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I. CONTINUUM CURVES AND GENERALIZED KIRCHHOFF’S ELASTIC ROD

A. The Frenet Equation

The geometry of a class C3 differentiable curve x(s) in R3 is governed by the Frenet

equation, described widely in elementary courses of differential geometry [1]. We parametrize

the curve with its proper length s ∈ [0, L] where L is the length of the curve in R3. We

introduce the unit length tangent vector

t =
dx(s)

ds
≡ xs (1)

the unit length bi-normal vector

b =
xs × xss
||xs × xss||

(2)

and the unit length normal vector,

n = b× t (3)

The three vectors (n,b, t) define the orthonormal, right-handed Frenet frames. We can

introduce this framing at every point along the curve, whenever

xs × xss 6= 0 (4)

The Frenet equation transports the frames along the curve as follows,

d

ds


n

b

t

 =


0 τ −κ

−τ 0 0

κ 0 0



n

b

t

 (5)

Here

κ(s) =
||xs × xss||
||xs||3

(6)

is the curvature and

τ(s) =
(xs × xss) · xsss
||xs × xss||2

(7)

is the torsion. Both κ(s) and τ(s) are extrinsic geometric quantities i.e. they depend only

on the shape of the curve in R3. Conversely, if we know the curvature and torsion we can

construct the curve, by first solving for t(s) from the Frenet equation followed by integration

of (1). The solution is unique, modulo a global translation and rotation.
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B. Frame rotation

We start with the observation that the normal and bi-normal vectors do not appear in

(1). As a consequence a rotation around t(s),n

b

 →

e1

e2

 =

 cos η(s) sin η(s)

− sin η(s) cos η(s)

n

b

 . (8)

has no effect on the curve. For the Frenet equation this rotation gives

d

ds


e1

e2

t

 =


0 (τ + ∂sη) −κ cos η

−(τ + ∂sη) 0 −κ sin η

κ cos η κ sin η 0



e1

e2

t

 . (9)

The form of (9) suggests to combine the two κ dependent contributions into a single complex

quantity [2–4],

κ
η−→ κ(cos η + i sin η) ≡ κeiη (10)

We may then introduce the following notations/conventions when representing curvature

and torsion in arbitrary frame,

κ → κe−iη ≡ φ

τ → τ + ∂sη ≡
√

d
2
Ai

(11)

Here d is a parameter that we introduce for future convenience; for the Frenet equations we

may set d = 2. With these variables, (9) admits the manifestly frame covariant form:

( d
ds
∓ i
√

d
2
A)e± = −φt

d
ds
t = 1

2
(φ e+ + φ̄ e−)

(12)

with

e± = e1 ± ie2 ⇒ e± → e±iηe±

and we remind that t is frame invariant.
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C. The Kirchhoff elastic rod and its generalizations

The curvature and torsion are the only quantities available to construct energy functions

for filamentous, inextensible elastic rods. According to Kirchhoff the energy is [5]

E =

L∫
0

ds{ακ2 + βτ 2} (13)

where α and β are some parameters. The case β = 0 corresponds to Euler’s elastica; in a

biological context this defines the worm like chain (WLC) model that is commonly used to

describe long and flexible linear (bio)polymers [2]

The energy function (13) describes the bending and twisting of a thin rod in the limit

of very small curvature and torsion. But this energy function is not capable of describing

phenomena such a supercoiling, nor structures such as helix-loop-helix that are common in

case of proteins. For this we need to include higher order, non-linear contributions to (13).

To do this systematically, we need a guiding principle: Note that even though framing is

a necessary intermediate step to construct the curve from the knowledge of its curvature

and torsion, the shape of a curve can not depend on the way how it is framed. Indeed,

the Frenet equations can be presented in the frame covariant form (12). Thus, the energy

function should similarly admit a frame covariant form, one that is the same independently

of the framing when expressed in the frame covariant variables (φ,A) in (11). An example

of a frame covariant energy function is [2–4],

H =

L∫
0

ds

{
|(∂s + i

√
d

2
A)φ|2 + λ (|φ|2 −m2)2 − aA+

c

2
A2

}
(14)

The first two terms have the functional form of the Hamiltonian that appears in the

Abelian Higgs model. They remain manifestly intact under a frame rotation (11).

