Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Variables associated with sleep quality in chronic tension-type headache: A cross-sectional and longitudinal design

  • Elena Benito-González ,

    Contributed equally to this work with: Elena Benito-González, Maria Palacios-Ceña

    Roles Conceptualization, Data curation, Investigation, Methodology, Writing – original draft, Writing – review & editing

    ‡ JJFM MC KW AC LAN CFP also contributed equally to this work. EBG and MPC are primary authors on this work.

    Affiliation Department Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, University Rey Juan Carlos, Alcorcón, Spain

  • Maria Palacios-Ceña ,

    Contributed equally to this work with: Elena Benito-González, Maria Palacios-Ceña

    Roles Conceptualization, Data curation, Investigation, Methodology, Writing – review & editing

    ‡ JJFM MC KW AC LAN CFP also contributed equally to this work. EBG and MPC are primary authors on this work.

    Affiliations Department Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, University Rey Juan Carlos, Alcorcón, Spain, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark

  • Juan J. Fernández-Muñoz ,

    Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing

    ‡ JJFM MC KW AC LAN CFP also contributed equally to this work. EBG and MPC are primary authors on this work.

    Affiliation Department of Psychology, Universidad Rey Juan Carlos, Alcorcón, Spain

  • Matteo Castaldo ,

    Roles Data curation, Investigation, Methodology, Writing – review & editing

    ‡ JJFM MC KW AC LAN CFP also contributed equally to this work. EBG and MPC are primary authors on this work.

    Affiliations Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark, Master in Sport Physiotherapy, University of Siena, Siena, Italy, Poliambulatorio Fisiocenter, Collecchio, Parma, Italy

  • Kelun Wang ,

    Roles Data curation, Investigation, Methodology, Writing – review & editing

    ‡ JJFM MC KW AC LAN CFP also contributed equally to this work. EBG and MPC are primary authors on this work.

    Affiliation Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark

  • Antonella Catena ,

    Roles Data curation, Investigation, Methodology, Writing – review & editing

    ‡ JJFM MC KW AC LAN CFP also contributed equally to this work. EBG and MPC are primary authors on this work.

    Affiliation Poliambulatorio Fisiocenter, Collecchio, Parma, Italy

  • Lars Arendt-Nielsen ,

    Roles Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing

    ‡ JJFM MC KW AC LAN CFP also contributed equally to this work. EBG and MPC are primary authors on this work.

    Affiliation Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark

  • César Fernández-de-las-Peñas

    Roles Conceptualization, Formal analysis, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing

    cesar.fernandez@urjc.es

    ‡ JJFM MC KW AC LAN CFP also contributed equally to this work. EBG and MPC are primary authors on this work.

    Affiliations Department Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, University Rey Juan Carlos, Alcorcón, Spain, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark

Abstract

Objective

To investigate variables associated at baseline (cross-sectional design) and at one year (longitudinal design) with the quality of sleep in chronic tension-type headache (CTTH).

Methods

One hundred and eighty (n = 180) and 135 individuals with CTTH participated in the cross-sectional and longitudinal design respectively. Clinical features were collected with a 4-weeks headache diary at baseline and one-year follow-up. Sleep quality was assessed at baseline and 1-year follow-up with the Pittsburgh Sleep Quality Index. Anxiety and depression (Hospital Anxiety and Depression Scale-HADS), burden of headache (Headache Disability Inventory-HDI), quality of life (SF-36 questionnaire), and pressure pain thresholds (PPTs) at trigeminal, extra-trigeminal and widespread area were assessed at baseline. Hierarchical regression analyses were conducted to determine the associations between variables at baseline and 1-year follow-up with sleep quality.

Results

At baseline positive correlations between sleep quality and headache intensity, headache frequency, headache duration, emotional and physical burden of headache and depression were observed. The regression analyses found that depression and emotional burden of headache explained 27.5% of the variance in sleep quality at baseline (r2 = .262; F = 23.72 P < .001). At one-year, sleep quality was significantly associated with baseline burden of headache, depression, widespread PPTs, vitality and mental health domains. Regression analyses revealed that vitality, PPT over the second metacarpal and PPT over the neck explained 30.0% of the variance of sleep quality at one-year (r2 = .269, F = 9.71, P < .001).

