infection (MOI) of 5:1
(spores: neutrophils) and measured bacterial viability at
different times. Activated neutrophils killed 60% of spores
after 3 h, and at 4 h only 30% of the spores survived. Similar
results were obtained from infections with the toxin- or
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Synopsis

Bacillus anthracis is the bacterium that causes anthrax, a disease that
can occur through natural infections and also through intentional
release. B. anthracis makes spores, which are in a dormant state,
similar to seeds of a plant, and are extremely resistant to the
environment. B. anthracis spores can infect through the skin or the
lung. Lung infections disseminate through the body and are lethal.
In contrast, skin infections often remain localized, and patients
survive even without treatment. It is not well understood why these
bacteria cause a localized infection through the skin and a lethal
disease through the lung.

Little is known about how B. anthracis is controlled. Neutrophils are
the first white blood cells recruited to a site of infection and are
specialized in killing microbes. Previous studies show that neutro-
phils are abundant in the skin form, but not in the lung form of
anthrax. The researchers report that human neutrophils can take up
B. anthracis spores. Once inside, the spores germinate to form
vegetative bacteria. The vegetative bacteria are extremely suscep-
tible to neutrophil-killing mechanisms. The B. anthracis virulence
factors (molecules that make bacteria cause diseases) manipulate
other human cells but do not deter neutrophils. B. anthracis is
indeed exquisitely sensitive to the neutrophil protein a-defensin.
These data support a new model where B. anthracis skin, but not
lung, infections are controlled by the antimicrobial activity of
neutrophils.

capsule-producing strains (Figure 1A). Spores of wild-type
(Figure 1B), as well as the other two strains (unpublished
data), were phagocytosed by activated neutrophils. In the
absence of serum, around 50% of the spores were found
intracellularly 30 min post-infection as determined by
counting spores in electron microscopy samples. These data
are in agreement with Welkos et al. [15] who showed that
murine neutrophils can kill toxin-positive and capsule-
negative spores, albeit with lower efficiency, than we observed
with human neutrophils. To ensure that spores and not
vegetative bacteria were ingested, the Kkilling efficiency was
tested in serum-free media since some sera induce germina-
tion [16].

Neutrophils kill microbes through oxygen-dependent and
independent mechanisms. ROS are generated by the nicoti-
namide adenosine dinucleotide phosphate (NADPH) oxidase
and are important in some bacterial infections. To determine
the role of ROS in the killing of B. anthracis, we inactivated
neutrophil NADPH oxidase with diphenyleneiodonium (DPI)
[17] (Figure S1), and found that the antimicrobial activity was
not dependent on ROS (Figure 1C). We then tested whether
antimicrobial proteins were effective against B. anthracis by
incubating spores with a human neutrophil extract enriched
in granule proteins (hNGE). Even at very high hNGE
concentrations the spores remained viable throughout a 4-h
incubation (Figure 1D) and did not germinate during this
time (unpublished data). These findings prompted us to test
whether spores germinate in neutrophils and whether the
vegetative forms are then susceptible to neutrophil killing.

B. anthracis Spores Germinate within Human Neutrophils

Neutrophils were infected with spores, and the germina-
tion of B. anthracis in the cells was analyzed by transmission
electron microscopy (TEM). At 90 min post-infection, newly
germinated vegetative bacteria were observed for the first
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time (Figure 2A). In contrast, spore uptake was recorded after
30 min. By 180 min, neutrophils contained mostly germinated
bacteria (Figure 2B). The spores and vegetative bacteria were
found in membrane-bound vacuoles, most likely phagosomes.
Intriguingly, the germination process in both neutrophils and
macrophages [1] does not seem synchronized, as spores were
found throughout the infection period. Whether the spores
remain unresponsive to cell-specific germinants, remains to
be examined.

