Peer Review History
Original SubmissionMarch 18, 2022 |
---|
PONE-D-22-08145Deploying deep learning models on unseen medical imaging using adversarial domain adaptationPLOS ONE Dear Dr. Oermann, Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process. Please submit your revised manuscript by Jun 23 2022 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file. Please include the following items when submitting your revised manuscript:
If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter. If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: https://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols. Additionally, PLOS ONE offers an option for publishing peer-reviewed Lab Protocol articles, which describe protocols hosted on protocols.io. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols. We look forward to receiving your revised manuscript. Kind regards, Mohamed Hammad, Ph.D. Academic Editor PLOS ONE Journal Requirements: When submitting your revision, we need you to address these additional requirements. 1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf 2. Please note that PLOS ONE has specific guidelines on code sharing for submissions in which author-generated code underpins the findings in the manuscript. In these cases, all author-generated code must be made available without restrictions upon publication of the work. Please review our guidelines at https://journals.plos.org/plosone/s/materials-and-software-sharing#loc-sharing-code and ensure that your code is shared in a way that follows best practice and facilitates reproducibility and reuse. Code may be shared by providing a URL within the Methods section to a code repository or it may be uploaded as a supplemental file. 3. We note that you have stated that you will provide repository information for your data at acceptance. Should your manuscript be accepted for publication, we will hold it until you provide the relevant accession numbers or DOIs necessary to access your data. If you wish to make changes to your Data Availability statement, please describe these changes in your cover letter and we will update your Data Availability statement to reflect the information you provide. 4. Please include captions for your Supporting Information files at the end of your manuscript, and update any in-text citations to match accordingly. Please see our Supporting Information guidelines for more information: http://journals.plos.org/plosone/s/supporting-information. [Note: HTML markup is below. Please do not edit.] Reviewers' comments: Reviewer's Responses to Questions Comments to the Author 1. Is the manuscript technically sound, and do the data support the conclusions? The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented. Reviewer #1: No Reviewer #2: Partly ********** 2. Has the statistical analysis been performed appropriately and rigorously? Reviewer #1: No Reviewer #2: No ********** 3. Have the authors made all data underlying the findings in their manuscript fully available? The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified. Reviewer #1: Yes Reviewer #2: No ********** 4. Is the manuscript presented in an intelligible fashion and written in standard English? PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here. Reviewer #1: No Reviewer #2: No ********** 5. Review Comments to the Author Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters) Reviewer #1: The paper has been carelessly prepared and needs to be largely reworked. These are some points that the authors must particularly pay attention and handle: • The major problem of this work is that its novelty and the theoretical contribution are so limited. So, the authors should modify it carefully and improve the novelty of this paper. Also, the authors should provide solid motivation for their work based on the existing literature. • The figures need to be amended. For example, the font is too small, and the resolution is not clear which makes it difficult to read. • All the equations were missing. • Please add Figure or Table about the optimal structure of the proposed method. In addition, provide the values of all parameters of proposed method in table. • Please specify how the parameters of proposed method were selected. • Please specify if the proposed methods parameters were optimized. If so, please write how proposed parameters were optimized? • • More details about the simulation software exploited should be added. • The results should be further analyzed, more details and further discussion of the simulation results is needed. • I recommend the authors to review below works and incorporate them while revising the paper: 1. Zhang, Ling, et al. "Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation." IEEE transactions on medical imaging 39.7 (2020): 2531-2540. 2. Yin, Baocai, et al. "AFA: adversarial frequency alignment for domain generalized lung nodule detection." Neural Computing and Applications (2022): 1-12. 3. Liu, Quande, Qi Dou, and Pheng-Ann Heng. "Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020. 4. Liu, Quande, et al. "Feddg: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. • The conclusions section should conclude that you have achieved from the study, contributions of the study to academics and practices. In addition, list the advantages and disadvantages of the proposed solution, as well as indicate the limitations of work. Further, mention the recommendations of future works. • The list of references should be reformatted and checked again to be matched with the journal requirement where a different styles and types are used. Reviewer #2: In this manuscript, the authors develop a general technique for ameliorating the effect of dataset shift using generative adversarial networks (GANs) on a dataset of 149,298 handwritten digits and a dataset of 868,549 chest radiographs obtained from four academic medical centers. They assess efficacy by comparing the area under the curve (AUC) pre-and post-adaptation. Adversarial domain adaptation leads to improved model performance on radiographic data derived from multiple out-of-sample healthcare populations. Their work can be applied to other medical imaging domains to help shape the deployment toolkit of machine learning in medicine. Before its acceptance for publication, the authors must arrange all the proposed models to be readable. Indeed, from line 357 to line 408, all equations are not readable. Also, the presentation of the manuscript must be improved. ********** 6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files. If you choose “no”, your identity will remain anonymous but your review may still be made public. Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy. Reviewer #1: No Reviewer #2: No [NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.] While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step. |