Conclusions

It seems that sleep quality exhibits a complex interaction in individuals with CTTH since depression and the emotional burden were associated with sleep quality at baseline, but vitality and PPTs over extra-trigeminal areas were associated with the quality of sleep at one-year.

Introduction

Tension-type headache (TTH) is a frequent pain disorder with a global prevalence of 42% in the general population [1] and showing an important socio-economic impact [2]. In the Global Burden of Disease Study, TTH was found to be the second most prevalent disorder in the world [3]. The general costs for TTH and migraine in Europe in 2010 were €13.8 billion [4] and were mostly associated to the chronic forms.

The most accepted model for TTH pathology proposes abnormality in nociceptive pain processing by including peripheral and central sensitization mechanism [5]. In fact, it is suggested that the pain in the episodic form has a peripheral component whereas central nervous system factors play a more relevant role in the chronic form of tension type headache (CTTH) [5]. The presence of central sensitization is generally attributed to long-lasting prolonged bombardment of nociceptive afferences or stimulus arriving to the central nervous system and to the trigemino-cervical nucleus caudalis. This process is particularly important in CCTH patients, since a higher frequency of headache attacks is able of triggering hyperalgesic responses in the central nervous system and promoting pain [5]. Additionally, it is important to consider that not only headache attacks, but also several physical, physiological or emotional factors may also influence the excitability of the central nervous system observed in subjects with CTTH and could contribute to the development and/or maintenance of the symptoms. Among these potential factors, depression, anxiety, or sleep disorders play a relevant role in the process of sensitization of central nervous pathways since they are able of triggering hyperalgesic responses by increasing pressure pain hypersensitivity [6]. In fact, current research suggests that one of the main manifestations of sensitization mechanisms in patients with CTTH is the presence of widespread pressure pain hyperalgesia, which is not particularly present in those with the episodic form [5].

It seems that stress and sleep disturbances are the most common trigger factors for headache attacks in individuals with headache [7] and, when combined, they exhibit an additive effect [8]. In addition, individuals with headache often exhibit co-morbid anxiety and depression [9] and sleep disturbances [10] and that these disorders are more present in those with chronic headaches [11,12]. In fact, the presence of depression and anxiety has been related to worse quality of life in subjects with chronic headaches [13]. Additionally, anxiety and depression are well known factors also associated with sleep disturbances [14] and it has been recently suggested that combined load of emotional stress and sleep-related symptoms can be an etiological factor for headache [15].

Since all these factors could interact by increasing stimulating the central nervous system in patients with CTTH and; hence, contributing to the maintenance of central sensitization; a better understanding of the potential associations between depression, anxiety, headache, related-disability, and sleep quality in subjects with CTTH can assist clinicians in determining better therapeutic programs. Since central sensitization, mood disorders, including anxiety and depression, and sleep disturbances are more associated to the frequency of headache attacks [11,12], we focused the current study just in the chronic form of the disease. No study has previously investigated variables explaining sleep quality in individuals with CTTH in a longitudinal design. Therefore, the purposes of the current study were to investigate potential variables associated at baseline (cross-sectional design) and at one year (longitudinal design) with sleep quality in a cohort of patients with CTTH.

Material and methods

Study design

The current analysis is included as part of a multicenter international headache study. Some patients from the current study were also included in a previous part of the study which data have been already published [16, 17]. This study presents new data by including more patients, different outcomes and statistical analysis, and a longitudinal design.

Participants

Consecutive subjects with TTH were recruited from different university-based hospitals between January 2015 and June 2016. Diagnosis was conducted according to the International Classification of Headache Disorders, third edition (ICHD3 beta, 2013) down to third-digit level (codes 2.2, 2.3) by neurologist’s expert in headaches [18]. To be included, participants had to describe typical pain features of TTH: bilateral location, pressing or tightening pain, moderate intensity (≤6.5 on a 10 points numerical pain rate scale, NPRS) and no aggravation of pain during physical activity. Further, participants should report neither more than one symptom, including photophobia, phonophobia or mild nausea as requested by the ICHD-III criteria [18].