To confirm that germination occurred intracellularly, we
prevented neutrophil phagocytosis by incubating activated
neutrophils with cytochalasin D, an inhibitor of actin
polymerization. Inhibition of phagocytosis completely abro-
gated the sporicidal activity of the neutrophils (Figure 2C),
supporting the electron microscopy data that spores germi-
nate within the cells prior to killing. To further verify that
spores did not germinate extracellularly, we incubated spores
in the presence of cytochalasin D-treated neutrophils and
added an antibiotic to kill any newly developed vegetative
cells. There was no difference in the counts of spores
incubated with cytochalsin D-treated neutrophils in the
absence or presence of antibiotics (Figure 2D). These data
indicate that degranulating neutrophils do not induce
extracellular germination.

Human Neutrophils Efficiently Kill Vegetative B. anthracis

To determine whether vegetative B. anthracis are killed by
neutrophils, we infected activated cells with the wild-type
strain or with those expressing either the toxin or the capsule.
Both the fully virulent and the toxin-expressing strains were
phagocytosed despite the large size of the B. anthracis bacilli
(~5 microns) (Figure 3A and 3B). The capsule of the wild-
type strain can clearly be distinguished in the inset of Figure
3A. Three hours post-infection, activated neutrophils killed
70% of the wild-type strain, more than 90% of the toxin-
producing bacteria, and 80% of the capsule producers
(Figure 3C). These data show that the capsulated strains are
slightly more resistant to neutrophil killing at an MOI of 10:1.
In contrast, at an MOI of 1:1 and a 30-min infection period,
neither the toxin nor the capsule significantly affects the
killing capacity of the neutrophils (Figure 3D).

To determine if extracellular mechanisms are responsible
for B. anthracis killing, we again inhibited neutrophil
phagocytosis. In the presence of cytochalasin D, all three B.
anthracis strains were killed equally well (Figure 3D). This
implies that extracellular mechanisms play an important role
in the neutrophil-mediated killing. Interestingly, the propor-
tion of intracellular killing was comparable in all three
strains, indicating that neither the toxin nor the capsule has a
pronounced antiphagocytic effect. These data are in agree-
ment with O’Brien et al. [18] who showed that when the
neutrophil is exposed to the toxin and the bacteria at the
same time, the anthrax toxin does not inhibit phagocytosis.
Although the capsule is an absolute prerequisite for virulence
[19], the role of the capsule in the interaction of B. anthracis
with host cells is not well understood [20,21]. It has been
inferred, however, from studies with other capsulated micro-
organisms, that a capsule can affect phagocytosis. The data
presented here show that, at least in the conditions tested, the
B. anthracis capsule does not inhibit phagocytosis.

Interestingly, opsonization did not significantly affect the
rate of killing of either capsule- or toxin-expressing vegeta-
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Figure 1. Human Neutrophils Kill B. anthracis Spores Independently of Reactive Oxygen Species

(A) Human neutrophils kill B. anthracis spores. Activated neutrophils were infected with spores generated either from the wild-type or toxin- or capsule-
producing strains at an MOI (spore: neutrophil) of 5:1 (wild-type) or 1:1 (toxin- and capsule-producers). Colony forming units (CFUs) were counted at
indicated time points.

(B) TEM of activated neutrophils infected with wild-type spores (arrow) after 30 min incubation. Bar indicates 2 pum.

(C) ROS are not required for killing of B. anthracis spores. Activated neutrophils were infected with spores (capsule producer) in presence (O) or absence
(O) of NADPH oxidase inhibitor.

(D) hNGE does not kill B. anthracis spores. Spores from the toxin-producing strain were incubated in 50% hNGE or in buffer for the indicated time points.
The CFU was determined by serial dilution. Survival of 100% refers to the number of bacteria present in the buffer control. Error bars indicate the SD
from three experiments.

DOI: 10.1371/journal.ppat.0010023.g001

@ PLoS Pathogens | www.plospathogens.org 0181 November 2005 | Volume 1 | Issue 3 | €23



Neutrophils Kill B. anthracis

100 - e

80

40 4

Survivors (%)

20 1

0 1 2 3 4
Time (h)

120 -

100

80 A

60 4

Survivors (%)

40 1

20 1

0 1 2 3 4
Time (h)

Figure 2. B. anthracis Spores Germinate within Human Neutrophils

(A) TEM of neutrophil infected with spores of the toxin-producing strain for 90 min at an MOI of 1:1. At this time point both spores (arrow) and
germinated bacteria (arrowhead) were present (see inset for amplification).