The third term, with parameter a, is the one dimensional Chern-Simons term. It breaks

chirality which ensures that the curves are chiral, either right-handed or left-handed depend-

ing on the sign of parameter a. Note that under a frame rotation this terms transforms by a

derivative; see (11). Thus it remains invariant when there are no end point frame rotations.

The fourth term in (14) is called the Proca mass in the context of the Abelian Higgs

model. It is not covariant under a frame rotation but we included it for completeness since

it yields the second term in (13), in Frenet frames.
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D. Energy and soliton of Nonlinear Schrödinger equation

In term of the geometric curvature and torsion, the energy density of (14) translates to

H = (∂sκ)2 +
d

2
κ2τ 2 + λ (κ2 −m2)2 − a τ +

c

2
τ 2 (15)

We introduce the Hasimoto variable [3, 4, 6], to combine the curvature and torsion into a

single frame invariant complex quantity

ψ(s) = κ(s) exp{i
s∫

0

ds′ τ(s′)} ≡ φ(s) exp{i
√
d

2

s∫
0

ds′A(s′)} (16)

In terms of (16), we find that (15) includes the following,

(∂sκ)2 + e2κ2τ 2 + λκ4 = ψ̄sψs + λ(ψ̄ψ)2 = H3 (17)

This the energy density of the standard nonlinear Schrödinger equation (NLS), the paradigm

integrable model that supports solitons as classical solutions: The non-vanishing Poisson

bracket of the Hasimoto variables is

{ψ(s), ψ̄(s′)} = iδ(s− s′)

and the following quantities are conserved densities in the sense that their Poisson brackets

with H3 vanish [3, 4, 6]

H−2 = τ

H−1 = L

H1 = κ2 ∼ ψ̄ψ

H2 = iκ2τ ∼ ψ̄ψs

(18)

The energy (15) is a combination of H−2, H1 and H3, except for its last term, the Proca

mass. From the perspective of the NLS hierarchy, the momentumH2 should also be included

so that at the end we have the energy density

H = (∂sκ)2 +
d

2
κ2τ 2 + λ (κ2 −m2)2 − bκ2τ − aτ +

c

2
τ 2 (19)

The standard NLS equation is the paradigm equation that supports solitons [7, 8]; de-

pending on the sign of λ the soliton is either dark (λ > 0) or bright (λ < 0). In particular,

the torsion independent contribution

(∂sκ)2 + λ (κ2 −m2)2 (20)
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supports the double well topological soliton: When m2 is positive and when κ can take both

positive and negative values, the equation of motion

∂ssκ = 2λκ(κ2 −m2)

is solved by

κ(s) = m tanh
[
m
√
λ(s− s0)

]
(21)

The energy function (19) is quadratic in the torsion. Thus we can eliminate τ using its

equation of motion,

τ [κ] =
a+ bκ2

c+ dκ2
≡ a

c

1 + (b/a)κ2

1 + (d/c)κ2
(22)

and we obtain the following equation of motion for curvature,

κss = Vκ[κ] (23)

where

V [κ] = −
(
bc− ad

d

)
1

c+ dκ2
−
(
b2 + 8λm2

2b

)
κ2 + λκ4 (24)

This shares the same large-κ asymptotics, with the potential in (20). With properly chosen

parameters, we expect that (23), (24) continue to support topological solitons, but we do

not know their explicit profile, in terms of elementary functions.

The curve is the constructed as follows: Once we have the soliton of (23), we evaluate

τ(s) from (22). We substitute the ensuing (κ, τ) profiles in the Frenet equation (5) and solve

for t(s). We then integrate (1) to obtain the curve x(s) that corresponds to the soliton. A

generic soliton curve looks like a helix-loop-helix motif (more generally a regular secondary

structure - a loop - a regular secondary structure), familiar from crystallographic protein

structures.