Participants were excluded if presented: 1, episodic headaches; 2, other primary or secondary headache including medication overuse headache [18]; 3, history of head or neck trauma (i.e., whiplash); 4, cervical herniated disk or cervical osteoarthritis; 5, any systemic degenerative disease, e.g., rheumatoid arthritis, lupus erythematous; 6, diagnosis of fibromyalgia; 7, had received anesthetic blocks the previous 6 months; 8, physical treatment in the neck/head received the previous 6 months; or, 9, pregnancy.

All participants read and signed a consent form prior to their participation. The local Ethics Research Committee of each country approved the study (Universidad Rey Juan Carlos URJC23/2014, Hospital Universitario Fundación Alcorcon HUFA14/104, Aalborg University N20140063, Universita Degli Studi Di Urbino Carlo CESU5/2015).

Sleep quality

The main outcome, sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI), one of the questionnaires most commonly used [19]. This questionnaire evaluates the quality of sleep over a 1-month period by including 19 self-rated questions and other 5 questions answered by bed/room mates. Item use varying response categories recording usual bed time, usual wake time, number of actual hours slept and number of minutes to fall asleep. All questions are answered on a Likert-type scale (0–3). The sum of all answers is transformed into a global score (0–21) where higher score indicates worse sleep quality [20]. A total score greater than 8.0 points is indicative of poor sleep quality [19]. The PSQI has shown good internal consistency and test-retest reliability [21]. In the current study, sleep quality was assessed at baseline and at 1-year follow-up.

Headache outcomes

Key elements of the clinical history, including headache-family history, headache features, temporal pattern, and medication were assessed. A headache diary for 4 weeks was used to substantiate the diagnosis and to record the headache clinical features [22,23]. On this diary, patients registered the number of days with headache (days per week), the intensity of the headache attack on an 11-points numerical pain rate scale [24] (NPRS; 0: no pain, 10: maximum pain), and the duration of each headache attack (hours per day). The headache diary was assessed at baseline and at 1-year follow-up.

Headache burden

The Headache Disability Inventory (HDI) assesses the burden of headache using 25 items that inquire about the perceived impact of headache on emotional functioning and daily life activities [25]. Possible answers for each item are yes (4 points), sometimes (2 point) or no (0 points). Thirteen items asses the emotional burden (HDI-E, maximum score: 52 points) and 12 items assess the physical burden (HDI-P, maximum score: 48 points) of headache. A greater score suggests greater burden of headache. The HDI has exhibited good stability at short and long-term [26]. The HDI was assessed only at baseline.

Anxiety and depression

The Hospital Anxiety and Depression Scale (HADS) is a 14 items self-reported scale, 7 items for anxiety (HADS-A) and 7 items for depression (HADS-D), suggesting the presence of anxiety and depressive symptoms [27]. Each item scores on a Likert scale (0–3) giving a maximum of 21 points for each subscale [28]. The HADS has shown to have good validity and reliability in the general population [29] and in patients with headache [30]. The HADS was also assessed only at baseline.

Health-related quality of life

Health-related quality of life was assessed at baseline with the Medical Outcomes Study Short Form 36 (SF-36) questionnaire. This questionnaire includes the following 8 domains (physical functioning, physical role, bodily pain, general health, vitality, social function, role-emotional, and mental health) where 0 represents the lowest quality of life and 100 the highest quality of life [31]. After summing the Likert-scaled items of each domain, it is scored from 0 (lowest health-related quality of life) to 100 (highest health-related quality of life) [32]. The Sf-36 was assessed only at baseline.

Pressure pain thresholds

Pressure pain thresholds (PPTs), i.e., the pressure where a sensation of pressure changes to pain, were bilaterally assessed with a electronic pressure algometer (Somedic AB®, Farsta) over a trigeminal point (temporalis muscle), an extra-trigeminal point (C5 / C6 zygapophyseal joint) and 2 distant pain-free points (second metacarpal and tibialis anterior) to determine widespread pressure pain sensitivity [33]. PPTs were calculated only at baseline.

Sample size calculation

The sample size was calculated using Ene 3.0® software (Autonomic University of Barcelona, Spain). The sample size calculation was based on detecting significant moderate correlations (r = 0.3) between the studied variables with an alpha level (α) of 0.05, and a desired power (β) of 95%. This generated a sample size of at least 130 participants.