(B) Neutrophil infected for 180 min. At this time point neutrophils contained mostly germinated bacteria (arrowheads). Bars in (A) indicate 5 um, in (B) 2
um, and in insets 500 nm.

(C) Phagocytosis of B. anthracis spores is essential for neutrophil killing. Phagocytosis of activated neutrophils was inhibited with cytochalasin D (grey
bars). Cells were infected with wild-type strain at an MOI of 5:1. Controls were PMA-activated cells not treated with cytochalasin D (black bars).

(D) B. anthracis spores do not germinate in the presence of neutrophils. PMA-activated neutrophils were pretreated with cytochalasin D in the presence
(black bars) or absence (grey bars) of penicillin G (25ug/ml). The cells were infected with wild-type strain spores at an MOI of 5:1 and incubated for the
given time points. The CFU was determined by serial dilution. Survival of 100% refers to the number of spores present in the controls lacking penicillin
G. Error bars indicate the SD from three experiments.

DOI: 10.1371/journal.ppat.0010023.g002

tive bacteria (Figure 4A) indicating that activated neutrophils neutrophil killing, both capsulated strains were less suscep-
might recognize B. anthracis directly. The independence of tible to hNGE in comparison to the toxin-expressing strain.
opsonization was seen in both phorbol 12-myristate 13- o . .

acetate (PMA) (Figure 4A) and IL-8-activated neutrophils Neutrophils Kill B. anthracis through o-Defensins

(unpublished data). Interestingly, previous reports [20,22] To identify the components of the hNGE responsible for B.
showed that opsonization of vegetative bacilli had an effect anthracs killing, hNGE was fractionated by C4 reverse phase
on the generation of ROS, but bacterial killing was not high-performance liquid chromatography (RP-HPLC). The
directly tested. peak fraction exhibiting antimicrobial activity in the first

Analogously to spore killing, vegetative B. anthracis are column (Figure 5A) was further purified in a C4 RP-HPLC
killed independent of ROS production (Figure 4B). These column with a different mobile phase (see Materials and
data imply that the described reduced ROS production in Methods) followed by a C18 RP-HPLC column. Tricine SDS-
neutrophils of anthrax patients [22] might not play a PAGE analysis of the antimicrobial fraction showed a peptide
significant role in vivo. Interestingly, these data are in migrating at three to four kDa (unpublished data). The active
contrast to the Gram-positive bacterium Staphylococcus aureus, component was identified by MALDI MS peptide mass
which is killed in a ROS-dependent manner [23]. Therefore, fingerprinting (PMF) and MS/MS data of five peptides as
we investigated whether B. anthracis is killed by granule human neutrophil a-defensin (Figure 5B). Only the 1-fold and
antimicrobials. Indeed, all three B. anthracis strains were the 2-fold charged molecule peaks were detected (Figure 5B,
surprisingly susceptible to low concentrations of hNGE inset) in the MS spectrum of the non-trypsinized peptide,
(Figure 4C). In comparison, 10% hNGE only killed 50% of a confirming purity of the sample. These results were verified
S. awreus culture (unpublished data). Corresponding to by LC-ESI-MS analysis (unpublished data).
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Figure 3. Human Neutrophils Efficiently Kill Vegetative B. anthracis Intra- and Extracellularly

(A) TEM of neutrophils infected with wild-type B. anthracis (arrow) at an MOI of 1:1. Bar = 1um. Inset indicates the inoculum. Bar = 100 nm.

(B) Scanning electron microscopy of neutrophils infected with vegetative form of the toxin-producing strain for 30 min. Phagocytosed bacteria shown
by arrow. Neutrophils efficiently engulf B. anthracis despite their size. Bar = 5um.

