Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Different Respiratory Rates during Resuscitation in a Pediatric Animal Model of Asphyxial Cardiac Arrest

  • Jorge López ,

    dr_pyta@yahoo.es (JL); pielvi@hotmail.com (JL-H)

    Affiliations Pediatric Intensive Care Unit, Gregorio Marañón General University Hospital, Madrid, Spain, School of Medicine Complutense University of Madrid, Madrid, Spain, Gregorio Marañón Health Research Institute, Madrid, Spain, Mother-Child Health and Development Network (RedSAMID) of Carlos III Health Institute, Bilbao, Spain

  • Sarah N. Fernández,

    Affiliations Pediatric Intensive Care Unit, Gregorio Marañón General University Hospital, Madrid, Spain, School of Medicine Complutense University of Madrid, Madrid, Spain, Gregorio Marañón Health Research Institute, Madrid, Spain, Mother-Child Health and Development Network (RedSAMID) of Carlos III Health Institute, Bilbao, Spain

  • Rafael González,

    Affiliations Pediatric Intensive Care Unit, Gregorio Marañón General University Hospital, Madrid, Spain, School of Medicine Complutense University of Madrid, Madrid, Spain, Gregorio Marañón Health Research Institute, Madrid, Spain, Mother-Child Health and Development Network (RedSAMID) of Carlos III Health Institute, Bilbao, Spain

  • María J. Solana,

    Affiliations Pediatric Intensive Care Unit, Gregorio Marañón General University Hospital, Madrid, Spain, School of Medicine Complutense University of Madrid, Madrid, Spain, Gregorio Marañón Health Research Institute, Madrid, Spain, Mother-Child Health and Development Network (RedSAMID) of Carlos III Health Institute, Bilbao, Spain

  • Javier Urbano,

    Affiliations Pediatric Intensive Care Unit, Gregorio Marañón General University Hospital, Madrid, Spain, School of Medicine Complutense University of Madrid, Madrid, Spain, Gregorio Marañón Health Research Institute, Madrid, Spain, Mother-Child Health and Development Network (RedSAMID) of Carlos III Health Institute, Bilbao, Spain

  • Jesús López-Herce

    dr_pyta@yahoo.es (JL); pielvi@hotmail.com (JL-H)

    Affiliations Pediatric Intensive Care Unit, Gregorio Marañón General University Hospital, Madrid, Spain, School of Medicine Complutense University of Madrid, Madrid, Spain, Gregorio Marañón Health Research Institute, Madrid, Spain, Mother-Child Health and Development Network (RedSAMID) of Carlos III Health Institute, Bilbao, Spain

Different Respiratory Rates during Resuscitation in a Pediatric Animal Model of Asphyxial Cardiac Arrest

  • Jorge López, 
  • Sarah N. Fernández, 
  • Rafael González, 
  • María J. Solana, 
  • Javier Urbano, 
  • Jesús López-Herce
PLOS
x

Abstract

Aims

Actual resuscitation guidelines recommend 10 respirations per minute (rpm) for advanced pediatric life support. This respiratory rate (RR) is much lower than what is physiological for children. The aim of this study is to compare changes in ventilation, oxygenation, haemodynamics and return of spontaneous circulation (ROSC) rates with three RR.

Methods

An experimental model of asphyxial cardiac arrest (CA) in 46 piglets (around 9.5 kg) was performed. Resuscitation with three different RR (10, 20 and 30 rpm) was carried out. Haemodynamics and gasometrical data were obtained at 3, 9, 18 and 24 minutes after beginning of resuscitation. Measurements were compared between the three groups.

Results

No statistical differences were found in ROSC rate between the three RR (37.5%, 46.6% and 60% in the 10, 20 and 30 rpm group respectively P = 0.51). 20 and 30 rpm groups had lower PaCO2 values than 10 rpm group at 3 minutes (58 and 55 mmHg vs 75 mmHg P = 0.08). 30 rpm group had higher PaO2 (61 mmHg) at 3 minutes than 20 and 10 rpm groups (53 and 45 mmHg P = 0.05). No significant differences were found in haemodynamics or tissue perfusion between hyperventilated (PaCO2 <30 mmHg), normoventilated (30–50 mmHg) and hypoventilated (>50 mmHg) animals. PaO2 was significantly higher in hyperventilated (PaO2 153 mmHg) than in normoventilated (79 mmHg) and hypoventilated (47 mmHg) piglets (P<0.001).

