Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

  • Loading metrics

Inherited Variation at MC1R and Histological Characteristics of Primary Melanoma

  • Nicholas J. Taylor,

    Affiliation Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, United States of America

  • Klaus J. Busam,

    Affiliation Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America

  • Lynn From,

    Affiliation Women’s College Hospital, Toronto, Ontario, Canada

  • Pamela A. Groben,

    Affiliation Departments of Dermatology, Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America

  • Hoda Anton-Culver,

    Affiliation Department of Epidemiology, University of California, Irvine, California, United States of America

  • Anne E. Cust,

    Affiliation Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia

  • Colin B. Begg,

    Affiliation Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America

  • Terence Dwyer,

    Affiliation International Agency for Cancer Research, Lyon, France

  • Richard P. Gallagher,

    Affiliation British Columbia Cancer Agency, Vancouver, British Columbia, Canada

  • Stephen B. Gruber,

    Affiliation Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, United States of America

  • Irene Orlow,

    Affiliation Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America

  • Stefano Rosso,

    Affiliation Piedmont Tumor Registry, Turin, Italy

  • Nancy E. Thomas,

    Affiliation Department of Dermatology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America

  • Roberto Zanetti,

    Affiliation Piedmont Tumor Registry, Turin, Italy

  • Timothy R. Rebbeck,

    Affiliations Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

  • Marianne Berwick,

    Affiliation Departments of Internal Medicine and Dermatology, University of New Mexico, Albuquerque, New Mexico, United States of America

  •  [ ... ],
  • Peter A. Kanetsky

    peter.kanetsky@moffitt.org

    Affiliation Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, United States of America

  • [ view all ]
  • [ view less ]

Inherited Variation at MC1R and Histological Characteristics of Primary Melanoma

  • Nicholas J. Taylor, 
  • Klaus J. Busam, 
  • Lynn From, 
  • Pamela A. Groben, 
  • Hoda Anton-Culver, 
  • Anne E. Cust, 
  • Colin B. Begg, 
  • Terence Dwyer, 
  • Richard P. Gallagher, 
  • Stephen B. Gruber
PLOS
x

Abstract

Variation in the melanocortin-1receptor (MC1R) gene is associated with pigmentary phenotypes and risk of malignant melanoma. Few studies have reported on MC1R variation with respect to tumor characteristics, especially clinically important prognostic features. We examined associations between MC1R variants and histopathological melanoma characteristics. Study participants were enrolled from nine geographic regions in Australia, Canada, Italy and the United States and were genotyped for MC1R variants classified as high-risk [R] (D84E, R142H, R151C, R160W, and D294H, all nonsense and insertion/deletion) or low-risk [r] (all other nonsynonymous) variants. Tissue was available for 2,160 white participants of the Genes, Environment and Melanoma (GEM) Study with a first incident primary melanoma diagnosis, and underwent centralized pathologic review. No statistically significant associations were observed between MC1R variants and AJCC established prognostic tumor characteristics: Breslow thickness, presence of mitoses or presence of ulceration. However, MC1R was significantly associated with anatomic site of melanoma (p = 0.002) and a positive association was observed between carriage of more than one [R] variant and melanomas arising on the arms (OR = 2.39; 95% CI: 1.40, 4.09). We also observed statistically significant differences between sun-sensitive and sun-resistant individuals with respect to associations between MC1R genotype and AJCC prognostic tumor characteristics. Our results suggest inherited variation in MC1R may play an influential role in anatomic site presentation of melanomas and may differ with respect to skin pigmentation phenotype.

Introduction

Inherited variation in the melanocortin-1 receptor (MC1R) gene is a robust genetic marker for moderately increased risk of melanoma [1]. We hypothesize that variation in MC1R influences the occurrence of melanomas that can be distinguished by histology or other tumor characteristics. However, evidence supporting a consistent association between MC1R variation and melanoma tumor characteristics is limited. Direct cross-study comparisons are hindered due in part to a lack of standardized measures and characterization of MC1R risk variants [2], coupled with differences in categorization of melanoma characteristics (e.g. collapsing of anatomic site presentation).

