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1 Flow cytometers signals and their statistical
properties

1.1 Signal acquisition

In the flow cytometer, each cell is made to pass through a set of laser beams in order to
measure its scattering profile and its fluorescence intensity at several wavelengths. The
scatter has two components, forward- and side-scatter, which are usually interpreted as
follows [1]:

1. Forward-scatter (FSC) generally reflects the size of the cells or particles.

2. Side-scatter (SSC) generally reflects the internal complexity or granularity of the
cells or particles.

The scatter and fluorescence of each event (typically a cell) is converted by a
photomultiplier tube into a pulse of electrical signal that is characterized by a height
and a duration (Fig. 1 of main text). Roughly speaking, a pulse begins when a particle
enters the laser beam and it reaches its maximum when the particle reaches the middle
of the beam. In order to represent the pulse, the signal is sent to an analog-to-digital
converter (ADC) that discretizes the continuous pulse into a digital one. For the
machine used in this study, the ADC does this by sampling the pulse every 0.1 µsec and
the height of the signal is mapped to an integer between 0 and 214, i.e. 14 bits are used
to quantify the height of the signal [2].

1.2 Correlations among the signals

The cytometer gives three statistics of a measured pulse (height, width, and area), and
we investigated correlations between these statistics. For the machine used in our study,
we find that the area is in fact exactly proportional to the product of the height and
width of the signal (Suppl. Fig. S1).

Consequently, of the three statistics reported, only two are independent and we next
measured the correlations between all pairs of statistics to determine which of these are
most independent. As shown in Suppl. Fig. S2 we can see that area correlates
significantly with both height and width whereas height and width do not show
significant correlation. We thus decided to characterize each signal by height and width.
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Fig S1. Pulse area is proportional to the product of height and width.
Apart from very rarely occurring negative or saturated signals, the reported area of each
pulse is equal to a constant C times the product of the reported height and width. The
histograms show the distribution of the difference area− C · width · height, which is
highly concentrated around zero. Different colors represent different promoters.

1.3 Signal width is not informative for fluorescence
measurements

To assess the relative importance of the height and width statistics for fluorescence
measurements we made use of the calibration beads manufactured by BD, which come
in a set of three different expression levels. Supplementary Fig. S3 shows that, whereas
the heights of the signal pulses show three main peaks, corresponding to the three
intensities of the beads, the distribution of measured widths is almost identical for all
beads. Consequently, we chose to only use signal height to quantify fluorescence.

1.4 Anomalous behavior at low fluorescence intensities

As can already be observed from the measurements of the calibration beads (Suppl. Fig.
S3), due to shot noise in the fluorescence measurements, the coefficient of variation
generally increases as the fluorescence level decreases. This general negative correlation
between mean fluorescence and its coefficient of variation can not only be observed for
the calibration beads, but also for a library of transcriptional reporters of native E. coli
promoters (Suppl. Fig. S4). However, as Suppl. Fig. S4 also shows, when fluorescence
levels become very low, the CV 2 of the measurements reaches a maximum and starts to
decrease as the mean decreases further, and the lowest CV 2 is observed for cells without
any GFP expression. We hypothesize that this decrease in CV 2 for very low
fluorescence levels derives from the fact that autofluorescence levels vary less than GFP
fluorescence levels, in combination with some specific signal processing that is
performed by the machine at low signal intensities. Although we invested a significant
amount of time in trying to reverse engineer what signal processing may cause this
anomalous behavior at very low fluorescence levels, these attempts were ultimately not
successful. In addition, our repeated requests to BD to bring us into contact with the
relevant technicians went unanswered. Consequently, we were forced to restrict our
quantitative analysis to cells whose GFP levels were at least twice the autofluorescence
level (corresponding the log-mean levels roughly equal to those of the dimmest
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Fig S2. Correlations among the different statistics reported for each signal
pulse. The plots show the correlations among the height (H), area (A) and width (W)
of the signal pulses for the forward- (FSC) and side-scatter (SSC) as well as the
fluorescence measurements (GFP). The colors represent 3 different promoters, two
native promoters (recA and recN) and one synthetic promoters (high).
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Fig S3. Population separation of calibration beads based on their
fluorescence signal pulses. Distributions of the measured heights (top) and widths
(bottom) of the fluorescence signal pulses for populations of artificial beads. Each color
corresponds to one measurement run of a set of artificial beads consisting of a mixture
of beads of three different fluorescent intensities. We see that, whereas signal height
shows 3 clearly separated peaks, the distribution of signal widths is narrowly peaked at
a single value. Note also the notably wider variance of the peaks in fluorescence height
at low intensities than at high intensities, which results from measurement shot noise.
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Fig S4. Coefficient of variation as a function of mean fluorescence level
exhibits anomalous behavior at low fluorescence. The blue scatter shows the
measured coefficient of variation squared CV 2 (vertical axis) as a function of the
logarithm of mean fluorescence level (horizontal axis) for a library of transcriptional
reporters of native E. coli promoters [3] as obtained in a recent study from our lab [4],
with each blue point corresponding to one promoter of the library. The red points show
the same statistics for the calibration beads at three intensities. Note that, due to shot
noise in the fluorescence measurements, the CV 2 increases as the mean fluorescence
decreases, including for the calibration beads (that have low intrinsic variance).
However, at very low fluorescence, the CV 2 reaches a maximum and decreases for even
lower fluorescence.
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calibration beads in Suppl. Fig. S4).