Conclusions

Our study confirms the hypothesis that higher RR achieves better oxygenation and ventilation without affecting haemodynamics. A higher RR is associated but not significantly with better ROSC rates.

Introduction

Actual resuscitation guidelines are based on international consensus [1,2]. In the last few years, chest compressions have gained greater relevance than breaths during CPR [3], even to the point of recommending chest compressions only for bystander adult basic life support [4]. Nevertheless, experimental studies in animal models and clinical studies in children show that CPR with breaths and chest compressions achieves better oxygenation, ventilation, survival and neurological outcomes than CPR with chest compressions only [57].

This is probably due to the different aetiology of cardiopulmonary arrest and because illness and pathophysiological responses of paediatric patients often differ from those seen in adults. Cardiac arrest in children and young adults is usually the end result of an initial respiratory arrest (secondary to respiratory or neurological conditions), whereas the main cause of cardiac arrest in adults is cardiogenic due to arrhythmias [2,814]. This is why ventilation during CPR is more important in children than in adults [57,15].

International CPR guidelines for advanced life support recommend a chest compression rate of 100 to 120 compressions per minute (cpm) and 10 respirations per minute (rpm) for both adults and children [1,2,16]. Normal respiratory rate in children ranges from 40 rpm in neonates to 20 rpm in the older child [17], so the recommended 10 rpm during CPR is much lower than what is physiological for them. The theoretical reason for using low respiratory rates (RR) during CPR is that the pulmonary blood flow obtained from chest compressions is low, and thus low minute volumes should be sufficient for blood oxygenation and carbon dioxide (CO2) clearance [4].

These recommendations are also supported on the belief that hyperventilation during CPR with low arterial CO2 pressure (PaCO2) can cause cerebralvasoconstriction and compromise cerebral perfusion. Furthermore, hyperventilation can compromise systemic venous return and myocardial perfusion which, in addition to potential interruptions in chest compressions while delivering breaths, can contribute to a significant reduction in blood flow delivery to the tissues. Several studies in adult patients and in animal models find an association between hyperventilation and decreased coronary perfusion, survival and worse neurological outcomes [1823].

On the other hand, other studies in adults and children show that both hyperventilation and hypoventilation after the return of spontaneous circulation (ROSC) are associated with higher mortality rates [2426].

Actual recommendations emphasize the importance of reversing the main cause that led to cardiac arrest (CA) as soon as possible [2,27]. For instance, in the case of asphyxia, the causes that lead to CA are severe hypoxia and hypercapnia. In these cases, higher respiratory rates during CPR would achieve faster normalization of oxygenation and ventilation and, theoretically, facilitate ROSC.

There are not, to our knowledge, any clinical studies analyzing what the ideal RR during CPR is for children. The obvious difficulties in carrying out randomized clinical trials during CPR make it difficult to offer high quality scientific evidence [2]. For this reason, paediatric recommendations are based on studies with low quality scientific evidence, studies in adults and studies in non-asphyxial CA paediatric animal models [28]. This is why paediatric experimental animal models to assess the effect of ventilation during CPR are so important [6,7].

The hypothesis of the present study is that a RR of 10 rpm during CPR can be insufficient for smaller children, since the younger the child the higher RR is needed for adequate ventilation [17,29]. Thus, higher RR during CPR would achieve better oxygenation and ventilation without negatively affecting haemodynamics and improve ROSC rates.

Materials and Methods

We conducted a randomized controlled experimental clinical trial in 46 Maryland piglets that were genetically identical. The study was approved by the Gregorio Marañón General University Hospital Ethics Committee for Animal Research (4-2/2012) and was carried out by qualified staff. International guidelines for ethical conduct in the care and use of experimental animals were applied throughout the study.