Statistical analysis

Means with their confidence intervals were calculated to describe the sample. The Kolmogorov-Smirnov test showed that all data get a normal distribution. Several Pearson product-moment correlation coefficients were first calculated to determine the relationship between the quality of sleep (dependent) and the remaining (independent) variables included in the study at baseline and at 1-year follow-up. This correlational statistical analysis was used to check for multicollinearity and shared variance between the outcomes.

Second, in those variables showing significant correlation with sleep quality, two separately hierarchical regression analyses were done to determine those variables that significantly contributed to the variance in the quality of sleep at baseline and at 1-year follow-up, separately. To examine the proportions of explained variance of sleep quality, 2 hierarchical regression analyses were conducted. Changes in R2 were reported after each step of the regression model to determine the association of each additional variable. Last, variables that significantly contributed to the quality of sleep at baseline or 1-year follow-up were selected for the inclusion into parsimonious final regression model. The significance criterion of the critical F value for entry into the regression equation was set at P<0.05.

Results

A total of 200 individuals with headache were screened for possible eligibility criteria. Finally, 180 individuals with CTTH satisfied all eligibility criteria, agreed to participate and signed the informed consent at baseline. Twenty patients were excluded for the following reasons: co-morbid migraine (n = 13), episodic tension-type headache (n = 2) previous whiplash (n = 2), fibromyalgia (n = 2) and medication overuse headache (n = 1). One hundred and thirty-five (n = 135, 75%) of the included at baseline were also assessed at 12-months follow-up and therefore included within the main analysis (73% women, age: 45±14 years). Table 1 summarizes demographic data of the sample at the beginning of the study.

thumbnail
Table 1. Demographic and clinical data of the sample at baseline.

https://doi.org/10.1371/journal.pone.0197381.t001

Baseline data: Cross-Sectional design

Table 2 shows Pearson’s correlation coefficients of those variables significantly associated with sleep quality at baseline. Significant positive correlations between sleep quality (PSQI score) and headache intensity (r = .194; P = .02), headache frequency (r = .241; P < .001), headache duration (r = .165; P = .04), HDI-E (r = .374; P < .001), HDI-P (r = .259; P = .002) and HADS-D (r = .502; P < .001) were observed: the higher the headache intensity, the greater the headache frequency, the longer the headache duration, the higher the emotional and/or physical burden of the headache and the higher the depression level, the worse the sleep quality (Table 2).

thumbnail
Table 2. Pearson-Product moment correlation matrix for clinical and psychological variables statistically associated at baseline (n = 180).

https://doi.org/10.1371/journal.pone.0197381.t002

Table 3 summarizes the hierarchical regression analysis conducted at baseline. In the analysis, depressive symptoms approximately contributed 24.5% (P < .001) whereas the emotional burden of the headache (HDI-E) contributed an additional 3% (P < .001) of the variance of sleep quality (PSQI). When combined, both variables explained 27.5% of the variance in sleep quality at baseline (r2 adjusted: .262, F = 23.72, P < .001)

thumbnail
Table 3. Summary of stepwise regression analyses to determine predictors of sleep quality at baseline (r2 = 27.5%).

https://doi.org/10.1371/journal.pone.0197381.t003

One-year follow-up data: Longitudinal design

Table 4 summarizes Pearson’s correlation coefficients of the variables significantly associated with sleep quality (PSQI score) at 1-year follow-up. Significant positive correlations were observed between the quality of sleep at one-year and HDI-E (r = .282; P = .03), HDI-P (r = .226; P = .04), and HADS-D (r = .367; P < .001) at baseline: the higher the emotional and physical burden of the headache and the higher the depressive symptoms at baseline, the worse the sleep quality 1 year after (Table 4). Additionally, sleep quality at one-year was negatively associated with PPTs at all points at baseline (temporalis: r = -.285, P = .025; C5/C6: r = -.242, P < .001; second metacarpal: r = -.379, P < .001; tibialis anterior: r = -.293, P = .04), vitality (r = -.386; P < .001) and mental health (r = -.365; P < .001): the lower the widespread pressure hypersensitivity, the lower vitality and the lower mental health status at baseline, the worse the sleep quality one-year after (Table 4).

