Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Seroprevalence of severe fever with thrombocytopenia syndrome virus in China: A systematic review and meta-analysis

  • Peng Li ,

    Contributed equally to this work with: Peng Li, Zhen-Dong Tong

    Affiliations Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China, Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China

  • Zhen-Dong Tong ,

    Contributed equally to this work with: Peng Li, Zhen-Dong Tong

    zscdc@hotmail.com (ZDT); yanjianbo02@163.com (JBY)

    Affiliations Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China, Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China

  • Ke-Feng Li,

    Affiliations Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China, Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China

  • An Tang,

    Affiliations Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China, Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China

  • Ya-Xin Dai,

    Affiliations Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China, Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China

  • Jian-Bo Yan

    zscdc@hotmail.com (ZDT); yanjianbo02@163.com (JBY)

    Affiliations Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China, Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, P.R. China

Abstract

Objective

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by a novel bunyavirus-SFTSV. The seroprevalence of anti-SFTSV antibodies including immunoglobulin G (IgG) and immunoglobulin M (IgM), specific to SFTSV in the general population has been investigated in various epidemiological studies with inconsistent results. Here, we clarify this discrepancy and reach a more comprehensive result by mean of a meta-analysis.

Methods

All relevant articles were searched in the electronic databases (PubMed, Web of science, Embase, Chinese National Knowledge Infrastructure database, Chinese Wanfang database) up to November 2016. The pooled seroprevalence and 95% confidence intervals (95% CIs) were calculated by random- or fixed- model on the basis of heterogeneity.

Results

In total, 21 studies containing 23,848 blood samples from 7 provinces were included in this meta-analysis. The minimum and maximum reported seroprevalences of SFTSV among humans in China were 0.23% and 9.17%, respectively. The overall pooled seroprevalence of SFTSV antibodies was 4.3% (95%CI: 3.2%-5.5%). The pooled prevalence was 5.9% (95%CI: 4.7%-7.0%) in Zhejiang province, 4.9% (95%CI: 4.1–5.8%) in Anhui province, 3.9% (95%CI: 1.3%-6.4%) in Shandong province, and 0.7% (95%CI: 0.2%-1.1%) in Jiangsu province. Stratified by occupation, the pooled prevalence of farmer was 6.1% (95%CI: 3.4%-8.9%) and others (mainly are students) was 3.3% (95%CI: 2.4%-4.2%). Additionally, seroprevalence of SFTSV in people who lived in the same village with the patient were higher than that of people who lived in a different village. Seropositive rates in sampling years after 2012 were higher than that before 2012. The prevalence of SFTSV did not differ by age or gender. Sensitive analysis by omitting one study at a time indicated the results of the pooled seroprevalence were robust.

Conclusions

Seroprevalence of SFTSV among healthy population in central and eastern China is high. Surveillance efforts on mild or asymptomatic infections among endemic persons are needed.

Introduction

Severe fever with thrombocytopenia syndrome (SFTS) is a notifiable infectious disease characterized by fever, weakness, leukopenia, thrombocytopenia, gastrointestinal symptoms, and central nervous system manifestations [13]. The causative agent of SFTS is a novel member of the Phlebovirus in the family Bunyaviridae, SFTS virus (SFTSV), which was first isolated from human beings in rural areas of central China by Yu et al in 2009 [1]. About the latter, the disease was also reported in Korea and Japan in 2012, and a disease similar to SFTS has been reported in the United States [4, 5]. More recently, human cases have been widely covered in at least 16 provinces in east and center of China, including Shandong, Zhejiang, Jiangsu, Anhui, Henan, Hubei, and Liaoning provinces, etc [6]. The incidence of the disease is very high in some epidemic areas with a case-fatality rate of up to 30%, which has posed an increasingly threat to global health [2].

Time range from March to November is the epidemic season of SFTS, May-July is the peak time of SFTSV infection. SFTSV is most likely to be transmitted by tick bite according to evidence from tick exposure history and SFTSV detection in ticks such as Haemaphysalis longicornis ticks, and virus gene sequence analysis showed the virus in ticks closely related to those circulating in humans [710]. High seroprevalence to SFTSV has been reported in domestic animals such as goats, sheep, cattle, dogs, etc and small mammals such as rodent and shrews. However, the host range of the virus and the role of these animals in the transmission of SFTSV is poorly understood. [11, 12]. In addition, person to person transmission by contacting with infected patient’s blood or mucous has been reported in China [1315].