2 Mixture model of the scatter measurements

The scatter of each measured event is characterized by 4 statistics: the height and width
of both the forward- and side-scatter. We fit the set of 4D scatter measurements for a
given dataset by a mixture of a multivariate Gaussian and a uniform distribution. The
idea is that the Gaussian distribution models the viable cells, while the uniform
distribution represents outliers that may correspond to fragments of dead cells or other
debris. Concretely, we assume that the probability to observe the 4D vector ~y for a
single measured event is given by

P (~y | ~µ,Σ, ρ) =
ρ√

(2π)4|Σ|
e−

1
2 (~y−~µ)T Σ−1(~y−~µ) +

1− ρ
∆

, (1)

where ~µ is the center of the 4D multivariate Gaussian, Σ its covariance matrix, ρ the
fraction of viable cell measurements in the dataset, and ∆ is the volume of the 4D
hypercube spanned by all the data points. Note that |Σ| denotes the determinant of the
covariance matrix. The E-Flow package that we distribute contains a C++
implementation where the model (1) is fit to a given dataset using expectation
maximization. An example of the results of this fitting to a dataset of E. coli cells
grown in minimal media with lactose is shown in Fig. 2 of the main text, showing that
the observed 4D scatter can be well approximated by the mixture model.

Once the mixture model is fitted, we can calculate a posterior probability pi for each
observation i that it derives from the Gaussian mixture component, i.e. that it is a
viable cell measurement. By default E-Flow filters out all events i for which this
posterior probability is less than 0.5 and retains all measurements with posterior
probability larger than 0.5, but users can choose to alter this threshold in posterior
probability. Supplementary Figure S5 shows the same 4D scatter of measurements as
shown in Fig. 2 of the main text, but now with all selected events in red, and all events
that were filtered out in black.

To investigate the effect of the filtering strategy on the observed fluorescence levels
we calculated the distribution of fluorescence levels of several reporters when using
either a very strict threshold, retaining only cells with posterior p > 1− e−10 or a very
lenient threshold, retaining all cells with p > e−10. As shown in Suppl. Fig. S6 there is
virtually no difference between the observed distribution of fluorescence with the two
thresholds. This observation strongly suggests that it is not possible to effectively pick
out a subpopulation of cells of similar size by strict gating on forward- and side-scatter.

