TY - JOUR
T1 - Fundamental Statistical Concepts in Clinical Trials and Diagnostic Testing
JF - Journal of Nuclear Medicine
JO - J Nucl Med
SP - 757
LP - 764
DO - 10.2967/jnumed.120.245654
VL - 62
IS - 6
AU - Pugh, Stephanie L.
AU - Torres-Saavedra, Pedro A.
Y1 - 2021/06/01
UR - http://jnm.snmjournals.org/content/62/6/757.abstract
N2 - This article explores basic statistical concepts of clinical trial design and diagnostic testing, or how one starts with a question, formulates it into a hypothesis on which a clinical trial is then built, and integrates it with statistics and probability, such as determining the probability of rejecting the null hypothesis when it is actually true (type I error) and the probability of failing to reject the null hypothesis when it is false (type II error). There are a variety of tests for different types of data, and the appropriate test must be chosen for which the sample data meet the assumptions. Correcting type I error in the presence of multiple testing is needed to control the error’s inflation. Within diagnostic testing, identifying false-positive and false-negative results is critical to understanding the performance of a test. These are used to determine the sensitivity and specificity of a test along with the test’s negative predictive value and positive predictive value. These quantities, specifically sensitivity and specificity, are used to determine the accuracy of a diagnostic test using receiver-operating-characteristic curves. These concepts are briefly introduced to provide a basic understanding of clinical trial design and analysis, with references to allow the reader to explore various concepts at a more detailed level if desired.
ER -