Appendix S2: Variance in μ_{β} .

It is reasonable to question whether the calculated variance, σ_{β}^2 , is a result of various geographic locations having differing average infectiousness, μ_{β} , due to varying population density, social norms, etc. One may instead consider that the mean infectiousness μ_{β} follows some distribution $q(\mu_{\beta})$ among different counties. For a given μ_{β} , we have shown that the variance in $P(n; \mu_{\beta}, \sigma_{\beta})$ averaged over I realizations is given by $\left(\mu_{\beta}^2 + \sigma_{\beta}^2\right)/I$ in the exponential case. Including the effect of a distribution $q(\mu_{\beta})$, we calculate the variance in $\Delta I/I$ to be:

$$\operatorname{Var}\left(\frac{\Delta I}{I}\right) = \sum_{n=0}^{\infty} (n - \bar{\mu}_{\beta})^{2} \int_{0}^{\infty} d\mu_{\beta} \, q(\mu_{\beta}) P(n; \mu_{\beta}, \sigma_{\beta})$$
$$= \int_{0}^{\infty} d\mu_{\beta} \, q(\mu_{\beta}) \sum_{n=0}^{\infty} (n - \bar{\mu}_{\beta})^{2} P(n; \mu_{\beta}, \sigma_{\beta})$$
$$= \int_{0}^{\infty} d\mu_{\beta} \, q(\mu_{\beta}) \left((\mu_{\beta} - \bar{\mu}_{\beta})^{2} + \frac{\mu_{\beta} + \sigma_{\beta}^{2}}{I}\right)$$
$$= \operatorname{Var}(q(\mu_{\beta})) + \frac{\bar{\mu}_{\beta} + \sigma_{\beta}^{2}}{I}$$

That is, when we account for the possibility that each region has a different μ_{β} , the value of μ_{β} is replaced by its mean $\bar{\mu}_{\beta}$ across counties, and a constant term is added for the variance in μ_{β} across counties. We can conclude that this variance cannot fully explain the data for two reasons. First, we observe a clear Var $(\Delta I/I) \sim 1/I$ trend in the data (Fig 2), which can only be a result of the variance in $p(\beta)$ rather than $q(\mu_{\beta})$. Additionally, we can directly measure the variance in μ_{β} across counties, which we find to be 0.007 (cases/day)². This number is too small to significantly affect the total variance in $\Delta I/I$, as seen in Fig 2. When the measured variance in $q(\mu_{\beta})$ is taken into account in our fitting procedure, we find that $\bar{\mu}_{\beta} = 0.18$ cases/day, $\sigma_{\beta} \gtrsim 0.58$ cases²/days², resulting in very slightly different value of $\sigma_{\beta}/\mu_{\beta} \gtrsim 3.1$.

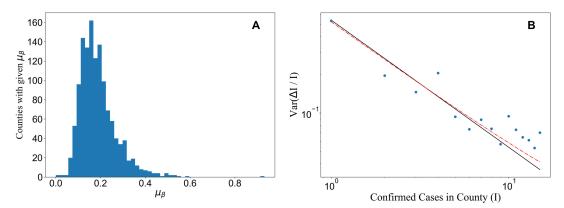


Fig 2. (a) The calculated value of the mean infectiousness, μ_{β} , for each individual county (with at least five cases). The variance in μ_{β} is relatively small: $\operatorname{Var}(\mu_{\beta}) = 0.0068 \ (\operatorname{cases/day})^2 \ll \sigma_{\beta}^2$. (b) When we account for this consideration (dashed red line), the fitted value of σ_{β}^2 decreases from 0.35 $\rightarrow 0.33 \ (\operatorname{cases/day})^2$. This adjustment does not significantly affect our conclusions.