Animals were brought from a Community of Madrid authorised farm and housed for 24 hours before the experiment and were fasted overnight (with free access to water). Piglets were pre-medicated with intramuscular ketamine (15 mg/kg) and atropine (0.02 mg/kg) before obtaining a peripheral venous access. After starting continuous cardio-respiratory monitoring, a single dose of iv propofol (5 mg/kg), fentanyl (5 mcg/kg) and atracurium (0.5 mg/kg) were administered for orotracheal intubation, followed by a continuous intravenous perfusion of propofol (10 mg/kg/h), fentanyl (10 mcg/kg/h) and atracurium (2 mg/kg/h).

Piglets were mechanically ventilated (Servo 900C® Ventilator, Siemens-Elema, Solna, Sweden) with the initial following settings: tidal volume 10 ml/kg, 20 bpm, PEEP 4 mmHg, FiO2 45%. Settings were adjusted to obtain an end-tidal CO2 (etCO2) between 30–40 mmHg and an arterial CO2 pressure between 35 and 45 mmHg.

Continuous monitoring of the following parameters were registered: electrocardiogram (ECG), transcutaneous oxygen saturation (HeartStart XL+®, Philips Medical Systems, Andover, Massachusetts, USA), cerebral blood flow by means of a flowmeter placed on the carotid artery (HDQ1.5FSB, Transonic Systems Inc., Ithaca, New York, USA), skin blood perfusion on the abdomen (BLF21A Laser Doppler Perfusion Monitor®, Transonic Systems Inc., Ithaca, New York, USA), regional oxygen saturation (rSO2) of cerebral and splanchnic regions (sensors in cranial midline and right flank, respectively) using near infrared spectroscopy (NIRS) (INVOS® Cerebral Oxymeter Monitor, Somanetics, Troy, Minnesota, USA). Ventilating volumes and pressures, FiO2 and etCO2 were registered by means of a spirometer connected to an S5® monitor (DatexOhmeda, Madison, Wisconsin, USA). Cannulation of femoral arterial and venous accesses was ultrasound-guided. A three-lumen 5F catheter was used for continuous central venous pressure (CVP) monitoring, blood sample extraction and drug infusion. A 4F PiCCO®catheter (PiCCO®, Pulsion Medical System, Munich, Germany) for monitoring arterial pressure and cardiac output byfemoral artery thermodilution method was placed in the contralateral femoral artery. Blood gas analyses were processed in a GEM Premier 300® gas analyzer (Instrumentation Laboratory, Lexington, Kentucky, USA).

After a 30-minute stabilization period, baseline data were collected and arterial and venous blood gases were drawn to assess adequate ventilation and oxygenation.

Asphyxial cardiac arrest was induced by disconnecting the piglets from the ventilator for 10 minutes after receiving an additional bolus of atracurium (0.5 mg/kg), and cardiac arrest was defined as a mean arterial pressure (MAP) under 25mmHg, as has been described previously [6,7,30,31]. Data including monitoring parameters and blood gases were registered after 10 minutes of asphyxia, before starting resuscitation. Time to cardiac arrest was also registered. At this point, animals were randomized into one of the three therapeutic groups (10, 20 or 30 rpm) and advanced resuscitation was initiated: the animal was connected to the ventilator (with the same parameters as before the disconnection, except for an FiO2 of 100% and the allotted breath rate) and chest compressions were delivered at a metronome-tailored rate of 100 cpm. Pulse and ECG were assessed at 3 minute intervals, and the provider delivering chest compressions was swapped to avoid fatigue. Adrenaline (Epinephrine)(0.02 mg/kg each dose) was administered every 3 minutes and sodium bicarbonate (1 mEq/kg each dose) at 9 and 18 minutes of CPR. Animals were defibrillated (4 J/kg) if a shockable rhythm was identified; adrenaline and amiodarone (5 mg/kg) were administered after the third defibrillation [28].

The following data were collected at baseline and every 3 minutes after the initiation of CPR: Heart rate and rhythm, systolic arterial pressure (SAP), diastolic arterial pressure (DAP), mean arterial pressure (MAP), transcutaneous oxygen saturation, cerebral and splanchnic tissue oxygenation indexes, cerebral blood flow, skin blood perfusion, temperature, inspiratory and expiratory tidal volume, etCO2 and FiO2. Arterial and venous blood gases were drawn at baseline 3, 9, 18 and 24 minutes.