thumbnail
Table 4. Pearson-Product moment correlation matrix for functional and psychological variables at baseline statistically associated with sleep quality at one year (n = 135).

https://doi.org/10.1371/journal.pone.0197381.t004

Table 5 summarizes the hierarchical regression analysis conducted at one-year follow-up. In this analysis, baseline vitality approximately contributed 16.1%, PPT over the second metacarpal contributed an additional 8.6%, and PPT over the cervical spine contributed to the additional 5.3% (all, P < .001) of the variance on sleep quality (PSQI score) one-year after. When combined, these baseline outcomes explained 30.0% of the variance of sleep quality at one year (r2 adjusted: .269, F = 9.71, P < .001).

thumbnail
Table 5. Summary of stepwise regression analyses to determine predictors of sleep quality at 12 Months (r2 = 30.0%).

https://doi.org/10.1371/journal.pone.0197381.t005

Discussion

The present study suggests that sleep quality exhibits a complex interaction in subjects with CTTH since we found that depressive symptoms and emotional burden of headache were significantly associated with sleep quality at baseline, but vitality and PPT over extra-trigeminal areas were longitudinally associated with the quality of sleep at one year.

A recent systematic review found moderate evidence indicating that depression, anxiety, poor sleep, medication overuse, stress and poor self-efficacy for managing pain were potential prognostic factor associated to poor prognosis and unfavorable outcomes from preventive drug treatment in chronic headaches [34]. The literature has described that headache frequency, anxiety, and depression are associated to sleep disturbances [14,35]. In our study, the frequency, the duration and the intensity of the headache attacks showed significant associations with sleep quality at baseline supporting the assumption that all headache features may be relevant for sleep quality; however, the regression analysis did not confirm such association. On the contrary, our results confirmed an association between the quality of sleep and depression in our sample of patients with CTTH, which agree with previous data in subjects with chronic pain [36] or with headaches [12]. Although a cross-sectional design does not allow determining the mechanisms involved in the relationship between depression and sleep quality, it has been suggested that headaches, sleep disturbances and depression share common brain mechanisms, i.e., hypothalamus, serotonin or melatonin neural circuits dysregulation [37]. Nevertheless, depression was not longitudinally associated with sleep quality at one-year follow-up, suggesting that this association can change depending on the moment and the specific situation of a patient. It is also possible that this discrepancy maybe related to the fact that the instrument used, the HADS, is a screening questionnaire rather than a proper diagnostic instrument for depression, with a tendency to underestimate its prevalence [38]. In fact, the presence of depressive symptom in our sample of patients with CTTH can be considered low (mean score: 8.4 points); although this mean score is similar to that one previously found in migraine [39]. It is possible that higher depressive levels would be also longitudinally associated with the quality of sleep.

The current study also supports the role of other emotional factors in sleep quality since the emotional burden of headache was also associated, but in a lower extent than depression, with sleep quality at baseline, whereas lower vitality was associated with the quality of sleep at one-year. These results suggest that other emotional aspects of the patient, and not only depression, are associated with sleep quality in CTTH. This may be related to other manifestations, such as tiredness or lack of energy, associated with poor sleep quality [40]. It seems that poor sleep quality, depression, emotional aspects, and headaches display complex relationships, and all likely influence each other in a vicious cycle.

It has been previously reported that poor sleep quality and depressive symptoms are associated with reduced pain thresholds [41]. This association is based on the fact that depression contributes to chronic pain via supraspinal pain mechanisms and emotional modulation of pain [42]. In fact, mood disorders such as depression and sleep disorders particularly sleep deprivation; can trigger hyperalgesic responses in the central nervous system [43]. The current study found that lower PPTs, i.e., higher sensitivity to pressure pain, at extra-trigeminal areas at baseline were associated with sleep quality at one year, supporting this hypothesis. Some authors have also reported that sleep disturbances and depression are independently associated with pressure pain sensitivity, supporting an independent role of each factor [44]. Our results would also agree with this proposal since depression was associated at baseline, whereas PPTs were associated longitudinally one year after, with the quality of sleep. It is possible that both variables act at different moments, or via different neural circuits, on sleep quality in individuals with CTTH.