II. POLYGONS AND GENERALIZED KIRCHHOFF ENERGIES

A. Discrete Frenet equation

Proteins are not alike continuous, differentiable curves. Proteins are like piecewise linear

polygonal chain. Thus, to construct a generalized Kirchhoff model applicable for proteins,

we need to generalise the Frenet frame formalism to the case of a polygonal, piecewise linear

chain [9].
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Let ri with i = 1, ..., N be the vertices of the chain. At each vertex we introduce the unit

tangent vector

ti =
ri+1 − ri
|ri+1 − ri|

(25)

the unit binormal vector

bi =
ti−1 − ti
|ti−1 − ti|

(26)

and the unit normal vector

ni = bi × ti (27)

The orthonormal triplet (ni,bi, ti) defines a discrete version of the Frenet frames (1)-(3) at

each position ri along the chain.

In lieu of the curvature and torsion, we have their discrete analogues, the bond angles

and torsion angles. When we know the vertices we also know the Frenet frames and we can

compute these angles: The bond angles are

θi ≡ θi+1,i = arccos (ti+1 · ti) (28)

and the torsion angles are

φi ≡ φi+1,i = sign{bi−1 × bi · ti} · arccos (bi+1 · bi) (29)

Conversely, when the values of the bond and torsion angles are all known, we can use the

discrete version of the Frenet equation (5)
ni+1

bi+1

ti+1

 =


cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0

sin θ cosφ sin θ sinφ cos θ


i+1,i


ni

bi

ti

 (30)

to compute the frame at position i + i from the frame at position i. Once all the frames

have been constructed, the entire string is given by discrete version of (1),

rk =
k−1∑
i=0

|ri+1 − ri| · ti (31)

In the case of a protein, it is sufficient to take |ri+1− ri| = 3.8Å; this is the average distance

between neighboring Cα atoms. The bond oscillations are very fast, and over time intervals

in the scale of microsecond the average values can be used.

In constructing the chain, without any loss of generality we may choose r0 = 0, make t0

to point into the direction of the positive z-axis, and let t1 lie on the y-z plane.
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B. frame rotations

The vectors ni and bi do not appear in (31). Thus, as in the case of continuum curves, a

discrete chain remains intact under frame rotations of the (ni,bi) zweibein around ti. This

local SO(2) rotation acts on the frames as follows [9]
n

b

t


i

→e∆iT
3


n

b

t


i

=


cos ∆i sin ∆i 0

− sin ∆i cos ∆i 0

0 0 1



n

b

t


i

(32)

Here ∆i is the rotation angle at vertex i and T 3 is one of the SO(3) generators

T 1 =


0 0 0

0 0 −1

0 1 0

 T 2 =


0 0 1

0 0 0

−1 0 0

 T 3 =


0 −1 0

1 0 0

0 0 0


that satisfy the Lie algebra

[T a, T b] = εabcT c

Using these matrices we can write the effect of frame rotation on the bond and torsion angles

as follows

θi T
2 → e∆iT

3

(θiT
2) e−∆iT

3

(33)

φi → φi + ∆i−1 −∆i (34)

Since the ti remain intact under (32), the gauge transformation of (θi, φi) has no effect on

the geometry of the discrete string.

A priori, the fundamental range of the bond angle is θi ∈ [0, π] while for the torsion angle

the range is φi ∈ [−π, π). Thus we identify (θi, φi) as the canonical latitude and longitude

angles of a two-sphere S2. For practical purposes we find it useful to extend the range of θi

into negative values θi ∈ [−π, π] mod(2π). We compensate for this two-fold covering of S2

by a Z2 symmetry which takes the following form:

θk → − θk for all k ≥ i

φi → φi − π
(35)

This is a special case of (33), (34), with

∆k = π for k ≥ i+ 1

∆k = 0 for k < i+ 1
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C. Generalized discrete Kirchhoff energy and solitons

The energy function used in the article is obtained by a direct naive discretization of (19),

and by replacing curvature and torsion by the discrete bond and torsion angles [2, 4, 9] . In

particular, we use

(∂sκ)2 → (θi+1 − θi)2

Thus,

(∂sκ)2 + λ (κ2 −m2)2 +
d

2
κ2τ 2 − bκ2τ − aτ +

c

2
τ 2

becomes

kmax∑
k=1

{
n∑
i=1

(
−2θi+1θi + 2θ2

i + λk (θ2
i −m2

k)
2 +

dk
2
θ2
i φ

2
i − bk θ2

i φi − ak φi +
ck
2
φ2
i

)}
(36)

which is the (θ, φ) contribution to the energy function in Eqn. (4) of the article. Note that

as explained in the article, we have added here a summation over k, to account for the fact

that in the case of proteins we have a chain that is made of kmax consecutive segments,

each with its own set of parameters. Normally, these segments correspond to the different

super-secondary helix-loop-helix, strand-loop-strand etc motifs, in the case of a protein.