To more thoroughly address whether MC1R variants are associated with tumor characteristics, we present results from individuals diagnosed with a first incident primary tumor in a large population-based case-control study of melanoma: the Genes, Environment and Melanoma (GEM) Study. We examined associations between variation in MC1R and American Joint Committee on Cancer (AJCC) established tumor characteristics that are associated with prognosis: Breslow thickness and presence of mitoses and ulceration [38], as well as with presence of tumor infiltrating lymphocytes (TILs), a purported prognostic factor [9]. We also evaluated other histopathological tumor features for associations with MC1R variation in an effort to further characterize potential etiologic heterogeneity.

Materials and Methods

GEM Study

The GEM Study is a population-based case-control study that enrolled a large series of individuals diagnosed with a first incident invasive primary cutaneous melanoma. Study participants were identified from eight population-based cancer registries and one hospital center in Australia, Canada, Italy and the United States. Detailed study recruitment methods have been previously described [10,11]. The human research oversight committees at each of the GEM study sites, including those at the British Columbia Cancer Agency, Vancouver, BC, CA; Cancer Care Ontario, Toronto, ON, CA; Centro per la Prevenzione Oncologia, Torino, IT; Memorial Sloan Kettering Cancer Center, New York, NY, US; Menzies Cancer Center, Hobart, TAS, AU; University of California, Irvine, CA, US; University of Michigan, Ann Arbor, MI, US; University of North Carolina, Chapel Hill, NC, US; and University of Sydney, Sydney, NSW, AU, approved the study protocol. Written and signed informed consent was obtained from all participants.

Diagnostic pathology reports were obtained for each participant with a first incident primary melanoma (n = 2,424) from the appropriate ascertainment center, and data corresponding to histological subtype, lesion thickness, and anatomic location of lesion were abstracted. Tumor tissue slides for 2,105 (86.8%) participants with a diagnosis of first incident melanoma were available for centralized pathological review, performed in large part by one of three study pathologists (KB, LF, PG). Standardized pathologic review of slides included evaluation of: histologic subtype, Breslow thickness, Clark level, mitoses, solar elastosis, TILs, presence of satellite lesions, presence of coexisting nevi, presence of pigmentation, evidence of lesion regression, ulceration, and vertical growth phase. Melanomas were classified according to established histopathological criteria [12,13]. Since Breslow thickness was both abstracted from the pathology report and recorded during the centralized pathologic review, the measure corresponding to the deepest reading was chosen to represent the value of most biological relevance.

Using a glossy colored guide to aid in differentiating between nevi and other skin lesions, participants were asked to have the nevi on their backs counted by a family member or friend; logistic models were adjusted for this continuous variable. A phenotypic index was derived using data collected from a study participant self-administered questionnaire [14], and was based on: hair color (black or dark brown = 1; light brown or blond = 2; red = 3), eye color (black or brown = 0; all other colors = 1), and relative inability to tan in response to sun exposure (no = 0; yes = 1) [15]. Phenotypic index scores of 1 and 2 indicate relatively darker cutaneous phenotypes and lower phenotypic melanoma risk; an index score of 3 indicates medium phenotypic risk. Hereinafter, we refer to individuals with any of these three scores as having a “sun-resistant” phenotype. Phenotypic index scores of 4 and 5 indicate relatively fairer cutaneous phenotypes and higher phenotypic risks for melanoma, hereinafter referred to as “sun sensitive”.

MC1R Genotyping

Details of MC1R genotyping methods, distribution of observed MC1R variants, and variant carrier status among GEM Study participants have been described previously [15,16]. We adopted nomenclature and definitions based on previous literature [1,1720] to classify MC1R variants as conferring higher risk for melanoma based on strong association with red hair phenotype [R] (D84E, R142H, R151C, R160W, and D294H, all nonsense and insertion/deletion) or lower risk for melanoma based on weaker association with red hair phenotype [r] (all other nonsynonymous variants). Since the exact functional status of many MC1R variants is still unknown, we acknowledge that these risk categories may be inaccurate. We categorized MC1R carriage into four groups: consensus (absence of any variants), only [r] (carriage of any [r] variant in the absence of a [R] variant), one [R] (carriage of a single [R] variant), and >1 [R] (carriage of more than 1 [R] variant). Secondarily, we examined associations between MC1R variant carriage number and tumor characteristics by coding MC1R genotype based on total number of variants ([r] and [R]; 0 variants vs. 1 variant vs. 2 or more variants).