(C) Neutrophils kill B. anthracis efficiently. Activated neutrophils were infected with wild-type, capsule-, or toxin-expressing vegetative bacteria for
indicated time points at an MOI of 10:1.

(D) B. anthracis capsule and toxin are not antiphagocytic. Activated neutrophils were pretreated with the phagocytosis inhibiting cytochalsin D (10 pg/
ml), infected with wild-type, capsule-, or toxin-expressing vegetative bacteria at an MOI of 1:1, and incubated for 30 min.

DOI: 10.1371/journal.ppat.0010023.g003
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Figure 4. Human Neutrophils Efficiently Kill Vegetative B. anthracis
Independently of Oxygen Radicals

(A) Opsonization is not required for neutrophil anti-B. anthracis activity.
PMA-activated neutrophils were infected with capsule (gray bar)- and
toxin (black bar)-producing strains at an MOI of 1:1 in the presence or
absence of serum for 30 min.

(B) Neutrophils kill both capsule (gray bar)- and toxin (black bar)-
producing B. anthracis independently of NADPH oxidase activity.
Activated neutrophils were incubated with DPI (10 uM) before infection.
Bacterial counts were determined 30 min post-infection (MOI 1:1).

(C) hNGE kills B. anthracis at low concentrations. Wild-type, toxin-, and
capsule-producing strains were incubated with 5%, 7%, and 10% hNGE.
After 30 min, remaining CFUs were determined and referred to the
number of bacteria in controls of bacteria incubated in buffer. Error bars
show SD of three experiments.

DOI: 10.1371/journal.ppat.0010023.g004

a-defensins are a group of small antimicrobial peptides
found in human neutrophil granules [24]. The three major
human a-defensins differ by one amino acid, and all kill
bacteria [25] effectively, although some Gram-positive patho-
gens such as S. aureus are resistant [26]. To confirm that o-
defensins are responsible for neutrophil killing of B. anthracis,
we compared the antimicrobial activity of the purified
fraction to synthetic human o-defensin (Figure 5C). These
two samples had a comparable specific activity confirming
human a-defensins as an hNGE component responsible for
killing wild-type, toxin-producing, and capsule-producing
(unpublished data) B. anthracis strains.

The data presented here show that human neutrophils
engulf B. anthracis spores and induce them to germinate.
Neutrophils then efficiently kill the bacteria independent of
toxin or capsule expression. The timely recruitment of
neutrophils to the site of a cutaneous anthrax infection
could explain why these infections resolve spontaneously. In
inhalation anthrax, where there is little neutrophil infiltra-
tion [11], the infection progresses unchecked and leads to
sepsis and death. Here we also show that a-defensins play an
important role in the potent anti-B. anthracis activity of
neutrophils.
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Figure 5. Neutrophils Kill B. anthracis through a-Defensins

(A) Purification of the anti-B.anthracis activity in hNGE; hNGE was
resolved in a C4 RP- HPLC column (A) and the fractions were tested for
their killing activity of B. anthracis (bars). The main chromatographic peak
coincides with the B. anthracis killing activity (arrow).

(B) The active component was identified by MALDI MS PMF as human
neutrophil a-defensins. Combined MASCOT search of PMF and MS/MS
data (five MS/MS spectra) resulted in a Score value of 313. Peak heights
of molecules not belonging to the identified protein were below 3%.
Purity of sample was confirmed by the analysis of the uncleaved peptide
(inset). As the protein was analyzed in non-reducing conditions it is
present in its oxidized form reducing the Mr from 3,446 to 3,440.

(C) The purified fraction and synthetic o-defensin have comparable
specific activity. Vegetative toxin-producing bacteria were incubated for
varying time points with 8 pug/ml synthetic (@) or purified (O) peptide
and referred to the number of bacteria in buffer only. Error bars indicate
SD of three experiments.