The conventional discrete NLS equation is known to support solitons [10]. Thus we expect

that (36) supports soliton solutions as well: We follow (22) to eliminate the torsion angle

(we suppress the index k)

φi[θ] =
a+ bθ2

i

c+ dθ2
i

= a
1 + (b/a)θ2

i

c+ dθ2
i

(37)

For bond angles we then have

θi+1 = 2θi − θi−1 +
dV [θ]

dθ2
i

θi (i = 1, ..., N) (38)

We set θ0 = θN+1 = 0, and V [θ] is given by (24). To solve this numerically, we use the

iterative equation [2, 11]

θ
(n+1)
i = θ

(n)
i − ε

{
θ

(n)
i V ′[θ

(n)
i ]− (θ

(n)
i+1 − 2θ

(n)
i + θ

(n)
i−1)
}

(39)

where {θ(n)
i }i∈N is the nth iteration of an initial configuration {θ(0)

i }i∈N and ε is some suf-

ficiently small but otherwise arbitrary numerical constant. We choose ε = 0.01, in our

simulations. The fixed point of (39) is independent of the value of ε, and clearly a solution

of (38).
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Once the fixed point is found, the corresponding torsion angles are obtained from (37).

The frames are then constructed from (30), and the entire chain is constructed using (31).

We do not know of an analytical expression of the soliton solution to the equation (38).

But an excellent approximative solution can be obtained by discretizing the topological

soliton (21) [2]:

θi ≈
µ1 · eγ1(i−s) − µ2 · e−γ2(i−s)

eγ1(i−s) + e−γ2(i−s) (40)

Here (γ1, γ2, µ1, µ2, s) are parameters. The µ1 and µ2 specify the asymptotic θi-values of

the soliton. Thus, these parameters are entirely determined by the character of the regular,

constant bond and torsion angle structures that are adjacent to the soliton. In particular,

these parameters are not specific to the soliton per se, but to the adjoining regular structures.

The parameter s defines the location of the soliton along the string. This leaves us with

only two loop specific parameter, the γ1 and γ2. These parameters quantify the length of

the bond angle profile that describes the soliton.

For the torsion angle, (37) involves one parameter (a) that we have factored out as the

overall relative scale between the bond angle and torsion angle contributions to the energy.

This parameter determines the relative flexibility of the torsion angles, with respect to the

bond angles. Then, there are three additional parameters (b/a, c/a, d/a) in the remainder

φ[θ]. Two of these are again determined by the character of the regular structures that

are adjacent to the soliton. As such, these parameters are not specific to the soliton. The

remaining single parameter specifies the size of the regime where the torsion angle fluctuates.

On the regions adjacent to a soliton, we have constant values of (θi, φi). In the case of a

protein, these are the regions that correspond to the standard regular secondary structures.

For example, the standard right-handed α-helix is obtained by setting

α− helix :

θ ≈ π
2

φ ≈ 1
(41)

and for the standard β-strand

β − strand :

θ ≈ 1

φ ≈ π
(42)

All the other standard regular secondary structures of proteins such as 3/10 helices, left-

handed helices etc. are similarly modeled by definite constant values of θi and φi. Protein

loops correspond to solitons, the regions where the values of (θi, φi) are variable.
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The presence of solitons significantly reduces the number of parameters in (36), increasing

the predictive power. In particular, the number of parameters is usually far smaller than

the number of amino acids, along the protein backbone.