In past years, seroprevalence of SFTSV among healthy population has been widely investigated in various epidemiologic studies. Current estimates of the seroprevalence of SFTSV among general humans in China are almost based on one or several villages with relatively small sample size in one province rather than nationally representative sample of this population. In addition, seroprevalence of SFTSV among healthy humans in different gender, age groups, and endemic regions has yet to be illuminated. Meta-analysis is an effective method of pooling data of individual study together, thus enhancing the statistical power of the analysis for the estimates, to reach a more comprehensive result. It has been widely utilized in sero-epidemiological studies of infectious diseases, such as Influenza A (H9N2), Ebola and Marburg viruses, and Enterovirus 71, etc [1618]. In present study, we determine the overall pooled seroprevalence of SFTSV among healthy individuals in China by mean of a meta-analysis. We also estimate the pooled seroprevalence of total antibodies to SFTSV in different subgroups of healthy humans.

Materials and methods

Search strategy

All relevant articles about the seroprevalence of SFTSV in general population were searched via the following electronic databases: Pubmed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), Chinese WanFang Database. Date searches were carried out up to November 2016, without restrictions regarding language, publication year and district. The following search words and terms in English and Chinese were used in the final search: (“seroprevalence” or “prevalence” or “serum” or “antibodies” or “seroepidemiology”) and (“SFTS” or “SFTSV” or “Severe fever with thrombocytopenia syndrome” or “Severe fever with thrombocytopenia syndrome virus”). Moreover, all relevant references cited in original articles and reviews were also manually searched to identify additional articles not indexed by these databases.

Eligibility criteria

To obtain the valid articles we needed, the following criteria were established: 1) the study either reported the seroprevalence of SFTSV or had sufficient data for calculating the seroprevalence; 2) individuals neither had SFTS infection in the past, being hospitalized for any clinically similar disease, or contact with a person who had SFTS as defined previously [1]; 3) specific-SFTSV antibody or total antibodies (IgG and IgM) to SFTSV were tested by using a double-antigen sandwich enzyme-linked immune sorbent assay (ELISA) kit or indirect-ELISA. Exclusion criteria included abstracts, conferences, case reports, letters, duplicated publications and studies reporting on SFTSV among population with non-Chinese.

Data extraction

After initial evaluation, two authors independently and carefully screened the articles on title and abstract according to the eligibility criteria. Authors also filled out a standard quality assessment checklist with 11 items concerning the methodological aspects of cross-sectional studies for each study [19]. If the studies were based on the same sample, only the study with greatest epidemiological quality was selected. The following information was extracted from every eligible article: first author, publication year, researched province, sampling time, sampling method, sample size, positive rate in each study, number of research spot and antibodies testing method. We also extracted the number of positive for SFTSV antibodies according to gender, age, occupation and province, in order to estimate the seroprevalence of SFTSV in subgroups. Data with discrepancies in identification were resolved through discussing, if there is no agreement, the third investigator would make an ultimate decision.

Quality assessment

The quality of the included studies was assessed by Agency for Healthcare Research and Quality (AHRQ), which is consisted of 11-item with a yes/no/unclear response option: “No” or “unclear” was scored “0” and the “Yes” would be scored “1”[19]. Articles scored as 0–3, 4–7, 8–11 indicated low, moderate and high quality, respectively.

Statistical analysis

According to the results of heterogeneity test in different groups, the proper model was adopted to assess a pooled value and 95%CI of seroprevalence of SFTSV antibodies in healthy population.

Statistical heterogeneity across different studies was assessed by using the Cochran Q and I2 statistics [20]. P-values of the Cochran Q test less than 0.1 is considered to be statistically significant, and I2 value more than 75% indicates high heterogeneity. A significant Q statistic (P-values<0.10) indicate heterogeneity across studies, and then the DerSimonian and Laird method in random effect model result is used for meta-analysis. When the P-value of heterogeneity test is more than 0.1 (P-values>0.10), the results of Mante-Haenszel method in a fixed-effect model will be adopt. In order to explore the potential source of heterogeneity between studies and the seroprevalences of SFTSV antibodies with different characters such as gender, age, occupation and province, subgroups analysis were also conducted. Additionally, a leave-one-out sensitivity analysis was carried out to assess the impact of each study on the overall pooled estimate.