Resuscitation was discontinued upon ROSC or after 24 minutes of CPR. Animals achieving ROSC were later sacrificed by means of propofol and potassium chloride overdose.

Statistical package SPSS 21.0 (IBM SPSS Statistics, Chicago, Michigan, USA) was used for statistical analysis. Variables did not follow a normal distribution according to the Kolmogorov-Smirnov test. Continuous variables are expressed as medians and interquartile range (IQR), and categorical variables as absolute percentages. Mood´s median test, Kruskal-Wallis test and chi-squared (χ2) (or Fisher test if sample size was smaller than 20 or if any value was smaller than 5) were used, respectively, to compare continuous and categorical variables. Incidence of hyper- (PaCO2< 30 mmHg) and hypoventilation (PaCO2> 50 mmHg) in the different therapeutic groups was compared. Spearman´s Rho test was used to assess correlation between continuous variables. Statistical significance was defined as P<0.05.

Results

We studied 46 piglets between 1 and 2 months of age weighing between 9 and 11 kg. They were randomized into three groups according to the breath rate during resuscitation: Group 1) 10 rpm (15 piglets); Group 2) 20 rpm (16 piglets); Group 3) 30 rpm (15 piglets). Main baseline characteristics of the 3 groups are described in S1 Table. There were no differences in the time to cardiac arrest: 7.0 (6.5–8) minutes in group 1; 7.1 (6–7.8) minutes in group 2 and 7.0 (6.5–8.4) minutes in group 3, (P = 0.85). Table 1 shows the main characteristics of the 3 groups before starting CPR. Forty-two piglets (91.3%) had non-shockable rhythms 10 minutes after cardiac arrest, with no significant differences between groups: 14 (93.3%), 15 (93.8%) and 13 (86.7%), respectively (P = 0.74).

thumbnail
Table 1. Comparison between main variables at baseline (10 minutes after remove piglets from ventilator).

https://doi.org/10.1371/journal.pone.0162185.t001

ROSC was achieved in 22 piglets (47.8%) after CPR. The percentage of ROSC was higher in the 30 rpm group (60%), than in the 10 rpm (37.5%) and 20 rpm (46.6%) groups, but differences were not statistically significant (P = 0.51).

Figs 15 shows the evolution of pH, PaO2 and PaCO2 throughout the experiment. Fig 1 shows how pH increased over the course of CPR in all the groups. PaCO2 decreased over the first 9 minutes of CPR in all groups. The greater difference is observed at 3 minutes of CPR: 55 mmHg (30 rpm group), 58 mmHg (20 rpm) and 75 mmHg (10 rpm), P = 0.08. Fig 2 shows how PaCO2 remained stable thereafter in groups 2 and 3 whereas it continued to rise in group 1 (10 rpm). Such a difference was most significant at 24 minutes after CPR (P = 0.06). Group 3 had the highest percentage of hyperventilated piglets (PaCO2<30 mmHg) at 9 minutes of CPR and the lowest percentage of hypoventilated patients at 24 minutes of CPR, as shown in Table 2.

thumbnail
Table 2. Hyper (PaCO2< 30 mmHg) and hypoventilated (PaCO2> 50 mmHg) piglets between the 3 groups along the hole resuscitation.

https://doi.org/10.1371/journal.pone.0162185.t002

PaO2 increased significantly over the first 9 minutes of CPR and then dropped modestly in all groups. After 3 minutes of CPR, PaO2 was higher in group 3 than in groups 2 and 1 (61 mmHg, 53 mmHg and 45 mmHg, respectively); P = 0.05. There were no other significant differences between groups over the course of the study (Fig 3).

We compared MAP, carotid blood flow, cerebral SO2 and PaO2 between hyperventilated (PaCO2<30 mmHg), normoventilated (30–50 mmHg) and hypoventilated (> 50 mmHg) animals. PaO2 was significantly higher in hyperventilated (PaO2 153 mmHg) than in normoventilated (79 mmHg) and hypoventilated (47 mmHg) piglets, but no significant differences were found in MAP, carotid blood flow or cerebral SO2 (Table 3).