Statistical Analysis

For this report, we include only those GEM participants with first incident primary melanomas who were successfully genotyped for MC1R and who self-reported their race as white (n = 2,160). We used SAS (SAS Institute, Cary, NC) to perform multinomial logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between MC1R variant status and tumor characteristics while adjusting for sex, age at most recent melanoma diagnosis, study ascertainment center, phenotypic index and number of nevi on the back. For tumor characteristics that were modeled dichotomously, results are equivalent to those obtained from a binomial logistic regression model. We also conducted analyses stratified by sun-resistant and sun-sensitive phenotypes; we then evaluated the Wald p-value of the interaction term for sun sensitivity by MC1R to assess heterogeneity of effect between sun-sensitive and sun-resistant phenotypes. All statistical tests were two-sided with an alpha level of 0.05.

Results

Overall, tumor characteristics were not associated with genotyping success (data not shown). In univariate analyses, we compared the distributions of MC1R genotype risk categories across strata of prognostic tumor characteristics including: Breslow thickness and presence of mitoses, ulceration, or TILs. No statistically significant associations were noted among these tumor characteristics. We did observe a statistically significant association between anatomical site and MC1R variant carriage based on low-[r] and high-[R] risk variant carriage (p = 0.002) (Table 1). Our findings with respect to MC1R variant carriage number were consistent with no association (data not tabulated).

thumbnail
Table 1. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between MC1R variants and histopathological tumor characteristics among first incident cases of invasive melanoma in the GEM Study.

https://doi.org/10.1371/journal.pone.0119920.t001

Multivariate analyses are also presented in Table 1. No statistically significant associations were noted among prognostic tumor characteristics. However, our adjusted analyses revealed a strong association between carriage of more than one MC1R [R] variant and melanoma development on the arms (OR = 2.39; 95% CI: 1.40, 4.09) when compared to individuals who developed melanomas on the trunk or pelvis. Associations between MC1R variants and strata of other melanoma tumor characteristics were consistent with no association after adjustment.

Because previous reports have indicated that melanoma risk associated with carriage of high-risk [R] MC1R variants is particularly informative among individuals with darker phenotypic characteristics [21], we explored associations between MC1R variants and the four prognostic tumor characteristics by skin pigmentation phenotype. We noted statistical heterogeneity between individuals with sun-sensitive and sun-resistant phenotypes for the associations between MC1R variants and Breslow thickness (p = 0.03), presence of mitoses (p = 0.03), presence of ulceration (p = 0.04), as well as presence of TILs (p = 0.01) (Table 2). We observed relatively stronger associations between Breslow thickness and MC1R among sun-sensitive individuals. Similarly, we noted pronounced positive associations between carriage of only [r] variants (vs. carriage of only consensus) and presence of mitoses and ulceration among sun-sensitive individuals, whereas carriage of only [r] variants among sun-resistant participants showed little or no association with presence of mitoses and an inverse association with presence of ulceration. We found carriage of [R] variants was more prevalent among sun-sensitive individuals with non-brisk TILs observed in their melanomas compared to sun-resistant individuals with non-brisk TILs. In contrast, both [r] and [R] variants were more prevalent among sun-resistant cases with brisk TILs observed in their lesions compared to sun-sensitive cases with brisk TILs.

thumbnail
Table 2. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between MC1R variants and prognostic histopathological tumor characteristics among first incident cases of invasive melanoma in the GEM Study, stratified by phenotype.

https://doi.org/10.1371/journal.pone.0119920.t002

Discussion

The GEM Study provides well-annotated histopathological data for melanomas and complete sequencing of participant DNA at the MC1R locus, which allows for a comprehensive examination of the associations between variants and histopathological tumor characteristics. In this study we report no pronounced or statistically significant main effect associations of MC1R with AJCC accepted prognostic factors of Breslow thickness, presence of ulceration, or presence of mitoses overall. Similarly, we did not observe an association between variation in MC1R and TILs, which were shown to be an important independent prognostic feature of melanoma in GEM [9].