Revision 1 |
PONE-D-22-08145R1Deploying deep learning models on unseen medical imaging using adversarial domain adaptationPLOS ONE Dear Dr. Oermann, Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process. Please submit your revised manuscript by Sep 01 2022 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file. Please include the following items when submitting your revised manuscript:
If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: https://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols. Additionally, PLOS ONE offers an option for publishing peer-reviewed Lab Protocol articles, which describe protocols hosted on protocols.io. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols. We look forward to receiving your revised manuscript. Kind regards, Mohamed Hammad, Ph.D. Academic Editor PLOS ONE Journal Requirements: Please review your reference list to ensure that it is complete and correct. If you have cited papers that have been retracted, please include the rationale for doing so in the manuscript text, or remove these references and replace them with relevant current references. Any changes to the reference list should be mentioned in the rebuttal letter that accompanies your revised manuscript. If you need to cite a retracted article, indicate the article’s retracted status in the References list and also include a citation and full reference for the retraction notice. [Note: HTML markup is below. Please do not edit.] Reviewers' comments: Reviewer's Responses to Questions Comments to the Author 1. If the authors have adequately addressed your comments raised in a previous round of review and you feel that this manuscript is now acceptable for publication, you may indicate that here to bypass the “Comments to the Author” section, enter your conflict of interest statement in the “Confidential to Editor” section, and submit your "Accept" recommendation. Reviewer #1: All comments have been addressed Reviewer #2: All comments have been addressed ********** 2. Is the manuscript technically sound, and do the data support the conclusions? The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented. Reviewer #1: Yes Reviewer #2: Yes ********** 3. Has the statistical analysis been performed appropriately and rigorously? Reviewer #1: Yes Reviewer #2: Yes ********** 4. Have the authors made all data underlying the findings in their manuscript fully available? The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified. Reviewer #1: Yes Reviewer #2: Yes ********** 5. Is the manuscript presented in an intelligible fashion and written in standard English? PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here. Reviewer #1: Yes Reviewer #2: Yes ********** 6. Review Comments to the Author Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters) Reviewer #1: Since the previous version, authors have done huge work and the paper is much better. This version looks good Therefore, I suggest accepting this paper after minor: • The figures still need to be amended, where the font is too small which makes it difficult to read. Reviewer #2: The authors addressed all my comments in this version of the manuscript which was well improved. I recommend it for publication ********** 7. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files. If you choose “no”, your identity will remain anonymous but your review may still be made public. Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy. Reviewer #1: No Reviewer #2: No ********** [NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.] While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step. |
Revision 2 |
Deploying deep learning models on unseen medical imaging using adversarial domain adaptation PONE-D-22-08145R2 Dear Dr. Oermann, We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements. Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication. An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org. If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org. Kind regards, Mohamed Hammad, Ph.D. Academic Editor PLOS ONE |
Formally Accepted |
PONE-D-22-08145R2 Deploying deep learning models on unseen medical imaging using adversarial domain adaptation Dear Dr. Oermann: I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department. If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org. If we can help with anything else, please email us at plosone@plos.org. Thank you for submitting your work to PLOS ONE and supporting open access. Kind regards, PLOS ONE Editorial Office Staff on behalf of Dr. Mohamed Hammad Academic Editor PLOS ONE |
Open letter on the publication of peer review reports
PLOS recognizes the benefits of transparency in the peer review process. Therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. Reviewers remain anonymous, unless they choose to reveal their names.
We encourage other journals to join us in this initiative. We hope that our action inspires the community, including researchers, research funders, and research institutions, to recognize the benefits of published peer review reports for all parts of the research system.
Learn more at ASAPbio .