III. MULTI-SOLITON AND THE FV3-109 BACKBONE

To construct the multi-soliton solution of (38), (37) that models the Cα backbone of

a given crystallographic structure, here the slipknotted 2J6B, we start by identifying the

individual solitons. We then combine the individual solitons into a single multi-soliton

solution of the pertinent DNLS equation. For this we use a combination of the GaugeIT and

Propro packages, described at

https : //protoin.ru/propro/index.php

We start the analysis with an inspection of the bond and torsion angle spectrum, to identify

the individual solitons. For this we use the Z2 symmetry (35), that we implement with

the GaugeIT package. In the ideal case, each super-secondary structure such as a helix-

loop-helix, strand-loop-strand, helix-loop-strand etc motif is a single soliton; an ideal length

single soliton loop seems to have six residues. Thus, the number of these motifs gives a lower

bound to the number of solitons: Since the N and C terminals are generically unstructured

the number of solitons must exceed the number of regular helix, strand etc. structures, at

least by one. In the case of 2J6B this means we need to have at least nine solitons.

But in a given protein structure, a loop can also be very long, it can extend over several

Cα atoms; in the case of 2J6B the longest loop extends over sixteen Cα atoms, starting at

residue 58 and ending at residue 73. A single long loop may be a combination of several

individual solitons. Regular structures such as α-helices and β-strands can also have bends

in their middle, so that the values of bond and torsion angles along them are not constant but

deviate from the ideal values (41) and (42), for some residues. Depending on the situation,

one may then interpret a localized bend along a helix or strand as a soliton, albeit a “shallow”

one. Thus there may be more solitons along the backbone, than what is suggested by a naive

counting of the regular helices, strands etc. This number can be estimated by an inspection

of the bond and torsion angles, how their profiles react to the Z2 symmetry transformation

(35): Over a soliton profile the bond and torsion angles are always variable.
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To estimate an upper bound to the number of solitons, we start with the following

observation: Since each soliton must carry at least one fully independent pair of bond and

torsion angles and it takes four Cα atoms to define a fully independent pair of (θi, φi), the

number of solitons is at most as large as the number of Cα atoms divided by four. In

particular, the minimum length of a soliton is four Cα atoms. The actual upper bound is

then determined by the accuracy at which the experimental structure is measured. For this,

a good criterion that we also use in the article is the following. The RMS distance between a

crystallographic structure and its multi-soliton description should not be much smaller than

the resolution at which the crystallographic structure has been measured. Simply because a

model should not be better than the object it describes. In the case of 2J6B, the structure

is measured with a 1.30 Å resolution. Thus we increase the number of individual solitons

until we obtain a multi-soliton that describes the 2J6B Cα backbone with a comparable

RMS precision.

Note that this also means, the multi-soliton representation of a protein backbone is not

unique: Two different multi-soliton representations that are both within the experimental

resolution from a given crystallographic structure, are both acceptable.

In Figure 1 we show the (θi, πi) spectrum both for 2J6B, and for the multi-soliton we

have used in the article. In presenting each, we have used the Z2 symmetry transformation

to convert the bond angles to positive values. There are 20 individual solitons in the multi-

soliton, and the Cα RMS distance between the crystallographic structure and the multi-

soliton we have constructed using the Propro package is around 1.23 Å. This is a very good

match to the resolution in the crystallographic structure. One could probably optimize

the multi-soliton structure further, and still have RMSD that is compatible with the 1.30

Å resolution of the crystallographic structure. But here our aim is not to find an optimal

multi-soliton, only one that functions for our purposes. As we aim to simulate the folding

of a structure where we know that e.g. Gõ models have problems, it should be important

to us to construct a multi-soliton with very high precision.

In Table I we show the parameter values that we have used. Note that in this Table,

there are two values λ1 and λ2, and two values m1 and m2 for each soliton. This is because

the solitons are asymmetric, with respect to their center: In the approximative solution (40)

we have different values µ1, µ2 and γ1, γ2 that determine the profile of θi for values of i that

are smaller or larger than s which defines the center of the structure. A comparison with
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(21) shows that these two parameters depend on the values of λ and m in (19). Thus, to

account for the asymmetry of a loop structure, we also introduce two pairs (λ1, m1) and

(λ2, m2). The first pair describes the soliton from its start to the center, the second pair

covers the rest of the soliton.

FIG. 1: Color online: The bond (θ) and torsion (φ) angle spectrum of the PDB structure

2J6B together with the corresponding spectrum of the multi-soliton. Note that the angles

are defined modulo 2π.