3 Inferring the mean and variance of the
distributions of fluorescence levels

After filtering events based on forward- and side-scatter, we next fit the distribution of
fluorescence by a mixture of a log-normal distribution, which captures valid
measurements and corresponds to the bulk of the measurements, and a uniform
distribution capturing outliers. In particular, we assume that the probability for a
fluorescence measurement to have log-fluorescence x is given by the mixture:

P (x|ρ, µ, v) =
ρ√
2πv

exp

[
− (x− µ)2

2v

]
+

1− ρ
∆

, (2)

where µ and v are the mean and variance of log-fluorescence levels, ρ is the fraction of
‘valid’ measurements and ∆ = xmax − xmix is the observed range of log-fluorescence
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Fig S5. Filtering of events based on their scattering profiles. The panels show
a scatter of the forward- and side-scatter measurements for a set of E. coli cells grown in
minimal media with lactose. Events that have posterior probability larger than 0.5 to
stem from the Gaussian component of the mixture are indicated in red, and events with
posterior less than 0.5 are superimposed in black. The red events are considered viable
cell measurements and the black events are discarded. Note that around 4% of the
measured events are discarded for this dataset.

levels. The log-likelihood for a dataset of n measurements xi is then simply given by

L(ρ, µ, v) =
∑
i

log [P (xi|ρ, µ, v)] . (3)

We maximize the log-likelihood (3) using expectation maximization to obtain the fitted
parameters ρ∗, µ∗ and v∗. To obtain error bars σµ and σv on the mean µ and variance
v we obtain the Hessian matrix of the log-likelihood by expanding to second order
around its maximum and we take the diagonal elements of its inverse. For any given set
of fluorescence measurements, our package E-Flow returns both the fitted values
(µ∗, v∗) and their error bars (σµ, σv).

Below we develop methods for correcting the observed fluorescence levels for both
cell autofluorescence and for the shot noise in the FCM measurements. In order to do
this we also need the mean and variance of fluorescence levels, rather than just the
mean and variance of log-fluorescence levels. That is, if we write for the fluorescence of
a cell f = ex, we need to obtain the mean and variance of f . Using the well-known
expressions of the mean and variance of a log-normal distribution we have

〈f〉 = eµ∗+v∗/2, (4)

and
var(f) = [ev∗ − 1] e2µ∗+v∗ . (5)

Further, given that the error bars on the mean and variance are generally small
compared to their means, we use a linear approximation to calculate error bars on the
mean and variance of f , and find

σ〈f〉 = 〈f〉
√
σ2
µ +

σ2
v

4
, (6)
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fluorescence levels of a transcriptional reporter (rows) using different replicate
measurements (columns) when using either a very strict threshold p > 1− e−10 or a
very lenient threshold p > e−10 for filtering events. Note that the name of the reporter
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and

σvar(f) =
√

4var(f)2σ2
µ + (2var(f) + 〈f〉2)

2
σ2
v . (7)

The E-Flow package also returns these estimates and error bars for fluorescence levels f .

4 Averaging of replicate autofluorescence
measurements

As shown in Fig. 4 of the main paper, we measured the autofluorescence distributions of
cells that do not express GFP in triplicate on 4 separate days, and for two different
strains. Noticing that there appears to be a small but systematic variation in both the
means and variances of the autofluorescence levels, we proceeded as follows to estimate
an overall average for the mean and variance of autofluorescence, adapting a method
first presented in [5].

We assume that there is an overall mean autofluorescence µ and that on any given
day d, the mean autofluorescence µd on that day deviates from µ by some amount δd,
i.e.

µd = µ+ δd. (8)

We will assume that the deviation δd varies by an (unknown) amount τ across days,
following a Gaussian distribution. That is, the probability of having mean
autofluorescence µd on any given day is

P (µd|µ, τ) =
1√
2πτ

exp

[
− (µd − µ)2

2τ2

]
. (9)

Let µid be the estimated mean autofluorescence of replicate i on day d, and let σid
be the associated error-bar on this mean. Assuming that the true mean
autofluorescence on day d was µd, the probability to obtain a measured mean
autofluorescence µid is also given by a Gaussian distribution:

P (µid|σid, µd) =
1√

2πσid
exp

[
− (µid − µd)2

2σ2
id

]
. (10)

The probability of the data D, i.e. all replicate measurements µid given an overall mean
µ and variance across days τ2 is given by taking the product over all measurements and
days, and marginalizing over all day-dependent means µd:

P (D|µ, τ) =
∏
d

[∫
dµdP (µd|µ, τ)

∏
i

P (µid|σid, µd)

]
. (11)