However, we did find a persistent positive association between carriage of more than one [R] variant and melanoma presentation on the arms after adjustment. After stratification by skin pigmentation phenotype, this observed association was limited to individuals with sun-resistant phenotypes. There are several previous reports of MC1R variation in association with anatomical site of melanoma, but they generally grouped sites together on the basis of sun-exposure before analyses and/or categorized MC1R variants differently, [2226] and are not directly comparable to this study. We did attempt to draw a comparison between our results and results from a case-control study of sporadic and familial melanoma in a Swedish population [25], which reported an increased association between carriage of ≥1 MC1R variant and melanoma presentation on the trunk (OR = 1.54; 95% CI: 1.01, 2.37). After recapitulating their coding for anatomic site, MC1R, and other covariates to the best of our ability, we were unable to replicate that finding (data not shown). Recently, Peña-Vilabelda et. al. reported results similar to our own with respect to high-risk MC1R variants in association with melanoma tumor site presentation (Arms: OR = 2.34; 95% CI: 0.98, 5.61) [27]. Interestingly, prior studies have noted more favorable prognoses among melanomas presenting on the extremities [28,29]. Future studies of variation in MC1R related to anatomical melanoma presentation are necessary to validate our findings.

We explored effect modification by phenotypic index only among the prognostic measures of Breslow thickness, ulceration, mitoses, and TILs to limit the potential for false discovery. We observed significant differences between phenotypically sun-resistant and sun-sensitive individuals with respect to all four prognostic tumor factors. Interestingly, sun-sensitive cases demonstrated stronger associations across Breslow thickness, mitoses and ulceration compared to those observed among sun-resistant individuals. These results are thought-provoking considering that it is among individuals with more sun-resistant phenotypes that MC1R has been associated with increased risk for melanoma [21,30]. However, we did note generally stronger associations between brisk TILs and MC1R among individuals with a sun-resistant phenotype compared to sun-sensitive cases. Although associations between MC1R variant carriage and all four prognostic variables were significantly different between phenotypic classifications, we were likely underpowered to detect associations within strata of phenotypic index despite the large sample size available in the GEM Study.

This investigation of tumor characteristics among 2,160 first incident cases of melanoma is the largest such study to examine associations with germline variation in MC1R. A strength of this study is the population-based nature of the parent GEM Study, from which a large number of incident cases were drawn from nine international ascertainment centers, improving generalizability of results to persons of European ancestry living in a variety of climates. Other advantages of this investigation were the centralized histopathological review conducted by expert pathologists and the ability to adjust for the potential impact of skin pigment and number of nevi. However, we do acknowledge the possibility that false positive findings may have arisen due to multiple hypothesis testing and the exploratory nature of associations examined between MC1R variation and tumor factors stratified by phenotypic index; thus, these findings should be validated in larger study populations before more meaningful interpretations can be made.

Acknowledgments

The study was conducted by the GEM Study Group: Coordinating Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA: Marianne Berwick (PI, currently at the University of New Mexico), Colin Begg (Co-PI), Irene Orlow (Co-Investigator), Klaus Busam (Dermatopathologist), Anne S. Reiner (biostatistician), Emily La Pilla (Laboratory Technician), Pampa Roy (Laboratory Technician). University of New Mexico, Albuquerque, NM (USA): Marianne Berwick (PI), Li Luo (biostatistician), Kirsten White (Laboratory Manager), Susan Paine (Data Manager). Study Centers: The University of Sydney and the Cancer Council New South Wales, Sydney (Australia): Bruce Armstrong (PI), Anne Kricker (Co-PI), Anne Cust (Co-investigator). Menzies Research Institute Tasmania, University of Tasmania, Hobart (Australia): Alison Venn (Current PI), Terence Dwyer (PI, currently at International Agency for Research on Cancer, Lyon, France), Paul Tucker (Dermatopathologist). British Columbia Cancer Research Centre, Vancouver, British Columbia (Canada): Richard Gallagher (PI), Donna Kan (Coordinator). Cancer Care Ontario, Toronto, Ontario (Canada): Loraine Marrett (PI), Elizabeth Theis (Co-Investigator), Lynn From (Dermatopathologist). Centro per la Prevenzione Oncologia Torino, Piemonte (Italy): Roberto Zanetti (PI), Stefano Rosso (Data Manager). University of California, Irvine (USA): Hoda Anton-Culver (PI), Argyrios Ziogas (Statistician). University of Michigan, Ann Arbor (USA): Stephen Gruber (PI, currently at University of Southern California, Los Angeles, CA), Timothy Johnson (Director of Melanoma Program), Shu-Chen Huang (Co-investigator, joint at USC-University of Michigan). New Jersey Department of Health and Senior Services, Trenton (USA): Judith Klotz (PI, currently retired), Homer Wilcox (Co-PI, currently retired). University of North Carolina, Chapel Hill, NC (USA): Nancy Thomas (PI), Robert Millikan (previous PI, deceased), David Ollila (Co-investigator), Kathleen Conway (Co-investigator), Pamela Groben (Dermatopathologist), Sharon Edmiston (Research Analyst), Honglin Hao (Laboratory Specialist), Eloise Parrish (Laboratory Specialist), Jill Frank (Research Assistant). University of Pennsylvania, Philadelphia, PA (USA): Timothy Rebbeck (PI), Peter Kanetsky (Co-investigator).