The potential publication bias was assessed by using Begg’s funnel plot [21]. Funnel plot asymmetry was further assessed by the method of Egger’s linear regression test. If the P-value of Egger’s test was less than 0.05, statistically significant publication bias might exist.

All statistical analysis were performed using STATA 11.0 (Stata Corporation, College Station, Texas, USA).

Results

Search results

The detailed study retrieval steps according to the PRISMA statement was shown in Fig 1. Initially, the search retrieved 669 relevant articles from the Pubmed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), Chinese WanFang Database. Based on the eligibility criteria, we firstly removed 146 articles due to duplicate publications, and an additional 471 articles were excluded after review of the title and abstract for irrelevant topics or because they were abstracts/letters/reviews/comments/case reports. After carefully reviewing the full text and data of the remaining 52 articles, 31 ineligible records were excluded due to overlapping data or lack of some indicators. Finally, 21 studies containing 23, 848 blood samples were included in the final analysis. The basic characteristics and data extraction from these included studies was shown in Table 1.

thumbnail
Fig 1. Flow chart of studies selection process in this meta-analysis.

https://doi.org/10.1371/journal.pone.0175592.g001

thumbnail
Table 1. Basic characteristics of the included studies in this meta-analysis.

https://doi.org/10.1371/journal.pone.0175592.t001

Characteristics of included studies

For these 21 articles, sample sizes across the studies ranged from 78 to 2590. 12 of the studies were published in English and 9 in Chinese. 6 studies were of high quality, other studies were of moderate quality (Table 1). Generally, the most prevalence studies were conducted in the center and east of China (Shaanxi [22], Henan [23], Hubei [24, 25], Zhejiang [2628], Jiangsu [2932], Jiangsu&Anhui [33], Anhui [3436], and Shandong provinces [3742]), the location of referred provinces in China was shown in Fig 2.

thumbnail
Fig 2. Location of referred provinces in China where serum samples of healthy persons were collected and tested for the presence of severe fever with thrombocytopenia syndrome virus–specific IgG and IgM.

https://doi.org/10.1371/journal.pone.0175592.g002

Overall seroprevalence of SFTSV

Seroprevalence of SFTSV antibodies varied from 0.23% to 9.17% and were displayed as forest plots in Fig 3. The heterogeneity across the studies was high (Q = 774.93, P<0.001; I2 = 97.3%). The overall pooled seroprevalence estimate for SFTSV in random effect model was 4.3% (95%CI: 3.2%-5.5%).

thumbnail
Fig 3. Forest plot of seroprevalence for total antibodies against SFTSV in healthy population.

The middle point of each line indicates the prevalence rate and the length of line indicates 95% confidence interval of each study. Rhombus shape indicates 95% confidence interval for all studies.

https://doi.org/10.1371/journal.pone.0175592.g003

Subgroup analysis

To explore the potential source of the high heterogeneity, we did some subgroup analysis by gender, age, occupation and province. The detail results of subgroup analysis were shown in Table 2. Stratification by gender, the pooled prevalence of male was 5.3% (95%CI: 3.3%-7.2%), and female was 5.2% (95%CI: 3.4%-7.0%). Stratification by age, the pooled seroprevalence of less than age of 40 years was 4.1% (95%CI: 2.4%-5.7%), and more than age of 40 years was 4.9% (95%CI: 2.9%-7.0%). Stratification by occupation, the pooled seroprevalence of farmer was 6.1% (95%CI: 3.4%-8.9%) and others (mainly are students) was 3.3% (95%CI: 2.4%-4.2%). Seropositive rates were comparable among sampling years, seroprevalence in the years before 2012 and after 2012 was 3.1% (1.9%-4.4%) and 5.2% (4.6%-5.9%), respectively. Stratification by testing method, seroprevalence in the method of I-ELISA and D-ELISA was 6.2% (5.4%~7.1%) and 1.8% (1.1%~2.5%), respectively. Seroprevalence of SFTSV in people who lived in the same village with the patient and lived in a different village was 6.5% (4.7~8.3) and 4.1% (3.1%~5.1%), respectively. We also found seroprevalence in endemic area was 4.3% (3.1%~5.6%) and in rural village was 4.3% (3.2%~5.4%). Additionally, the pooled seroprevalence was 5.9% (95%CI: 4.7%-7.0%) in Zhejiang province, 3.9% (95%CI: 1.3%-6.4%) in Shandong province, 4.9% (95%CI: 4.1–5.8%) in Anhui province, 6.9% (5.5%~8.2%) in Hubei province and 0.7% (95%CI: 0.2%-1.1%) in Jiangsu province. Forest plots for the meta-analysis in different provinces were shown in Fig 4.