There was a moderate correlation between PaO2 and pH (r = 0.514, P<0.001) as well as a moderate inverse correlation between PaO2 and PaCO2 (r = -0.694, P<0.001). A moderate correlation was also found between MAP and carotid blood flow (r = 0.468, P<0.001) (Table 4).

thumbnail
Table 4. Correlation between gasometrical values and MAP, carotid blood flow and cerebral rSO2.

https://doi.org/10.1371/journal.pone.0162185.t004

Fig 4 shows that group number 3 (30 rpm) had significantly lower values of etCO2 than the other groups at 3 and at 9 minutes of CPR. Fig 5 shows a significant increase in MAP after 3 minutes of CPR followed by a progressive drop thereafter. MAP in the 10 rpm group was lower than in the other two groups at 3 minutes (P = 0.06) and 9 minutes (P = 0.01) of CPR. Diastolic arterial pressure (DAP) was higher in the 20 rpm group at 9 minutes of CPR than in the other groups. The rest of parameters did not show any statistically significant differences (S2 Table).

Discussion

Our study is, to our knowledge, the first to analyze the effect of different RR during CPR on oxygenation, ventilation, haemodynamics, tissue perfusion and ROSC in a paediatric animal model of asphyxial cardiac arrest.

The results from this study offer some valuable information:

In the first place, haemodynamic, respiratory and tissue perfusion parameters improve during the first 9 minutes of CPR but then progressively deteriorate despite delivering good-quality CPR. ROSC was achieved mostly in the first 10 to 12 minutes of CPR. Only one piglet achieved ROSC after 12 minutes of CPR. This fact has also been observed in clinical studies [32,33] and other paediatric experimental animal models [7,30,31,34], which highlights the importance of accurately performing high quality resuscitation during the first minutes of CPR.

Secondly, piglets that were ventilated at a higher respiratory rate had lower PaCO2 over the course of CPR. EtCO2 was also lower in 30 rpm group (Fig 4) but etCO2 reflects not only ventilation but pulmonary blood flow. The percentage of hyperventilated piglets was higher in the 30 rpm group whereas the percentage of hypoventilated animals was higher in the 10 rpm group.However, hyperventilation risk with 30 rpm is lower than hypoventilation with 10 rpm. Some clinical studies in children show that both hyper- as well as hypoventilation during the first hour after ROSC are associated with higher mortality rates [25], but there are no clinical studies analyzing ventilation and mortality during CPR.

Animals in the 30 rpm group had a tendency to better oxygenation values during the first 10 minutes of CPR, which is the period of time in which ROSC is mainly achieved. This difference in oxygenation did not achieve statistical significance, but it may be relevant in clinical practice as the most frequent cause of cardiac arrest in children is asphyxia and thus hypoxia [2,5,815,34].

On the other hand, hyperventilated piglets with PaCO2<30 mmHg had significantly higher values of PaO2 with no differences in MAP, carotid blood flow or cerebral SO2 than the rest of piglets. Furthermore, there was a direct correlation between more ventilation (higher pH and lower PaCO2) and better oxygenation (PaO2). This is an important fact, as it suggests that, in asphyxial cardiac arrest, a higher RR results in more ventilation and better oxygenation as it improves gas exchange.

In the fourth place, performing CPR with higher RR than what international guidelines recommend, but which are more similar to normal and physiologic RR for paediatric patients, did not affect haemodynamic parameters at all during CPR. Moreover, piglets with higher RR had slightly higher MAP than those ventilated with 10 rpm. This fact supports previous results from this same animal model showing that CPR with ventilation as opposed to chest compressions only does not negatively affect haemodynamics during CPR [6,7]. Although MAP depends more on compressions quality than on RR, higher RR achieve better systemic and probably coronary ventilation and oxygenation improving haemodynamics at some point, but studies analyzing this specific effect are required.

Finally, animals receiving higher RR show a tendency (although not statistically significant) towards greater ROSC rates than the other groups. Nevertheless, studies with a bigger sample size are required in order to assess the influence of RR on ROSC.