The evaluation of the parameter values that corresponds to the construction of the multi-

soliton proceeds with the Propro package, for a given profile that we have identified with

GaugeIT.

Finally, we comment on the various versions of the Gõ model [13]. These approaches

have played a very important rôle, to gain insight to protein folding in particular when

the power of computers is insufficient for any kind of serious all-atom folding simulations.

In these models the individual atomic coordinates of the folded protein chain commonly

appear as an input. A simple energy function is then introduced, tailored to ensure that

the known folded configuration is a minimum energy ground state; the energy could be as

simple as a square well potential which is centered at the atomic coordinates of the native
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number start center end d/2 λ1 λ2 a c/2 b m1 m2

1 1 3 5 1.5187e-09 2.4025 5.4724 -6.6922e-09 2.9489e-12 1.4833e-07 1.2397 1.3101

2 6 7 9 7.9776e-10 0.9258 1.7811 -2.5802e-08 5.9114e-12 9.1620e-08 1.3671 1.3143

3 10 12 15 3.4764e-10 2.3854 3.1773 -5.6462e-09 7.7903e-12 3.6777e-08 1.3288 1.0405

4 16 17 20 2.9677e-10 2.9205 0.3081 -1.4328e-08 1.9208e-11 4.5343e-08 1.0452 1.5549

5 21 22 24 9.5052e-10 3.1654 1.1811 -3.0383e-09 6.1927e-12 8.3254e-08 0.9222 1.2361

6 25 26 35 6.6137e-10 6.3999 8.0030 -5.3036e-09 3.8382e-11 6.3016e-08 0.8009 1.5335

7 36 38 40 7.0689e-11 9.4063 1.5612 -7.4524e-09 2.1676e-11 1.3793e-08 1.1125 1.1002

8 41 41 44 2.1606e-10 5.0945 7.1494 -1.7556e-08 4.9406e-11 3.1164e-08 1.0318 1.4407

9 45 45 54 4.4705e-10 0.5580 6.9161 -3.0270e-09 1.3689e-11 4.2011e-08 1.6991 1.5232

10 55 57 59 3.5138e-11 7.5205 2.5381 -2.6297e-08 7.1839e-11 1.8906e-08 1.4394 1.0697

11 60 61 63 5.9600e-10 1.4666 2.6355 -1.6514e-09 8.5212e-13 5.7346e-08 1.4128 1.2893

12 64 65 67 1.1694e-09 0.3841 3.5258 -1.2913e-08 5.0953e-12 1.0472e-07 1.6354 1.1806

13 68 70 72 1.3131e-09 6.5289 0.5200 -1.0253e-08 3.6908e-12 1.3901e-07 0.8574 1.5837

14 73 75 77 6.3872e-14 6.5792 1.6986 -3.0860e-10 1.9025e-11 2.3176e-09 0.9493 1.4216

15 78 79 81 5.2001e-11 17.137 3.7579 -1.4679e-09 6.0883e-11 1.0657e-08 1.1341 1.2000

16 82 83 86 5.0164e-12 12.456 2.3005 -3.7847e-08 4.1765e-10 8.2773e-08 1.1998 1.1003

17 87 87 91 8.5997e-11 3.6053 3.8840 -1.1426e-09 9.3701e-12 8.5883e-09 1.5506 1.1987

18 92 92 95 9.9176e-10 1.0386 0.7653 -2.6735e-09 2.2889e-12 9.0914e-08 1.3914 1.6042

19 96 100 102 5.9589e-10 0.4436 9.5105 -1.6451e-08 1.5778e-11 6.0421e-08 1.6378 1.0034

20 103 104 109 1.2532e-09 0.8811 9.7042 -5.5504e-09 1.0922e-12 1.0943e-07 1.2245 0.9898

TABLE I: The parameters in the energy function for 2J6B

conformation. Since the positions of all the relevant atoms appear as parameters in these

models, they contain more parameters than unknown and thus no predictions can be made;

in the case of 2J6B there are typically around 200 parameters. Only a description is possible.

From the point of view of a system of equations, these models are over-determined. In any

predictive energy function the number of adjustable parameters must remain smaller than

the number of independent atomic coordinates.
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