thumbnail
Fig 4. Forest plots of seroprevalence for total antibodies against SFTSV in healthy population among different provinces.

https://doi.org/10.1371/journal.pone.0175592.g004

thumbnail
Table 2. The seroprevalence of total antibodies (IgG/IgM) against SFTSV in different subgroups of humans in China.

https://doi.org/10.1371/journal.pone.0175592.t002

Publication bias and sensitive analysis

Potential publication bias of the included articles were evaluated by Begg’s funnel plots and Egger’s test. The shapes of the funnel plot was asymmetry evidently which gives rise to suspected publication bias (Fig 5). The Egger’s test results demonstrated evidence of publication bias, however, the Begg’s bias test was not significant for studies reporting seroprevalence of SFTSV (data not shown). A leave-one-out analysis which was performed to assess the impact of the individual study on the pooled estimates. Sensitive analysis showed that no single study qualitatively altered the pooled seroprevalence estimates, providing evidence of the stability of the meta-analysis (Fig 6).

thumbnail
Fig 5. Funnel plot assessing publication bias in studies reporting SFTSV seroprevalence.

https://doi.org/10.1371/journal.pone.0175592.g005

thumbnail
Fig 6. Sensitivity analysis of the summary seroprevalence of SFTSV.

Results were computed by omitting each study in turn under random-effects model.

https://doi.org/10.1371/journal.pone.0175592.g006

Discussion

SFTS as a global concerned infectious disease has posed a great threat on human health in East Asia. China is one of the most important endemic areas, more than 5000 cases of SFTS were reported in China from 2011 to 2014 [43].

This systematic review and meta-analysis was performed to evaluate the seroprevalence of SFTSV in Chinese population. Twenty one articles compromising a total of 23,848 individuals were included for analysis. Published seroprevalence ranged from 0.23% to 9.17%. We found that, among healthy population in China, the overall pooled seroprevalence of SFTSV was 4.3% (95%CI: 3.2%-5.4%). It was higher than a recent investigation in Korean population with a seroprevalence of 2.1% based on 1069 serum samples [44]. Sensitivity analysis by omitting one study at a time did not have substantial impact on the result, indicating the pooled result of seroprevalence was robust. Considerable heterogeneity was found among studies that can be at least partly explained by occupation, the geographical location and the anti-SFTSV antibodies assay employed.

Previous study reported gender ratio of SFTS patients in China was about 1:1.15 (male/female), but it varied among different provinces [45]. In this study, we found the seroprevalence of SFTSV in male was approximate with that in female. In addition, epidemiologic investigations showed that the majority of SFTS patients included retired or unemployed citizens and farmers. [46, 47]. Stratified by occupation in this meta-analysis, we found the seroprevalence of SFTSV in farmer was higher than other occupation (mainly are students), which indicates that farmers are the high risk population to SFTSV infections. It is believed that farmers take the main agriculture activities such as grass mowing, raising cattle, grazing in the bushes where ticks is highly intensive and active [22]. This high exposure experience could prominently increase the risk to SFTSV infection. Appropriate protective measures for farmers to repel ticks should be took when working outdoors.