These integrals can all be performed analytically and we obtain

P (D|µ, τ) =
∏
d

1√
2π(τ2 + σ2

d)
exp

[
− (µ̄d − µ)2

2(τ2 + σ2
d)

]
, (12)

where we have defined the measured mean µ̄d on day d as

µ̄d =

∑
i µid/σ

2
id∑

i 1/σ2
id

, (13)

and the squared error σ2
d on the measured mean on day d as

σ2
d =

[∑
i

1

σ2
id

]−1

. (14)
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If we define the weighted overall average

µ̄ =

∑
d µ̄d/(τ

2 + σ2
d)∑

d 1/(τ2 + σ2
d)
, (15)

and the overall squared error

σ2 =

[∑
d

1

τ2 + σ2
d

]−1

, (16)

then we can rewrite equation (12) as

P (D|µ, τ) =

[∏
d

1√
2π(τ2 + σ2

d)

]
exp

[
− (µ− µ̄)2

2σ2
+

µ̄2

2σ2
−
∑
d

µ̄2
d

2(τ2 + σ2
d)

]
. (17)

We can then finally marginalize over µ to obtain a likelihood that depends only on τ
and the measurements:

P (D|τ) = σ

[∏
d

1√
2π(τ2 + σ2

d)

]
exp

[
µ̄2

2σ2
−
∑
d

µ̄2
d

2(τ2 + σ2
d)

]
. (18)

We maximize equation (18) with respect to τ to find the optimal value τ∗. We then
substitute this value τ∗ into equations (15) and (16) to obtain a final estimate µ̄ of the
overall mean autofluorescence and an error bar σ on this estimate. The same procedure
is used to estimate average variances v̄d for each day and an overall average variance v̄.
The E-Flow package returns all these values as the overall estimates of autofluorescence
averaged over multiple replicates and days.

5 Fitting the shot noise strength using calibration
beads

The electronic cascade in the photomultiplier tube introduces a noise whose variance
can be described as a Gaussian with a variance proportional to the square root of the
incoming signal [6]. This means that, for every measurement of fluorescence, the
relationship between measured intensity IM and true intensity IT is given by

IM = IT +O + ε
√
IT , (19)

with ε ∼ N (0, δ) and O is an offset introduced by the electronics in order to avoid
negative values when IT is very small.

To infer the strength δ of the shot noise term we used a set of calibration beads
consisting of a mixture of beads of three different expression levels. The top right panel
of Suppl. Fig. S7 shows the observed distribution of expression levels for one set of
beads showing three main peaks and one small additional peak at very high intensity.
We believe that this highest peak is an artifact due to aggregation of multiple beads.
We fit the distribution of bead intensities to a mixture of a uniform distribution (to
account for outliers) plus four Gaussians. We discard all points assigned to the uniform
distribution and the highest Gaussian component, and estimated the means, variances,
and CV 2 for each of the remaining three Gaussians. This procedure was repeated for
multiple datasets. In total we estimated means, variances, and CV 2 for 31 datasets of
calibration beads. The top left panel of Suppl. Fig S7 shows the CV 2 as a function of
the mean intensities of the beads across all datasets showing that CV 2 drops
approximately inversely with mean expression, as expected for shot noise.
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Fig S7. Estimation of the shot noise strength using calibration beads. Top
left: CV 2 as a function of mean intensity for each Gaussian component of each mixture
of beads analyzed. Both axes are shown on a log-scale and different colors refer to
different datasets. The black line and the shaded region represent the fit obtained using
a shot noise strength δ = 12.7± 0.6. Top right: Example of the intensity distribution of
a single dataset of beads; the red line shows the fit with a mixture of three Gaussians
and one uniform. Bottom: Estimates of the strength δ (left) and offset O (right) for
different datasets; the estimation is done fitting a model of the form given by equations
(24) and (25). The black lines correspond to the means of δ and O and the gray regions
correspond to their variation among datasets.
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Given one dataset of beads expressions, we can now fit a model based on Eq. (19).
First of all it can be proved that under this model the mean and variance of the
expression intensities of one single peak i are given by

M i
M = M i

T +O (20)