DOI: 10.1371/journal.ppat.0010023.g005

Materials and Methods

Human neutrophil isolation. Heparinized venous blood was
obtained after informed consent of healthy volunteers. Neutrophils
(> 95% pure) were isolated using a dextran-sedimentation protocol
followed by centrifugation in a Ficoll-Paque gradient [27]. Eryth-
rocytes were lysed with ultra-pure water for 30 s and cells washed in
HBSS- and diluted in RPMI/10 mM HEPES with or without 10% FCS.

Bacterial strains. All experiments were performed using either the
wild-type (Vollum), the capsule-producing (Pasteur), or toxin-
producing (Sterne) B. anthracis strain and performed in a BSL-3
facility. The anthrax strains were a kind gift of W. Beyer, University of
Hohenheim. For toxin expression, bacteria were grown on BHI agar
plates with 0.8% sodium bicarbonate at 37 °C, 5% COs. A single
colony was subcultured overnight in the supplemented BHI. The
wild-type strain was additionally incubated in 5% COs atmosphere.
The capsule-producing strain was grown on BHI plates for 2 d at 37
°C and 20% COy and a single colony was subcultured overnight in
RPMI supplemented with 10% BHI, 10 mM HEPES, and 0.8% sodium
bicarbonate.
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Toxin and capsule production. Lethal and edema factors, as well
as protective antigen expressions, were monitored by Western Blot
analysis of TCA-precipitated bacterial culture supernatant using
antibodies from Abcam (Abcam, Cambridge, United Kingdom); y-
D-glutamic acid capsule expression was examined by India ink
stain.

Preparation of B. anthracis endospore suspensions. Strains were
grown in BHI overnight at 37 °C before plating on meat yeast agar
and incubated for 10 d at 37 °C and 5% COs. The spores were scraped
off, washed five times with PBS, and kept in PBS at 4 °C until use. The
wild-type strain spores were purified with Renografin as described by
Ivins et al. [28]. They were washed four times with water and kept in
water at 4 °C. Purity was confirmed by phase contrast microscopy and
heat treatment (60 °C, 45 min). X

Antimicrobial activity of neutrophils. 2 X 10°/ml neutrophils were
allowed to adhere to plastic plates for 15 min before activation with
25 nM PMA Sigma (Sigma, St. Louis, Missouri, United States) or 10 ng/
ml II-8 (BioCat, Heidelberg, Germany) for 30 min. Bacterial
suspensions (vegetative cells or spores) were centrifuged onto the
neutrophils (1,250 rpm, 10 min) and incubated for the indicated time
points at 37 °C. For opsinization experiments vegetative bacteria
were preincubated for 10 min with 5% non-inactivated human
serum. Killing experiments were performed in the presence of a final
concentration of 5% human serum. The cells were scraped off and
serial dilutions plated on BHI agar plates. Colonies were counted
after 12-h incubation at 37 °C, 5% COs. Bacterial killing was
measured as percentages of control values (bacteria incubated alone
in media without neutrophils). To measure antimicrobial activity in
the absence of ROS, neutrophils were preincubated with 10 pM of the
NADPH oxidase inhibitor DPI [17] for 30 min. Inhibition of the
respiratory burst was confirmed by enhanced chemiluminescence of
PMA (25 nM)-activated neutrophils [29]. The experiment was read in
a BD Pharmagen TM, Monolight 3096 microplate luminometer (BD
Biosciences Pharmingen, San Diego, California, United States).

Inhibition of phagocytosis. Neutrophils were isolated as described
above and allowed to adhere to plastic plates for 15 min. Cells were
activated with PMA (25 ng/ml) for 30 min, spun down at 1,250 rpm for
5 min. The supernatant was discarded and media containing 10 pg/ml
cytochalsin D (Sigma) was added for 15 min at 37 °C. Cells were
infected with spores or vegetative bacteria as described above. To
confirm that spores do not germinate in the presence of neutrophils,
25 pgiml PenicillinG (Sigma-Aldrich) was added to the cytochalsin D-
treated cells prior to infection.