Age composition of SFTS patients was widely, previous studies had demonstrated that SFTS patients ranged from 1 to 93 years old, but most of patients were aggregated in 40–79 years [41]. Generally, age was considered as a critical risk factor for morbidity and mortality of SFTS [41]. However, the results of seroprevalence in healthy people among different age groups were controversial. Some studies reported an increasing trend with age about the seroprevalence of SFTSV in healthy population [22, 23, 28, 31, 34], while other studies failed to find any significant difference among different age groups [30, 33, 4143]. In this meta-analysis, the pooled data indicated the seroprevalence of SFTSV in people over 40 years old was close to people who less than 40 years old. This result indicated that all age groups were susceptible to SFTSV infection, but only aged people is inclined to get severe disease and to be hospitalized or even died of SFTSV infection.

The infections rates of healthy population varied in different provinces. It reflects that incidences of the latent infection of SFTS are different in endemic regions. In this study, we found SFTSV seroprevalence was high in Henan, Hubei, Zhejiang, Shanxi, Anhui and Shandong provinces, and was relatively low in Jiangsu provinces with seroprevalence of 0.7% (95%CI: 0.2~1.1). However, this result should be interpreted with cautious because of limiting number of study and sample size in some provinces, which may lead to lack of representativeness.

Additionally, different ELISA assay such as indirect ELISA (I-ELISA) and double-antigen sandwich ELISA system (D-ELISA) used to detect SFTSV-specific antibodies might also contribute to heterogeneity. Compared to the traditional I-ELISA, D-ELISA was considered having more higher sensitivity to detect total antibodies [33]. However, in the present meta-analysis, seroprevalence in the group of I-ELISA method was higher than that in the D-ELISA group. A potential explanation is that D-ELISA method was mainly used in Jiangsu province, where seroprevalence of SFTSV is relatively lower than other provinces.

Seroprevalence was also observed between different years, seroprevalence in the year after 2012 was higher than that before 2012, indicating ongoing and intensified circulation of SFTSV in endemic areas of China. Another discrepancy may be attributed to the sampling season, sampling method, previous contacting with animals (such as raising domestic animals, especially goats), or antibody types (total antibodies or IgG/ IgM antibody) detection in different studies.

The advantage of this systematic review and meta-analysis is that good quality studies from many centers were pooled for a relatively large sample size, but there are several limitations also should be addressed. Firstly, significant heterogeneity was detected across studies. Although we did some subgroup analysis to identify sources of heterogeneity, many unmeasured factors may have influenced the results. Secondly, funnel plots and Begg’s tests indicated that publication bias might be exist in the present study, which may distort the estimates of seroprevalence, so that the results should be interpreted with cautions.

In summary, data from 21 published studies suggested that SFTS is circulated widely in China and could be a cause of considerable health problems in the country. Surveillance efforts on mild or asymptomatic infections among endemic persons are needed. Further subtle-designed studies are still needed to describe the exact epidemiology of the disease at a national level in other parts of China.

Supporting information

S1 Dataset. Data for meta-analysis of overall and subgroups.

https://doi.org/10.1371/journal.pone.0175592.s001

(XLS)

S1 Text. PRISMA 2009 Checklist flow diagram.

https://doi.org/10.1371/journal.pone.0175592.s003

(DOC)

Author Contributions

  1. Conceptualization: ZDT JBY PL.
  2. Data curation: ZDT.
  3. Formal analysis: PL KFL.
  4. Funding acquisition: JBY YXD.
  5. Methodology: PL ZDT.
  6. Project administration: ZDT JBY.
  7. Resources: ZDT AT.
  8. Software: ZDT.
  9. Supervision: ZDT JBY.
  10. Validation: ZDT.
  11. Writing – original draft: PL.
  12. Writing – review & editing: ZDT.