Author Contributions

Conceived and designed the experiments: CBB MB PAK NJT. Performed the experiments: KJB LF PAG PAK TRR. Analyzed the data: PAK NJT. Contributed reagents/materials/analysis tools: PAK TRR NJT. Wrote the paper: KJB AEC HAC TD LF PAG RPG SBG PAK IO SR NET NJT RZ.

References

  1. 1. Raimondi S, Sera F, Gandini S, Iodice S, Caini S, Maisonneuve P, et al. MC1R variants, melanoma and red hair color phenotype: a meta-analysis. Int J Cancer. 2008;122: 2753–2760. pmid:18366057
  2. 2. Williams PF, Olsen CM, Hayward NK, Whiteman DC Melanocortin 1 receptor and risk of cutaneous melanoma: a meta-analysis and estimates of population burden. Int J Cancer. 2011;129: 1730–1740. pmid:21128237
  3. 3. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27: 6199–6206. pmid:19917835
  4. 4. Barnhill RL, Fine JA, Roush GC, Berwick M Predicting five-year outcome for patients with cutaneous melanoma in a population-based study. Cancer. 1996;78: 427–432. pmid:8697387
  5. 5. Azzola MF, Shaw HM, Thompson JF, Soong SJ, Scolyer RA, Watson GF, et al. Tumor mitotic rate is a more powerful prognostic indicator than ulceration in patients with primary cutaneous melanoma: an analysis of 3661 patients from a single center. Cancer. 2003;97: 1488–1498. pmid:12627514
  6. 6. Gimotty PA, Elder DE, Fraker DL, Botbyl J, Sellers K, Elenitsas R, et al. Identification of high-risk patients among those diagnosed with thin cutaneous melanomas. J Clin Oncol. 2007;25: 1129–1134. pmid:17369575
  7. 7. Day CL Jr., Sober AJ, Kopf AW, Lew RA, Mihm MC Jr., Golomb FM, et al. A prognostic model for clinical stage I melanoma of the trunk. Location near the midline is not an independent risk factor for recurrent disease. Am J Surg. 1981;142: 247–251. pmid:7258536
  8. 8. Clark WH Jr., Elder DE, Guerry Dt, Braitman LE, Trock BJ, Schultz D, et al. Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst. 1989;81: 1893–1904. pmid:2593166
  9. 9. Thomas NE, Busam KJ, From L, Kricker A, Armstrong BK, Anton-Culver H, et al. Tumor-infiltrating lymphocyte grade in primary melanomas is independently associated with melanoma-specific survival in the population-based genes, environment and melanoma study. J Clin Oncol. 2013;31: 4252–4259. pmid:24127443
  10. 10. Millikan RC, Hummer A, Begg C, Player J, de Cotret AR, Winkel S, et al. Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study. Carcinogenesis. 2006;27: 610–618. pmid:16258177
  11. 11. Begg CB, Hummer AJ, Mujumdar U, Armstrong BK, Kricker A, Marrett LD, et al. A design for cancer case-control studies using only incident cases: experience with the GEM study of melanoma. Int J Epidemiol. 2006;35: 756–764. pmid:16556646
  12. 12. Clark WH Jr., From L, Bernardino EA, Mihm MC The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res. 1969;29: 705–727. pmid:5773814
  13. 13. McGovern VJ, Mihm MC Jr., Bailly C, Booth JC, Clark WH Jr., Cochran AJ, et al. The classification of malignant melanoma and its histologic reporting. Cancer. 1973;32: 1446–1457. pmid:4757934
  14. 14. Begg CB, Hummer A, Mujumdar U, Armstrong BK, Kricker A, Marrett LD, et al. Familial aggregation of melanoma risks in a large population-based sample of melanoma cases. Cancer Causes Control. 2004;15: 957–965. pmid:15577298
  15. 15. Kanetsky PA, Rebbeck TR, Hummer AJ, Panossian S, Armstrong BK, Kricker A, et al. Population-based study of natural variation in the melanocortin-1 receptor gene and melanoma. Cancer Res. 2006;66: 9330–9337. pmid:16982779