Uncertainty over biological mechanisms withstanding in these interactions, our results have some clinical implications. Due to poor sleep quality is a common trigger of TTH, proper management of its associated factors seems to be relevant. Our study found that different associated factors are related to sleep quality at a particular time or longitudinally. In fact, all identified factors, i.e., depression, emotional aspects, and pain hypersensitivity, are modifiable with proper treatment. Therefore, the first step would be identification of these psychological, emotional, and psycho-physiological aspects in a patient with CCTH. Second, and based on current findings, therapeutic management of a patient with CTTH should include multi-modal approaches targeting depression (i.e., psychological approaches), the emotional burden of the headache (i.e., cognitive behavioral techniques) and pain sensitivity to pressure (i.e., pharmacological drugs and physical interventions targeting the excitability of the central nervous system).

Although strengths of the current study include a large sample size, a longitudinal design, the inclusion of CTTH patients accordingly the most updated diagnostic criteria, and the use of standardized instruments; we should recognize some limitations. First, we included only individuals with CTTH referred to a tertiary headache center and thus not representative of the general population; thereby, extrapolation of our results to the general population with headaches should be considered with caution. In fact, all of our patients were chronic, so these results should not be either extrapolated to patients with episodic TTH. Second, we have a drop out rate of 25% of the sample at the longitudinal follow-up period at 12 months, most of them because was not possible to contact (60%) or because they did not want to attend the appointment for personal reasons (40%). Finally, we used a specific questionnaire, e.g., the PSQI, for assessing sleep quality, but we should recognize that this questionnaire did not evaluate other sleep problems such as insomnia or obstructive sleep apnea. It is possible that these sleep disorders could have also an influence on the outcomes observed in the current study. Future studies should include specific outcomes for assessing these sleep problems, i.e., STOP-BANG sleep apnea questionnaire [45] or the Insomnia Severity Scale [46].

Conclusions

This study found that different variables were associated with sleep quality at two different moments in individuals with CTTH in a complex interaction. Depression and the emotional burden of headache explained 27.5% of the variance in sleep quality at baseline, whereas vitality and PPTs over extra-trigeminal areas at baseline explained 30.0% of the variance of sleep quality at one year.