SiM = C2(M i
T )2 + δ2M i

T (21)

where we have supposed that the true coefficient of variation C is the same for every
peak (we assume that each of the 3 types of beads has the same manufacturing accuracy
in their fluorescence intensities). From the histogram in Fig. S7 (top right) it is clear
that in logarithmic space the intensities are well described by Gaussian distributions,
which means that M i

M and SiM are the mean and variance of a log-normal distribution.
We can work out the µ and σ of a normal distribution in log-space that would have M i

M

and SiM as mean and variance in real space

sim = log

[
1 +

(
C

M i
T

M i
T +O

)2

+ δ2 M i
T

(M i
T +O)2

]
(22)

µim = log
(
M i
T +O

)
− sim

2
(23)

It follows that in logarithmic space the probability of observing a data point xk
(including also a uniform distribution that takes care of possible outliers) is

P (xk | ~MT , O,C, δ, ~ρ) =

3∑
i=1

ρiN [xk; µim(M i
T , O,C, δ), s

i
m(M i

T , O,C, δ)] +

+
1−

∑3
i=1 ρi

∆
(24)

where ~ρ is a vector of weights whose elements sum to one and ∆ is the range of the data
in logarithmic space. The log-likelihood of the data is

L(~x | ~MT , O,C, δ, ~ρ) =

N∑
k=1

log
[
P
(
xk | ~MT , O,C, δ, ~ρ

)]
(25)

This likelihood is maximized using a coordinate descent algorithm and the error bar on
δ was estimated by expanding the log-likelihood to second order around its maximum,
keeping all other parameters fixed. The same procedure was used to estimate an error
bar on the offset O.

After obtaining estimates of δ and O and their error bars for each dataset, we
averaged the δs and Os from different datasets in the same way as we did for
autofluorescence measurements above. The bottom part of Suppl. Fig. S7 shows the
estimates of the shot noise and offset for different datasets and the final average of all
these estimates. We find that δ has a value of 12.7 with a variation of 0.6 among
datasets. Finally, the black line on the top left panel of Suppl. Fig. S7 shows that the
model correctly describes the observed decrease in CV 2 with mean.

6 Mother machine statistics

6.1 Age distribution in the Mother machine

Especially for highly expressed genes the GFP concentration varies relatively little
across cells, so that the total amount of GFP in a cell correlates well with its size. Since
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each cell expands exponentially along its division cycle in exponential growth, cell size
correlates well with the ‘age’ of a cell, i.e. where it is in its division cycle. For this
reason we expect a correlation between the total GFP distribution and the age
distribution of the population, i.e. the relative frequencies of cells in different stages of
their division cycle. Thus, in order to meaningfully compare GFP distributions from the
FCM and from cells growing in a microfluidic device, we must check that the age
distributions of the two populations are indeed comparable.

The cell population analyzed in the FCM is expected to have an over-representation
of younger cells, since for every old cell that divides two young cells are produced
whereas, in the microfluidic device, we expect less over-representation of young cells due
to the fact that cells continuously leave the growth channel.

To infer the population structure of a growing population of cells, we use the Leslie
approach [7]. We discretize the time in steps of 3 minutes, corresponding to the
acquisition time of the time lapse microscopy, and we look for the probability P (a, t) of
having cells of age a at time t. The Leslie theory is based on two quantities, the
fecundity f(x, t) which represents the expected contribution from an individual aged x
at time point t to the population aged 1 at time point t+ 1, and the probability P (x, t)
of survival over one time point for individuals who are present in age-class x at time t.
These quantities form the Leslie matrix, which is defined as

L(t) =


f(1, t) P (1, t) 0 . . . 0
f(2, t) 0 P (2, t) . . . 0

...
...

...
. . .