  16. 16. Kanetsky PA, Ge F, Najarian D, Swoyer J, Panossian S, Schuchter L, et al. Assessment of polymorphic variants in the melanocortin-1 receptor gene with cutaneous pigmentation using an evolutionary approach. Cancer Epidemiol Biomarkers Prev. 2004;13: 808–819. pmid:15159314
  17. 17. Sturm RA, Duffy DL, Box NF, Chen W, Smit DJ, Brown DL, et al. The role of melanocortin-1 receptor polymorphism in skin cancer risk phenotypes. Pigment Cell Res. 2003;16: 266–272. pmid:12753400
  18. 18. Kennedy C, ter Huurne J, Berkhout M, Gruis N, Bastiaens M, Bergman W, et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol. 2001;117: 294–300. pmid:11511307
  19. 19. Schioth HB, Phillips SR, Rudzish R, Birch-Machin MA, Wikberg JE, Rees JL Loss of function mutations of the human melanocortin 1 receptor are common and are associated with red hair. Biochem Biophys Res Commun. 1999;260: 488–491. pmid:10403794
  20. 20. Flanagan N, Healy E, Ray A, Philips S, Todd C, Jackson IJ, et al. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum Mol Genet. 2000;9: 2531–2537. pmid:11030758
  21. 21. Kanetsky PA, Panossian S, Elder DE, Guerry D, Ming ME, Schuchter L, et al. Does MC1R genotype convey information about melanoma risk beyond risk phenotypes? Cancer. 2010;116: 2416–2428. pmid:20301115
  22. 22. Debniak T, Scott R, Masojc B, Serrano-Fernandez P, Huzarski T, Byrski T, et al. MC1R common variants, CDKN2A and their association with melanoma and breast cancer risk. Int J Cancer. 2006;119: 2597–2602. pmid:16988943
  23. 23. Stratigos AJ, Dimisianos G, Nikolaou V, Poulou M, Sypsa V, Stefanaki I, et al. Melanocortin receptor-1 gene polymorphisms and the risk of cutaneous melanoma in a low-risk southern European population. J Invest Dermatol. 2006;126: 1842–1849. pmid:16601669
  24. 24. Ichii-Jones F, Lear JT, Heagerty AH, Smith AG, Hutchinson PE, Osborne J, et al. Susceptibility to melanoma: influence of skin type and polymorphism in the melanocyte stimulating hormone receptor gene. J Invest Dermatol. 1998;111: 218–221. pmid:9699720
  25. 25. Hoiom V, Tuominen R, Kaller M, Linden D, Ahmadian A, Mansson-Brahme E, et al. MC1R variation and melanoma risk in the Swedish population in relation to clinical and pathological parameters. Pigment Cell Melanoma Res. 2009;22: 196–204. pmid:19077144
  26. 26. Cust AE, Goumas C, Holland EA, Agha-Hamilton C, Aitken JF, Armstrong BK, et al. MC1R genotypes and risk of melanoma before age 40 years: a population-based case-control-family study. Int J Cancer. 2012;131: E269–281. pmid:22095472
  27. 27. Pena-Vilabelda MM, Garcia-Casado Z, Requena C, Traves V, Lopez-Guerrero JA, Guillen C, et al. Clinical characteristics of patients with cutaneous melanoma according to variants in the melanocortin 1 receptor gene. Actas Dermosifiliogr. 2014;105: 159–171. pmid:24238329
  28. 28. Mervic L Prognostic factors in patients with localized primary cutaneous melanoma. Acta Dermatovenerol Alp Panonica Adriat. 2012;21: 27–31. pmid:23000937
  29. 29. Callender GG, Egger ME, Burton AL, Scoggins CR, Ross MI, Stromberg AJ, et al. Prognostic implications of anatomic location of primary cutaneous melanoma of 1 mm or thicker. Am J Surg. 2011;202: 659–664; discussion 664–655. pmid:22137134
  30. 30. Pasquali E, Garcia-Borron JC, Fargnoli MC, Gandini S, Maisonneuve P, Bagnardi V, et al. MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: A pooled-analysis from the M-SKIP project. Int J Cancer. 2014.