References

  1. 1. Ferrante T, Manzoni GC, Russo M, Camarda C, Taga A, Veronesi L et al. Prevalence of tension-type headache in adult general population: the PACE study and review of the literature. Neurol Sci 2013; 34: S137–8. pmid:23695063
  2. 2. Steiner TJ, Birbeck GL, Jensen RH, Katsarava Z, Stovner LJ, Martelletti P. Headache disorders are third cause of disability worldwide.J Headache Pain 2015; 16: 544
  3. 3. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1545–602 pmid:27733282
  4. 4. Raggi A, Leonardi M. Burden and cost of neurological diseases: a European North-South comparison Acta Neurol Scand 2015; 132: 16–22. pmid:25345990
  5. 5. de Tommaso M, Fernández-de-las-Peñas C. Tension type headache. Curr Rheumatol Rev 2016; 12: 1–13.
  6. 6. de Tommaso M, Delussi M, Vecchio E, Sciruicchio V, Invitto S, Livrea P. Sleep features and central sensitization symptoms in primary headache patients. J Headache Pain 2014; 15: 64. pmid:25260261
  7. 7. Wang J, Huang Q, Li N, Tan G, Chen L, Zhou J. Triggers of migraine and tension-type headache in China: a clinic-based survey. Eur J Neurol 2013; 20: 689–96. pmid:23356519
  8. 8. Houle TT, Butschek RA, Turner DP, Smitherman TA, Rains JC, Penzien DB. Stress and sleep duration predict headache severity in chronic headache sufferers. Pain 2012; 153: 2432–40. pmid:23073072
  9. 9. Beghi E, Bussone G, D'Amico D, Cortelli P, Cevoli S, Manzoni GC et al. Headache, anxiety and depressive disorders: the HADAS study. J Headache Pain 2010; 11: 141–50. pmid:20108021
  10. 10. Uhlig BL, Engstrøm M, Ødegård SS, Hagen KK, Sand T. Headache and insomnia in population-based epidemiological studies. Cephalalgia 2014; 34: 745–51 pmid:24973418
  11. 11. Zwart JA, Dyb G, Hagen K, Ødegård KJ, Dahl AA, Bovim G et al Depression and anxiety disorder associated with headache frequency: The Nord-Trøndelag Health Study. Eur J Neurol 2003; 10: 147–52. pmid:12603289
  12. 12. Sancisi E, Cevoli S, Vignatelli L, Nicodemo M, Pierangeli G, Zanigni Set al. Increased prevalence of sleep disorders in chronic headache: a case-control study. Headache 2010; 50: 1464–1472 pmid:20572880
  13. 13. Zebenholzer K, Lechner A, Broessner G, Lampl C, Luthringshausen G, Wuschitz A et al. Impact of depression and anxiety on burden and management of episodic and chronic headaches: a cross-sectional multicentre study in eight Austrian headache centres. J Headache Pain 2016; 17: 15 pmid:26920681
  14. 14. Spiegelhalder K, Regen W, Nanovska S, Baglioni C, Riemann D. Comorbid sleep disorders in neuropsychiatric disorders across the life cycle. Curr Psychiatry Rep 2013; 15: 364. pmid:23636987
  15. 15. Engstrøm M, Hagen K, Bjørk MH, Stovner LJ, Sand T. Sleep quality and arousal in migraine and tension-type headache: the headache-sleep study. Acta Neurol Scand 2014; 198: S47–S54.
  16. 16. Palacios-Ceña M, Fernández-Muñoz JJ, Castaldo M, Wang K, Guerrero-Peral A, Arendt-Nielsen L et al. The association of headache frequency with pain interference and the burden of disease is mediated by depression and sleep quality, but not anxiety, in chronic tension type headache. J Headache Pain 2017; 18: 19 pmid:28185160
  17. 17. Fuensalida-Novo S, Palacios-Ceña M, Fernández-Muñoz JJ, Castaldo M, Wang K, Catena A et al. The burden of headache is associated to pain interference, depression and headache duration in chronic tension type headache: A 1-year longitudinal study. J Headache Pain 2017; 18: 119. pmid:29285577
  18. 18. ICHD-III International Classification of Headache Disorder: Headache Classification Subcommittee of the International Headache Society, 3nd edition Beta. Cephalalgia 2013; 33: 629–808. pmid:23771276
  19. 19. Cole JC, Dubois D, Kosinski M. Use of patient-reported sleep measures in clinical trials of pain treatment: a literature review and synthesis of current sleep measures and a conceptual model of sleep disturbance in pain. Clin Ther 2007; 29: 2580–2588. pmid:18164923
  20. 20. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989; 28: 193–213 pmid:2748771
  21. 21. Carpenter JS, Andrykowski MA. Psychometric evaluation of the Pittsburgh Sleep Quality Index. J Psychosom Res. 1998; 45: 5–13. pmid:9720850
  22. 22. Phillip D, Lyngberg AC, Jensen R. Assessment of headache diagnosis: A comparative population study of a clinical interview with a diagnostic headache diary. Cephalalgia 2007; 27: 1–8. pmid:17212676