Our study has several limitations. In the first place, even though our asphyxial paediatric cardiac arrest model has been validated and is very similar to what happens in human paediatric patients, results from experimental animal studies must be interpreted with caution. In the second place, sample size is probably insufficient to find statistically significant differences in ROSC, ventilation and oxygenation. Nevertheless, it offers some important information for further experimental animal models with a bigger sample size in order to analyze the influence of RR during CPR on ROSC.

In the third place, differences in oxygenation and MAP may be due not only to RR, but to the quality of manual chest compressions. Depth of chest compressions was not measured, but they were always performed by the same medical team, swapping the member providing chest compressions every 3 minutes to guarantee good-quality compressions. Frequency of chest compressions was tailored with a metronome.

Finally, our study analyzes the influence of RR during advanced CPR, where the patient is already intubated and chest compressions do not need to be interrupted to deliver breaths. Thus, our results cannot be fully extrapolated to non-intubated patients receiving basic life support.

Conclusions

According to our model of asphyxial cardiac arrest, oxygenation, ventilation and global haemodynamics improve during the first 9 minutes of CPR, which is also when the highest percentage of ROSC is achieved. Nevertheless, all these parameters worsen beyond that point in time. Our study confirms the hypothesis that higher RR achieve better oxygenation and ventilation without affecting haemodynamics, carotid blood flow or cerebral oxygenation. Even though there was a positive tendency, we cannot conclude that a higher RR is associated with better ROSC rates.

Our results provide a basis for further experimental and clinical studies to assess the effect of higher-than-recommended RR during CPR in children.

Supporting Information

S1 Table. Comparison between main variables just before remove piglets from ventilator.

https://doi.org/10.1371/journal.pone.0162185.s001

(DOCX)

S2 Table. Comparison between main variables during resuscitation.

https://doi.org/10.1371/journal.pone.0162185.s002

(DOCX)

Acknowledgments

To Mercedes Adrados, Natalia Sánchez and personnel of the Department of Experimental Medicine of the Gregorio Marañón General University Hospital for their collaboration with experiments.

To José MaríaBellón for his help with statistical analyses.

Author Contributions

  1. Conceptualization: JL JU JL-H.
  2. Data curation: JL JL-H.
  3. Formal analysis: JL RG JU JL-H.
  4. Funding acquisition: JL-H.
  5. Investigation: JL SNF RG MJS JU JL-H.
  6. Methodology: JL MJS JU JL-H.
  7. Project administration: JL-H.
  8. Resources: SNF RG MJS.
  9. Software: RG JL JL-H.
  10. Supervision: JL-H JL.
  11. Validation: SNF MJS.
  12. Visualization: JL JU JL-H.
  13. Writing – original draft: JL SNF RG JL-H.
  14. Writing – review & editing: JL MJS JU JL-H.

