Skip to main content
Advertisement

< Back to Article

Figure 1.

Human TGF-β1 induced ERK phosphorylation in Anopheles cells in vitro and in vivo.

(A) Anopheles stephensi ASE cells were treated with PBS (0) or human TGF-β1 at concentrations from 6–6000 pg/mL. ERK phosphorylation (pERK) was examined by western blotting at 5 min after treatment. Total ERK levels provided an assessment of protein loading and were used to normalize corresponding pERK levels. The fold increases in ERK phosphorylation from densitometry analyses are indicated relative to the PBS control. (B) ASE cells were treated with 6000 pg/ml TGF-β1 for the times indicated; the 0 h timepoint indicates the pre-treatment baseline. The fold increases in ERK phosphorylation from densitometry analyses are indicated relative to 0 h baseline. (C) Anopheles gambiae 4a3B cells were treated with 60 pg/ml TGF-β1 or equivalent volumes of PBS for 5, 15, 30, 60 min. The fold increases in ERK phosphorylation from densitometry analyses are indicated relative to the matched PBS control within each timepoint. (D) Female A. stephensi were allowed to feed on an artificial blood meal supplemented with 2–2000 pg/ml TGF-β1 or with an equivalent volume of PBS as a control (BM). Midguts (n = 100) were collected and processed for protein analysis at 20 min after completion of feeding. ERK phosphorylation levels from densitometry were normalized to total ERK levels and fold inductions relative to the NBM (no blood meal) control are indicated. Figures A–D are representative of immunoblots from 2–3 independent experiments.

More »

Figure 1 Expand

Figure 2.

PD98059 inhibition of ERK phosphorylation increased TGF-β1-induced NOS expression in Anopheles cells.

(A) The MEK1/2 inhibitor PD98059 dose-dependently inhibited TGF-β1-dependent ERK phosphorylation in 4a3B cells. Cells were pre-treated with PD98059 for 40 min then treated with 60 pg/ml human TGF-β1 for 15 min. Cell lysates were analyzed by western blotting using anti-phospho-ERK or anti-ERK antibody. (B) PD98059 inhibited TGF-β1-dependent ERK phosphorylation in ASE cells. Cells were pre-treated with PD98059 at 4 or 10 µM for 40 min then treated with 6000 pg/ml TGF-β1 for 5 min. Cell lysates were subjected to western blot analysis as in (A). (C) Inhibition of ERK phosphorylation in 4a3B cells is persistent. 4a3B cells were pre-treated with 4 µM PD98059 or with an equivalent volume of dimethyl sulfoxide (DMSO; PD98059 diluent) then treated with 60 pg/ml TGF-β1 for 5 min to 6 h. Cell lysates were subjected to western blotting analysis as in (A). Immunoblots in A–C are representative of 2–3 independent experiments. (D) PD98059 reversed the inhibitory effect of ERK activation on TGF-β1 induced NOS expression. 4a3B cells were pre-treated with 4 µM PD98059 or an equivalent volume of DMSO, then treated with 60 pg/ml TGF-β1. An additional control group was treated with PBS (TGF-β1 diluent) at a volume equivalent to the TGF-β1 treatment. The data are represented as means±standard errors from three independent experiments. The data were analyzed using ANOVA for overall significance and by Student-Neuman-Keuls for multiple pairwise comparisons. Legend: * = p<0.05 (TGF-β1+PD98059 versus all other groups).

More »

Figure 2 Expand

Figure 3.

U0126 inhibition of ERK phosphorylation increased TGF-β1-induced NOS expression in Anopheles cells.

