Appendix S2: Variance in μ_{β}.

It is reasonable to question whether the calculated variance, σ_{β}^{2}, is a result of various geographic locations having differing average infectiousness, μ_{β}, due to varying population density, social norms, etc. One may instead consider that the mean infectiousness μ_{β} follows some distribution $q\left(\mu_{\beta}\right)$ among different counties. For a given μ_{β}, we have shown that the variance in $P\left(n ; \mu_{\beta}, \sigma_{\beta}\right)$ averaged over I realizations is given by $\left(\mu_{\beta}^{2}+\sigma_{\beta}^{2}\right) / I$ in the exponential case. Including the effect of a distribution $q\left(\mu_{\beta}\right)$, we calculate the variance in $\Delta I / I$ to be:

$$
\begin{aligned}
\operatorname{Var}\left(\frac{\Delta I}{I}\right) & =\sum_{n=0}^{\infty}\left(n-\bar{\mu}_{\beta}\right)^{2} \int_{0}^{\infty} d \mu_{\beta} q\left(\mu_{\beta}\right) P\left(n ; \mu_{\beta}, \sigma_{\beta}\right) \\
& =\int_{0}^{\infty} d \mu_{\beta} q\left(\mu_{\beta}\right) \sum_{n=0}^{\infty}\left(n-\bar{\mu}_{\beta}\right)^{2} P\left(n ; \mu_{\beta}, \sigma_{\beta}\right) \\
& =\int_{0}^{\infty} d \mu_{\beta} q\left(\mu_{\beta}\right)\left(\left(\mu_{\beta}-\bar{\mu}_{\beta}\right)^{2}+\frac{\mu_{\beta}+\sigma_{\beta}^{2}}{I}\right) \\
& =\operatorname{Var}\left(q\left(\mu_{\beta}\right)\right)+\frac{\bar{\mu}_{\beta}+\sigma_{\beta}^{2}}{I}
\end{aligned}
$$

That is, when we account for the possibility that each region has a different μ_{β}, the value of μ_{β} is replaced by its mean $\bar{\mu}_{\beta}$ across counties, and a constant term is added for the variance in μ_{β} across counties. We can conclude that this variance cannot fully explain the data for two reasons. First, we observe a clear $\operatorname{Var}(\Delta I / I) \sim 1 / I$ trend in the data (Fig 2), which can only be a result of the variance in $p(\beta)$ rather than $q\left(\mu_{\beta}\right)$. Additionally, we can directly measure the variance in μ_{β} across counties, which we find to be 0.007 (cases/day) ${ }^{2}$. This number is too small to significantly affect the total variance in $\Delta I / I$, as seen in Fig 2 . When the measured variance in $q\left(\mu_{\beta}\right)$ is taken into account in our fitting procedure, we find that $\bar{\mu}_{\beta}=0.18$ cases $/$ day, $\sigma_{\beta} \gtrsim 0.58 \mathrm{cases}^{2} / \mathrm{days}^{2}$, resulting in very slightly different value of $\sigma_{\beta} / \mu_{\beta} \gtrsim 3.1$.

Fig 2. (a) The calculated value of the mean infectiousness, μ_{β}, for each individual county (with at least five cases). The variance in μ_{β} is relatively small: $\operatorname{Var}\left(\mu_{\beta}\right)=0.0068$ (cases $/$ day) ${ }^{2} \ll \sigma_{\beta}^{2}$. (b) When we account for this consideration (dashed red line), the fitted value of σ_{β}^{2} decreases from 0.35 $\rightarrow 0.33$ (cases/day) ${ }^{2}$. This adjustment does not significantly affect our conclusions.