References

  1. 1. Maconochie IK, de Caen AR, Aickin R, Atkins DL, Biarent D, Guerguerian AM, et al.Part 6: Pediatric basic life support and pediatric advanced life support: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation. 2015;95:e147–e168. pmid:26477423
  2. 2. Maconochie IK, Bingham R, Eich C, López-Herce J, Rodríguez-Núñez A, Rajka T,et al. European Resuscitation Council Guidelines for Resuscitation 2015. Section 6: Pediatric life support. Resuscitation 2015;95:223–248. pmid:26477414
  3. 3. Sutton RM, Case E, Brown SP, Atkins DL, Nadkarni VM, Kaltman J,et al. A quantitative analysis of out-of-hospital pediatric and adolescent resuscitation quality—A report from the ROC epistry-cardiac arrest.Resuscitation.2015 Aug;93:150–7. pmid:25917262
  4. 4. Perkins GD, Handley AJ, Koster RW, Castrén M, Smyth MA, Olasveengen T,et al. European Resuscitation Council Guidelines for Resuscitation 2015. Section2: Adult basic life support and automated external defibrillation. Resuscitation 2015;95:81–99. pmid:26477420
  5. 5. Kitamura T, Iwami T, Kawamura T, Nagao K, Tanaka H, Nadkarni VM,et al. Conventional and chest-compression-only cardiopulmonary resuscitation by bystanders for children who have out-of-hospital cardiac arrests: a prospective, nationwide, population-based cohort study. Lancet 2010;375(9723):1347–1354. pmid:20202679
  6. 6. Iglesias JM, López-Herce J, Urbano J, Solana MJ, Mencía S, Del Castillo J. Chest compressions versus ventilation plus chest compressions in a pediatric asphyxial cardiac arrest animal model. Intensive Care Med. 2010;36:712–716. pmid:20148320
  7. 7. Botran M, López-Herce J, Urbano J, Solana MJ, Garcia A, Carrillo A. Chest compressions versus ventilation plus chest compressions: a randomized trial in a pediatric asphyxial cardiac arrest animal model. Intensive Care Med. 2011;37:1873–1880. pmid:21847647
  8. 8. Herlitz J, Engdahl J, Svensson L, Young M, Angquist KA, Holmberg S. Characteristics and outcome among children suffering from out of hospital cardiac arrest in Sweden. Resuscitation 2005;64:37–40. pmid:15629553
  9. 9. Kuisma M, Suominen P, Korpela R. Paediatric out-of-hospital cardiac arrests-epidemiology and outcome. Resuscitation 1995;30:141–150. pmid:8560103
  10. 10. Sirbaugh PE, Pepe PE, Shook JE, Kimball KT, Goldman MJ, Ward MA,et al. A prospective, population-based study of the demographics, epidemiology, management, and outcome of out-of-hospital pediatric cardiopulmonary arrest. Ann Emerg Med. 1999;33:174–184. pmid:9922413
  11. 11. Young KD, Seidel JS. Pediatric cardiopulmonary resuscitation: a collective review. Ann Emerg Med. 1999;33:195–205. pmid:9922416
  12. 12. Reis AG, Nadkarni V, Perondi MB, Grisi S, Berg RA. A prospective investigation into the epidemiology of in-hospital pediatric cardiopulmonary resuscitation using the international Utstein reporting style. Pediatrics 2002;109:200–209. pmid:11826196
  13. 13. Young KD, Gausche-Hill M, McClung CD, Lewis JR. A prospective, population-based study of the epidemiology and outcome of out-of-hospital pediatric cardiopulmonary arrest. Pediatrics 2004;114:157–164. pmid:15231922
  14. 14. Rajan S, Wissenberg M, Folke F, Hansen CM, Lippert FK, Weeke P,et al. Out-of-hospital cardiac arrests in children and adolescents: incidences, outcomes, and household socioeconomic status. Resuscitation 2015;88:12–19. pmid:25500748
  15. 15. López-Herce J, Alvarez AC. Bystander CPR for paediatric out-of-hospital cardiac arrest.Lancet 2010;375:1321–1322. pmid:20202678
  16. 16. Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P,et al. European Resuscitation Council Guidelines for Resuscitation 2015. Section3: Adult advanced life support. Resuscitation 2015;95:100–147. pmid:26477701
  17. 17. O´Leary F, Hayen A, Lockie F, Peat J. Defining normal ranges and centiles for heart and respiratory rates in infants and children: a cross-sectional study of patients attending an Australian tertiary hospital pediatric emergency department. Arch Dis Child.2015;100(8):733–777. pmid:25784747
  18. 18. Aufderheide TP, Sigurdsson G, Pirrallo RG, Yannopoulos D, McKnite S, von Briesen C,et al. Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation 2004;109:1960–1965. pmid:15066941