References

  1. 1. Yu XJ, Liang MF, Zhang SY, Liu Y, Li JD, Sun YL, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011;364: 1523–32. pmid:21410387
  2. 2. Liu Q, He B, Huang SY, Wei F, Zhu XQ. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect Dis. 2014;14: 763–72. pmid:24837566
  3. 3. Li DX. Severe fever with thrombocytopenia syndrome: a newly discovered emerging infectious disease. Clin Microbiol Infect. 2015; 21: 614–20. pmid:25769426
  4. 4. Kim KH, Yi J, Kim G, Choi SJ, Jun KI, Kim NH, et al. Severe fever with thrombocytopenia syndrome, South Korea. Emerg Infect Dis. 2012;19: 1892–1894.
  5. 5. Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, et al. The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis. 2014;209: 816–27. pmid:24231186
  6. 6. Ding F, Zhang W, Wang L, Hu W, Soares Magalhaes RJ, Sun H, et al. Epidemiologic features of severe fever with thrombocytopenia syndrome in China, 2011–2012. Clinical Infectious Diseases. 2013;56: 1682–1683. pmid:23429379
  7. 7. Luo LM, Zhao L, Wen HL, Zhang ZT, Liu JW, Fang LZ, et al. Haemaphysalis longicornis Ticks as Reservoir and Vector of Severe Fever with Thrombocytopenia Syndrome Virus in China. Emerg Infect Dis. 2015;21: 1770–6. pmid:26402039
  8. 8. Meng K, Sun W, Cheng Z, Guo H, Liu J, Chai T, et al. First detection of severe fever with thrombocytopenia syndrome virus in the tick species Haemaphysalis concinna in Shandong Province, China. Parasitol Res. 2015;114: 4703–7. pmid:26350381
  9. 9. Wang S, Li J, Niu G, Wang X, Ding S, Jiang X, et al. SFTS virus in ticks in an endemic area of China. Am J Trop Med Hyg. 2015;92: 684–9. pmid:25711611
  10. 10. Wang D, Wang Y, Yang G, Liu H, Xin Z. Ticks and tick-borne novel bunyavirus collected from the natural environment and domestic animals in Jinan city, East China. Exp Appl Acarol. 2016;68(2): 213–21. pmid:26589806
  11. 11. Liu JW, Wen HL, Fang LZ, Zhang ZT, He ST, Xue ZF, et al. Prevalence of SFTSV among Asian house shrews and rodents, China, January-August 2013. Emerg Infect Dis. 2014;20: 2126–8. pmid:25418111
  12. 12. Ding S, Yin H, Xu X, Liu G, Jiang S, Wang W, et al. A cross-sectional survey of severe fever with thrombocytopenia syndrome virus infection of domesticanimals in Laizhou City, Shandong Province, China. Jpn J Infect Dis. 2014;67: 1–4. pmid:24451093
  13. 13. Gai Z, Liang M, Zhang Y, Zhang S, Jin C, Wang SW, et al. Person-to-person transmission of severe fever with thrombocytopenia syndrome bunyavirus through blood contact. Clin Infect Dis. 2011;54: 249–252. pmid:22095565
  14. 14. Liu Y, Li Q, Hu W, Wu J, Wang Y, Mei L, et al. Person-to-person transmission of severe fever with thrombocytopenia syndrome virus. Vector Borne Zoonotic Dis. 2012;12(2): 156–60. pmid:21955213
  15. 15. Jiang XL, Zhang S, Jiang M, Bi ZQ, Liang MF, Ding SJ, et al. A cluster of person-to-person transmission cases caused by SFTS virus in Penglai, China. Clin Microbiol Infect. 2015;3: 274–9.
  16. 16. Nyakarahuka L, Kankya C, Krontveit R, Mayer B, Mwiine FN, Lutwama J, et al. How severe and prevalent are Ebola and Marburg viruses? A systematic review and meta-analysis of the case fatality rates and seroprevalence. BMC Infect Dis. 2016;16: 708. pmid:27887599
  17. 17. Yang B, Wu P, Wu JT, Lau EH, Leung GM, Yu H, et al. Seroprevalence of Enterovirus 71 Antibody Among Children in China: A Systematic Review and Meta-analysis. Pediatr Infect Dis J. 2015;34: 1399–406. pmid:26368058