Chromatography. hNGE was fractionated with a C4 RP-HPLC
column (Vydac Protein C4 Column, 3.9 X 250 mm, 5 pm). Proteins
were eluted with a gradient of increasing concentrations of
acetonitril containing 0.1% (v/v) trifluoroacetic acid (flow rate 1 ml/
min). Fractions were lyophilized, dissolved in 20 mM of sodium
acetate buffer and tested for antimicrobial activity. The antimicrobial
activity was further purified in a second C4 column, (mobile phase
100 mM of ammonium acetate [pH5]), followed by a C18 RP-HPLC
column (X-terra RP18, 3.9 X 150 mm, 3.5 wm) with an acetonitril and
0.1% (vlv) trifluoroacetic acid gradient (flow rate 1 ml/min).
Separation was performed in a Waters 626 LC System with a Water
996 Photodiode Array Detector (Waters, Milford, Massachusetts,
United States).

Bactericidal activity. hNGE was prepared as described in [30]. The
bactericidal activity of hNGE, HPLC fractions, or synthetic human o-
defensin 2 (American Peptide Company, Sunnyvale, California, United
States) was determined by incubation with bacteria (107 bacteria/ml) in
a casamino buffer (0.3% casamino acids, HBSS-, 10 mM HEPES
[pH7.4]) at 37 °C, with the indicated doses, shaking for 30 min.
Antimicrobial activity of each hNGE batch was tested with the toxin-
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expressing B. anthracis strain. Survivors were counted in serial
dilutions. Bacterial killing was measured as percentages of control
values (bacteria incubated in media alone).

Electron microscopy. For TEM, cells were fixed with 2.5%
glutaraldehyde, post-fixed with 1% osmium tetroxide, contrasted
with uranylacetate and tannic acid, and dehydrated and embedded in
Spurr’s (Ted Pella, Redding, California, United States). After
polymerization, specimens were cut at 60 nm and contrasted with
lead citrate. Specimens were analyzed in a Leo 906E TEM. For
scanning electron microscopy: Cells were fixed with 2.5% glutaralde-
hyde, post-fixed using repeated incubations with 1% osmium
tetroxide/1% tannic acid, dehydrated with a graded ethanol series,
critical-point dried, and coated with 2 nm platinum. After dehy-
dration and critical-point drying, the specimens were coated with 5
nm Platinum/Carbon and analyzed in a Leo 1550 scanning electron
microscopy.

Mass spectrometry. The identity and purity of the antimicrobial
component was analyzed by MALDI mass spectrometry (Proteomics
4700 workstation, Applied Biosystems, Foster City, California, United
States), PMF, MS/MS analysis, and mass analysis of the uncleaved
protein. The lyophilized sample was digested with 50 mM NH,HCOs,
5% acetonitrile, 2% (wlv) trypsin (Sequencing grade modified
Trypsin, Promega, Madison, Wisconsin, United States), and 0.15M
DTT for 4 h at 37 °C. The reaction was stopped with 0.2% TFA and
mixed with matrix alpha-Cyano-4-hydroxycinnamic acid (CHCA)
solubilized in 50% acetonitrile 0.3% TFA with a concentration of 5
mg/ml.

Analysis of PMFs was obtained with parameters: reflectron mode,
20 kV accelerating voltage, and a low mass gate of 800 Da. MS/MS
spectra were obtained without collision gas. Parameters for database
searches (MASCOT, http://lwww.matrixscience.com) were: 30 ppm
peptide mass tolerance for PMF and 0.3 Da for MS/MS spectra. The
uncleaved protein was analyzed in linear mode with CHCA as matrix
with an internal marker (Mr 2465.21).

Supporting Information
Figure S1. Inhibition of Respiratory Burst by DPI

PMA-(25 nM) activated neutrophils were incubated in the presence
(O) or absence (<) of DPI and chemiluminescence monitored in a BD
Pharmagen TM, Monolight 3096 microplate luminometer in the
presence of luminol.

Found at DOT: 10.1371/journal.ppat.0010023.5sg001 (782 KB TIF).
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