  19. 19. Aufderheide TP, Lurie KG. Death by hyperventilation: A common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med. 2004;32(9):S345–S351. pmid:15508657
  20. 20. Aufderheide TP. The problem with and benefit of ventilations: should our approach be the same in cardiac and respiratory arrest? CurrOpinCrit Care. 2006;12:207–212.
  21. 21. Wik L, Kramer-Johansen J, Myklebust H, Sørebø H, Svensson L, Fellows B,et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 2005;293:299–304. pmid:15657322
  22. 22. Abella BS, Alvarado JP, Myklebust H, Edelson DP, Barry A, O'Hearn N,et al. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 2005;293:305–310. pmid:15657323
  23. 23. O´Neill JF, Deakin CD. Do we hyperventilate cardiac arrest patients? Resuscitation 2007;7:82–85.
  24. 24. Roberts BW, Kilgannon JH, Chansky ME, Trzeciak S. Association between initial prescribed minute ventilation and post-resuscitation partial pressure of arterial carbon dioxide in patients with post-cardiac arrest syndrome. Ann Intensive Care 2014;4(1):9. pmid:24602367
  25. 25. López-Herce J, del Castillo J, Matamoros M, Canadas S, Rodriguez-Calvo A, Cecchetti C,et al.Post return of spontaneous circulation factors associated with mortality in pediatric in-hospital cardiac arrest: a prospective multicenter multinational observational study.Crit Care.2014 Nov 3;18(6):607. pmid:25672247
  26. 26. Del Castillo J, López-Herce J, Matamoros M, Canadas S, Rodriguez-Calvo A, Cecchetti C,et al.Hyperoxia, hypocapnia and hypercapnia as outcome factors after cardiac arrest in children. Resuscitation 2012;83:1456–1461. pmid:22841610
  27. 27. Gazmuri RJ, Nadkarni VM, Nolan PJ, Arntz HR, Billi JE, Bossaert L,et al. Scientific knowledge gaps and clinical research priorities for cardiopulmonary resuscitation and emergency cardiovascular care identified during the 2005 international consensus conference on ECC [corrected] and CPR science with treatment recommendations: A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian Resuscitation Council, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, and the New Zealand Resuscitation Council); the American Heart Association Emergency Cardiovascular Care Committee; the Stroke Council; and the Cardiovascular Nursing Council. Circulation 2007;116(21): 2501–2512. pmid:17993477
  28. 28. Biarent D, Bingham R, Eich C, López-Herce J, Maconochie I, Rodríguez-Núñez A, et al. European Resuscitation Council Guidelines for Resuscitation 2010: Section 6. Pediatric life support. Resuscitation 2010;81:1364–1388. pmid:20956047
  29. 29. Yannopoulos D, Matsuura T, McKnite S, Goodman N, Idris A, Tang W,et al. No assisted ventilation cardiopulmonary resuscitation and 24-hour neurological outcomes in a porcine model of cardiac-arrest. Crit Care Med. 2010;38(1):254–260. pmid:19789452
  30. 30. González R, Urbano J, Botrán M, López J, Solana MJ, García A, et alAdrenaline, terlipressin, and corticoids versus adrenaline in the treatment of experimental pediatric asphyxial cardiac arrest.PediatrCrit Care Med. 2014;15:e280–e287
  31. 31. López-Herce J, Fernández B, Urbano J, Mencía S, Solana MJ, Rodríguez-Núñez A,et al. Hemodynamic, respiratory, and perfusion parameters during asphyxia, resuscitation, and post-resuscitation in a pediatric model of cardiac arrest.Intensive Care Med. 2011;37:147–155. pmid:20838762
  32. 32. López-Herce J, Del Castillo J, Matamoros M, Cañadas S, Rodriguez-Calvo A, Cecchetti C,et al. Factors associated with mortality in pediatric in-hospital cardiac arrest: a prospective multicenter multinational observational study.IntensiveCareMed. 2013;39:309–318.
  33. 33. Kjaergaard J, Nielsen N, Winther-Jensen M, Wanscher M, Pellis T, Kuiper M, et al. Impact of time to return of spontaneous circulation on neuroprotective effect of targeted temperature management at 33 or 36 degrees in comatose survivors of out-of-hospital cardiac arrest. Resuscitation 2015 Nov;96:310–6. Epub 2015 Jul 7 pmid:26159609
  34. 34. López-Herce J, Fernández B, Urbano J,Mencía S, Solana MJ, Del Castillo J, et al.Correlations between hemodynamic, oxygenation and tissue perfusion parameters during asphyxial cardiac arrest and resuscitation in a pediatric animal model.Resuscitation 2011;82:755–759. pmid:21458138