(A) U0126 inhibited basal ERK phosphorylation and TGF-β1-induced ERK phosphorylation. ASE cells were pre-treated with 10 µM U0126 for 40 min then treated with 6 or 6000 pg/ml TGF-β1 or an equivalent volume of PBS. ERK phosphorylation (pERK) was examined by western blotting at 5 min after treatment; total ERK levels provided an assessment of protein loading. The immunoblot is representative of 3 independent experiments. (B) U0126 enhanced hTGF-β1-induced AsNOS expression. ASE cells were pre-treated with 10 µM U0126 then treated with 6 pg/ml TGF-β1 for 6, 24 and 48 h. DMSO and U0126 alone had no impact on AsNOS expression compared to the PBS control (not shown). AsNOS expression was analyzed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay. The data are represented as means±standard errors from three independent experiments for fold inductions compared with the PBS control. The data were analyzed by ANOVA for overall significance and Student's t-test was used for the pairwise comparison at 48 h.

More »

Figure 3 Expand

Figure 4.

PD98059 inhibited TGF-β1-induced ERK phosphorylation and enhanced TGF-β1-induced NOS expression in the A. stephensi midgut.

(A) PD98059 inhibited ERK activation in mosquito midgut. Anopheles stephensi mosquitoes were fed on artificial bloodmeals supplemented with 2000 pg/ml TGF-β1 with or without 4 or 40 µM PD98059. At 20 min after completion of feeding, 100 midguts from each treatment group were dissected and prepared for immunoblot analysis. Protein lysate concentrations were measured by BCA assay; equal amounts of protein were loaded in each lane. The immunoblot is representative of 3 independent experiments. (B) Inhibition of ERK phosphorylation enhanced TGF-β1-induced NOS expression in vivo. Anopheles stephensi were fed on artificial bloodmeals supplemented with 40 µM PD98059 (PD), 2000 pg/ml TGF-β1, or 40 µM PD98059 and 2000 pg/ml TGF-β1 (TGF-β1+PD). A control group (BM) was provided an identical unsupplemented artificial bloodmeal. Previous studies confirmed that provision of small volumes of PBS and DMSO has no effect on AsNOS expression in vivo (not shown), so these treatments were not included here. AsNOS expression levels were analyzed from midguts (n = 15) collected at 24 h or 48 h after blood feeding from each treatment group. The data are represented as means±standard errors from 5 independent experiments for fold inductions compared with the PBS control. The data were analyzed by ANOVA for overall significance and Student's t-test was used for the pairwise comparison at 24 h.

More »

Figure 4 Expand

Figure 5.

Effect of treatments on growth of asexual stage Plasmodium falciparum.

Replicated cultures of P. falciparum NF54 were divided into treatment and control groups with 4 replicates per group and incubated for 50 h with the indicated treatments. The volume of PBS was equivalent to that used for TGF-β1 treatments. Parasite growth was analyzed as described in the Materials and Methods. Relative growth is compared to the PBS control which is indicated as 100%. The data are represented as means and were analyzed using ANOVA for overall significance and by Student-Neuman-Keuls for multiple pairwise comparisons. Different lower case letters indicate differences (p<0.05) among treatment groups.

More »

Figure 5 Expand

Table 1.

Treatment effects and trends for mean P. falciparum oocysts per midgut by experiment.

More »

Table 1 Expand

Table 2.

Prevalences of mosquitoes without P. falciparum oocysts by experiment after feeding on infected blood supplemented with TGF-β1 or with TGF-β1 and PD98059.

More »

Table 2 Expand

Figure 6.

A model of MEK-ERK signaling in TGF-β1-dependent control of P. falciparum development.

Human TGF-β1 ingested during the blood meal activates MEK-ERK signaling in mosquito cells. Activation of ERK inhibits NOS gene expression which reduces nitric oxide synthase levels and the synthesis of reactive oxygen and nitrogen species. MEK-ERK signaling may inhibit the expression of other anti-parasite genes as well that function together with NOS to limit parasite development. Inhibition of the expression of NOS and other anti-parasite gene products would favor P. falciparum development in the mosquito midgut. In contrast, inhibition of MEK-ERK signaling by the MEK inhibitors PD98059 or U0126 increases anti-parasite activity, including TGF-β1-dependent NOS gene expression. Increased NOS expression results in higher nitric oxide synthase enzyme levels and the generation of inflammatory levels of reactive oxygen and nitrogen species [7] that are toxic to the parasite.

More »

Figure 6 Expand