  23. 23. Jensen R, Tassorelli C, Rossi P, Allena M, Osipova V, Steiner T et al. A basic diagnostic headache diary (BDHD) is well accepted and useful in the diagnosis of headache: A multicentre European and Latin American study. Cephalalgia 2011; 31: 1549–60. pmid:22019575
  24. 24. Jensen MP, Turner JA, Romano JM, Fisher L. Comparative reliability and validity of chronic pain intensity measures. Pain 1999; 83: 157–162 pmid:10534586
  25. 25. Jacobson GP, Ramadan NM, Norris L, Newman CW. The Henry Ford Hospital Headache Disability Inventory. Neurology 1994; 44; 837–42. pmid:8190284
  26. 26. Jacobson GP, Ramadan NM, Norris L, Newman CW. Headache disability inventory (HDI): short-term test-retest reliability and spouse perceptions. Headache. 1995; 35: 534–9. pmid:8530277
  27. 27. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983; 67: 361–70 pmid:6880820
  28. 28. Herrmann-Lingen C, Buss U, Snaith RP. Hospital Anxiety and Depression Scale–Deutsche Version (HADS-D) Verlag Hans Huber, Bern; 2011.
  29. 29. Bjelland I, Dahl AA, Haug T, Neckelman D. The validity of the Hospital Anxiety and Depression Scale: An updated literature review. J Psychosom Res 2002; 52: 69–77 pmid:11832252
  30. 30. Juang KD, Wang SJ, Lin CH, Fuh JL. Use of the Hospital Anxiety and Depression Scale as a screening tool for patients with headache. Zhonghua Yi Xue Za Zhi (Taipei) 1999; 62: 749–55.
  31. 31. Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992; 30: 473–483. pmid:1593914
  32. 32. McHorney CA, Ware JE, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care 1993; 31: 247–263. pmid:8450681
  33. 33. Palacios-Ceña M, Castaldo M, Wang K, Torelli P, Pillastrini P, Fernández-de-las-Peñas C et al. Widespread pressure pain hypersensitivity is similar in women with frequent episodic and chronic tension-type headache: A blinded case-control study. Headache 2017; 57: 217–225 pmid:27861839
  34. 34. Probyn K, Bowers H, Caldwell F, Mistry D, Underwood M, Matharu M, Pincus T; CHESS Team. Prognostic factors for chronic headache: A systematic review. Neurology 2017; 89: 291–301 pmid:28615422
  35. 35. Rains JC, Davis RE, Smitherman TA. Tension-type headache and sleep. Curr Neurol Neurosci Rep 2015; 15: 520. pmid:25475495
  36. 36. George SZ, Coronado RA, Beneciuk JM, Valencia C, Werneke MW, Hart DL. Depressive symptoms, anatomical region, and clinical outcomes for patients seeking outpatient physical therapy for musculoskeletal pain. Phys Ther 2011; 91: 358–72. pmid:21233305
  37. 37. Dodick DW, Eross EJ, Parish J, Silber M. Clinical, anatomical, and physiologic relationship between sleep and headache. Headache 2003; 43: 282–292 pmid:12603650
  38. 38. Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V, Silove D. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980–2013. Int J Epidemiol 2014; 43: 476–493.
  39. 39. Zhu Z, Fan X, Li X, Tan G, Chen L, Zhou J. Prevalence and predictive factors for poor sleep quality among migraineurs in a tertiary hospital headache clinic. Acta Neurol Belg 2013; 113: 229–35. pmid:23180468
  40. 40. Passchier J, de Boo M, Quaak HZ, Brienen JA. Health-related quality of life of chronic headache patients is predicted by the emotional component of their pain. Headache 1996; 36: 556–560. pmid:8916564
  41. 41. Engstrøm M, Hagen K, Bjørk M, Stovner LJ, Stjern M, Sand T. Sleep quality, arousal and pain thresholds in tension-type headache: a blinded controlled polysomnographic study. Cephalalgia 2014; 34: 455–63. pmid:24366979
  42. 42. Terry EL, DelVentura JL, Bartley EJ, Vincent AL, Rhudy JL. Emotional modulation of pain and spinal nociception in persons with major depressive disorder (MDD). Pain 2013; 154: 2759–68. pmid:23954763
  43. 43. de Tommaso M, Delussi M, Vecchio E, Sciruicchio V, Invitto S, Livrea P. Sleep features and central sensitization symptoms in primary headache patients. J Headache Pain 2014; 15: 64. pmid:25260261
  44. 44. Chiu YH, Silman AJ, Macfarlane GJ, Ray D, Gupta A, Dickens C et al. Poor sleep and depression are independently associated with a reduced pain threshold: Results of a population based study. Pain 2005; 115: 316–321 pmid:15911158
  45. 45. Nagappa M, Liao P, Wong J, Auckley D, Ramachandran SK, Memtsoudis S, et al. Validation of the STOP-Bang Questionnaire as screening tool for obstructive sleep apnea among different populations: A systematic review and meta-analysis. PLoS One 2015; 10: e0143697. pmid:26658438
  46. 46. Chiu HY, Chang LY, Hsieh YJ, Tsai PS. A meta-analysis of diagnostic accuracy of three screening tools for insomnia. J Psychosom Res 2016; 87: 85–92. pmid:27411756