  18. 18. Khan SU, Anderson BD, Heil GL, Liang S, Gray GC. A Systematic Review and Meta-Analysis of the Seroprevalence of Influenza A(H9N2) Infection Among Humans. J Infect Dis. 2015;212(4): 562–9. pmid:25712969
  19. 19. Rostom A, Dub C, Cranney A, et al. Celiac Disease. Rockville (MD): Agency for Healthcare Research and Quality (US). Available: http://www.ncbi.nlm.nih.gov/books/NBK35156/. Accessed 2014 Dec 14.
  20. 20. Ades AE, Lu G, Higgins JP. The interpretation of random-effects meta-analysis in decision models. Med Decis Making. 2005;25: 646–654. pmid:16282215
  21. 21. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50: 1088–1101. pmid:7786990
  22. 22. Wei J, Li S, Dong JH, Tian H, Chowell G, Tian HY, et al. The fist human infection with severe fever with thrombocytopenia syndrome virus in Shaanxi Province, China. Int J Infect Dis. 2015;35: 37–9. pmid:25722283
  23. 23. Hu C, Guo C, Yang Z, Wang L, Hu J, Qin S, et al. The severe fever with thrombocytopenia syndrome bunyavirus (SFTSV) antibody in a highly endemic region from 2011 to 2013: a comparative serological study. Am J Trop Med Hyg. 2015; 92: 479–81. pmid:25624404
  24. 24. Zhan JB, Huo XX, Guan XH, Jiang YZ, Xu JQ, Li GM, et al. Analysis on antibody levels against severe fever with thrombocytopenia syndrome bunyavirus among healthy population in Hubei province. Chinese Journal of Health Laboratory Technology. 2013;23 (4): 992–993.
  25. 25. Xing X, Guan X, Liu L, Zhan J, Jiang H, Liu L, et al. Natural Transmission Model for Severe Fever With Thrombocytopenia Syndrome Bunyavirus in Villages of Hubei Province, China. Medicine (Baltimore). 2016;95(4): e2533.
  26. 26. Zhang L, Sun J, Yan J, Lv H, Chai C, Sun Y, et al. Antibodies against severe fever with thrombocytopenia syndrome virus in healthy persons, China, 2013. Emerg Infect Dis. 2014;20: 1355–7. pmid:25061813
  27. 27. Zhang L, Ye L, Ojcius DM, Lou X, Wang C, Feng C, et al. Characterization of severe fever with thrombocytopenia syndrome in rural regions of Zhejiang, China. PLoS One. 2014;9: e111127. pmid:25356556
  28. 28. Sun JM, Zhang YJ, Gong ZY, Zhang L, Lv HK, Lin JF, et al. Seroprevalence of severe fever with thrombocytopenia syndrome virus in southeastern China and analysis of risk factors. Epidemiol Infect. 2015;143: 851–6. pmid:24866248
  29. 29. Tan WW, Huang P, Hu JL, Zhou JG, Zhang HJ, Yu RB. Results of surveillance of severe fever with thrombocytopenia syndrome bunyavirus in Yixing. China Tropical Medicine. 2015;15(3): 359–360.
  30. 30. Liang S, Bao C, Zhou M, Hu J, Tang F, Guo X, et al. Seroprevalence and risk factors for severe fever with thrombocytopenia syndrome virus infection in Jiangsu Province, China, 2011. Am J Trop Med Hyg. 2014;90: 256–9. pmid:24343883
  31. 31. Li Z, Hu J, Bao C, Li P, Qi X, Qin Y, et al. Seroprevalence of antibodies against SFTS virus infection in farmers and animals, Jiangsu, China. J Clin Virol. 2014;60: 185–9. pmid:24793967
  32. 32. Zhang WS, Zeng XY, Zhou MH, Jiao YJ, Wen T, Gou XL, et al. Seroepidemiology of severe fever with thrombocytopenia syndrome bunyavirus in Jiangsu province. Disease Surveillance. 2011; 26 (9): 676–8.
  33. 33. Jiao Y, Zeng X, Guo X, Qi X, Zhang X, Shi Z, et al. Preparation and evaluation of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for detection of total antibodies in human and animal sera by double-antigen sandwich enzyme-linked immunosorbent assay. J Clin Microbiol. 2012;50: 372–7. pmid:22135253
  34. 34. Huang X, Zhang Z, Jin G, Wang X, Tan C, Yin H, et al. Presence of Antibodies against Severe Fever with ThrombocytopeniaSyndrome Virus in Non-endemic Areas, China. Jpn J Infect Dis. 2016 Aug 31 [Epub ahead of print]:
  35. 35. Xu PP, Lyu Y, Geng XY, Zhang LM, Qin W, Hu JY, et al. Seroepidemiology of severe fever with thrombocytopenia syndrome virus, Liu'an. Modern Preventive Medicine. 2015;42(11): 1948–50.
  36. 36. Lyu Y, Ding F, Sun J, Xu PP, Hu JY, Xie SY, et al. Seroprevalence and risk factors of severe fever with thrombocytopenia syndrome virus infection in endemic areas. Infect Dis (Lond). 2016;48(7): 544–9.
  37. 37. Niu GY. The epidemiological investigation of potential vectors and hosts of SFTS virus in China. National institute for viral disease control and prevention, Chinese center for disease control and prevention. 2016. Available from: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2015&filename=1015525992.nh&uid=WEEvREcwSlJHSldRa1FhdkJkcGkzcVBJNE1tWE5lRUNNWG1FVDY2c2NxQT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4ggI8Fm4gTkoUKaID8j8gFw!!&v=MDM0ODU3YTZHOWpGclpFYlBJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSTDJmWk9Sc0ZpSGhVTHJNVkYyNkc=
  38. 38. Wang L, Cao HX, Cui F, Zhang SF, Wang XJ, Ding SJ. Surveillance and analysis of severe fever with thrombocytopenia syndrome in Zibo City. Modern Preventive Medicine. 2013;40(8): 3471–74.
  39. 39. Zhou SQ, Ning FJ, Meng SX, Ji JH, Liu SS, Ding SJ, et al. Serological investigation of the new virus Bunia infection among healthy population in Penglai City. Modern Preventive Medicine. 2015;42(3): 476–78.
  40. 40. Luo LM. investigation of reservoir and vector of severe fever with thrombocytopenia syndrome virus and seroepidemiology of tick-borne disease in China. Shandong university. 2016. Available: http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2016&filename=1016159237.nh&uid=WEEvREcwSlJHSldRa1FhdkJkcGkzcVBJNE1tWE5lRUNNWG1FVDY2c2NxQT0=$9A4hF_YAuvQ5obgVAqNKPCYcEjKensW4ggI8Fm4gTkoUKaID8j8gFw!!&v=MjQ0ODRHTEs5RjlQUHFKRWJQSVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUkwyZlpPUnNGaUhoVmIzTVZGMjY=
  41. 41. Zhao L, Zhai S, Wen H, Cui F, Chi Y, Wang L, et al. Severe fever with thrombocytopenia syndrome virus, Shandong Province, China. Emerg Infect Dis. 2012;18: 963–5. pmid:22608264
  42. 42. Cui F, Cao HX, Wang L, Zhang SF, Ding SJ, Yu XJ, et al. Clinical and epidemiological study on severe fever with thrombocytopenia syndrome in Yiyuan County, Shandong Province, China. Am J Trop Med Hyg. 2013;88: 510–2. pmid:23339197
  43. 43. Wang JY, Wu H, Tong ZD, Yan JB, Li KF, Tang A. A review on the epidemiologic features of severe fever with thrombocytopenia syndrome. Zhonghua Liu Xing Bing Xue Za Zhi. 2016 Feb; 37(2): 294–8. pmid:26917534
  44. 44. Kim KH, Ko MK, Kim N, Kim HH, Yi J. Seroprevalence of Severe Fever with Thrombocytopenia Syndrome in Southeastern Korea, 2015. J Korean Med Sci. 2017;32(1): 29–32. pmid:27914128
  45. 45. Li Y, Zhou H, Mu D, Yin W, Yu H. Epidemiological analysis on severe fever with thrombocytopenia syndrome under the national surveillance data from 2011 to 2014, China. Zhonghua Liu Xing Bing Xue Za Zhi. 2015;36(6): 598–602. pmid:26564632
  46. 46. Sun J, Chai C, Lv H, Lin J, Wang C, Chen E, et al. Epidemiological characteristics of severe fever with thrombocytopenia syndrome in Zhejiang Province, China. Int J Infect Dis. 2014;25: 180–5. pmid:24947422
  47. 47. Liu K, Cui N, Fang LQ, Wang BJ, Lu QB, Peng W, et al. Epidemiologic features and environmental risk factors of severe fever withthrombocytopenia syndrome, Xinyang, China. PLoS Negl Trop Dis. 2014;8: e2820. pmid:24810269