...
f(d− 1, t) 0 0 . . . P (d− 1, t)
f(d, t) 0 0 . . . 0

 (26)

this matrix is a squared d× d matrix where d is an upper limit on the age of the cells,
after which P (x, t) = 0. The population structure at time t is given by a vector ~n(t) of
dimension d, where the entry i is the number of individual in the population of age i.
The theory states that

~n(t) = ~n(0) · Lt (27)

where we use the convention that vectors are represented by rows. If the matrix L is
diagonalizable and its entries are independent of time, it can be shown that for very
large t the population reaches a stable age distribution with

~n(t) ∼ λt1~n(0) · ~U1
~U−1

1 (28)

ntot ∝ et log(λ1) (29)

where λ1 and ~U1 are the leading eigenvalues and eigenvectors of L.
From the data from the microfluidic device we can estimate the probability for a cell

of age x at time t to survive one more time point by computing the probability that the
division occurs at an age larger than x; the fecundity is then given as twice the
probability that the cell doesn’t survive. Suppl. Fig. S8 shows the computed P (x, t) by
considering cells at different times t from the beginning of the experiment and it shows
that they are all the same, suggesting that the Leslie matrix is indeed independent of
time. We thus decided to compute a single curve for P (x) by pooling all the cells
together independently of the time at which they were measured. The resulting curve
shows that the survival probability becomes negligible after 150 minutes, with a
medium age at division of 80 minutes.

We found that the exponential growth rate of the population, Eq (29), is
ρ ∼ 0.0089/min, which is the same as the measured single cell growth rate. As
expected, the population age structure differs markedly between the observed and the
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Fig S8. The Leslie model. Top left : The one-time point survival probabilities don’t
depend on the time and they show that the survival probability becomes negligible for
cells older than about 150 minutes. The medium age at division is around 80 minutes.
Top right : Since the probabilities don’t depend on time, we pooled data from all times
together to obtain a single survival curve. Bottom left : Fecundity as function of cell age.
Bottom right Asymptotic age distribution of the population for large times as observed
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theoretical one, as shown on the bottom right part of Fig S8. In particular the
theoretical distribution predicts more young cells than old, while in the microfluidic
device we have a nearly uniform age distribution with a right tail; hence, as expected,
young cells are relatively under-represented in the population in the microfluidic device.

Assuming that the GFP concentration is constant, the total GFP must depend on
the cell age through the length and in computing the mean and variances we have to
weight the GFP by the ratio between the theoretical and the observed age fractions.
Specifically, if Pobs(age) and Pth(age) are the observed and the theoretical age
distributions, then for the log(GFP ) distribution it holds

ḡ =

∑N
i=1 gi ω(agei)∑N
i=1 ω(agei)

(30)

Var g =

∑N
i=1(gi − ḡ)2 ω(agei)∑N

i=1 ω(agei)
(31)

where i runs over all cell observations, g ≡ log(G) and ω(age) is a weighting factor that
accounts for the over-representation of older cells

ω(age) =
Pth(age)

Pobs(age)
(32)

Going into log-space, we have estimates more robust against outliers and we can
approximate the CV 2 in the real space as the variance in the log-space. Suppl. Fig. S9
shows that the age structure correction makes the CVs only slightly lower than the one
measured ignoring the age structure effects.
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Fig S9. Effect of the age structure on the measured CV 2. Left : CV 2 corrected
by the age structure in the microfluidic device versus the CV 2 as directly measured,
ignoring the age structure effect. The age structure has the effect of making the
measured CV 2 slightly higher than the CV 2 corrected by the age structure of the
population. Right : CV 2 obtained by taking all the measures in the microfluidic device
versus the CV 2 when taking only one point, chosen at random, per cell. We can see
that the difference is very small and the points accumulate around the bisector.

6.2 Correlation in the measurements

As we are recording the size and GFP expression of cells every 3 minutes in the
microfluidic device, observations from nearby time points are clearly correlated, and it
could be suspected that this may affect the statistics we calculate. In contrast, in the
FCM, we have cells measured at only one time point, so we don’t have correlations
coming from the fact that we have multiple data points coming from the same cell. To
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check whether the presence of these correlated data points can substantially bias the
statistics, we measured the CV 2 for different promoters and media on different dates in
two different ways:

1. Taking all the data, regardless of the fact that they may come from the same cell.

2. Taking only one randomly selected data point for each cell.

The first condition is the one that we use throughout the paper to compute the
statistics, while the second one should be closer to the FCM setup. Suppl. Fig. S9
shows that the CV 2 are almost identical whether correlated time points are included or
not. In conclusion, neither the age structure nor the correlated measurements affect the
comparison of CV 2 between measurements from the FCM and from the microfluidic
device.
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