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Environmental characteristics

At a broad scale and relative to the whole of Australasia, NG ecosystems
might appear homogeneous (S3 Fig. , but at finer scales it is possible to dis-
tinguish significant differences (Fig. 8). As recommended by Segurado et al.
(2006) [1], selecting and using non-correlated environmental variables should
improve niche estimations (reduce overfitting) and facilitate interpretations.
However, problems associated with employing correlated variables are mini-
mized with an ‘ensemble’ or consensus modeling approach. Firstly, the mul-
tiple employed algorithms do not treat all variables equally and many, such
as GARP (genetic rules), exclude redundant information. In addition, Feng
et al. [2] selecting and using non-correlated environmental variables should
improve niche estimations (reduce overfitting) and facilitate interpretations.
However, problems associated with employing correlated variables are mini-
mized with an ‘ensemble’ or consensus modeling approach. Firstly, the mul-
tiple employed algorithms do not treat all variables equally and many, such
as GARP (genetic rules), exclude redundant information. In addition, Feng
et al2)) demonstrate that excluding highly correlated predictor variables from
modelling performed with Maxent does not significantly influence model per-
formance. Secondly, variability between two variables may be distinguishable
locally (at the ecosystem scale), whereas the same variables appear to be
correlated at a coarser, macro-regional scale (S3 Fig. [2).

Correlation between pairs of variables

Differences in correlations between environmental variables have been rec-
ognized for the four principal ecosystems: Vogelkop montane rain forests,
Southeastern Papuan rain forests, Northern New Guinea lowland rainforests
and freshwater swamp forests, and the Trans Fly savanna and grasslands
(S3 Fig. [2| C). These four ecosystems show different correlations between the
available environmental variables. This correlative variability between the
different ecosystems warrants that all 26 variables be retained for estimating
ELNSs.

Local variations of the correlation rates among the most auto-correlated
variables are depicted in S3 Fig. 2] D. These maps show that correlations are
not homogeneous across ecosystems. Although in some cases the same corre-
lations are shared amongst the ecosystems, one notes that they do not always
concern the same geographic regions. The southern region characterized by
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S3 Fig. 1: Biomes of Australasia according to the World Wide Fund For Nature (WWF') ecosys-
tem database . Map generated with R::rgdal package - CRAN repository.
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the Trans Fly savanna and grasslands ecosystem does not follow the same
pattern as the rest of the archipelago.

Estimation of overfitting for an ecosystem

In order to estimate potential overfitting with respect to a given ecosystem
(the Southeastern Papuan rain forests ecosystem), we performed a model with
all 26 environmental variables and another with non-auto-correlated variables,
each using the Roro occurrence data set and the Maxent.

The ENMTools MDS dimensional analysis [4] obtained for this ecosystem
(S3 Fig.[3|A) differs from the MDS obtained for all NG (S3 Fig.[2| A).Variations
in the correlations can also be seen in the heatmap comparisons (S3 Fig. 2| B
and C).

Based on the MDS for this ecosystem, 15 variables were retained to perform
the non-auto-correlated modelling (S3 Fig. [3| C-A). Results of both modelling
are depicted in S3 Fig. |3] C-D. Niche modeling done with the 26 environ-
mental variables shows a tendency towards more restricted prediction around
occurrences, and this is likely due to overfitting (S3 Fig. |3| B-D).

The ENMevaluate function of the R::ENMeval package [5] allows one to ob-
tain differences in the AUC (area under the receiver operating characteristic
curve) by executing Maxent across a range of settings for each of the two mod-
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S3 Fig. 2: Variable correlations. ENMTools MDS plot [4] for all NG (A); heatmap of variable correlation
values for all NG (B); heatmaps of variable correlations for 4 distinct ecosystems (the WWEF' ecosystem
database [3]) (C); geographic variation of correlation values for 4 pairs of auto-correlated variables (D).

A

0.4

0.2

0.0

-0.2

flowdiro
aspect
TPI o
(o]
bio16
]
bio13°
bio6
00 bio9 Obi02
_|pio11©
dem bio18 bio12
roughness®, §Iope © bio19°
bio1 TRI
bio8 ¢, : bio17
bio10  bio5 bio7 biol4oo
[0} (o]
bio4
[0}
bio3
% ©piots
T T T T T
-0.4 -0.2 0.0 0.2 0.4

slope -

roughness -

flowdir -

dem -

bio9 -

bio8 -
bio7 -}
bio6 -}
bio5 -}
bio4 -|
bio3 -|
bio2 -|
bio19 -

bio18 -
bio17 -
bio16 -
bio15 -
bio14 -|
bio13 -|
bio12 -
bio11 -

bio10 -

bio1 -

aspect -

Correlation
value
hight "%

3

050
025

roughness

Vogelkop montane
rain forests

Southeastern Papuan
rain forests

Northern New Guinea
lowland rain and freshwater

swamp forests

rrrre
Trans Fly savanna
and grasslands

cor(bio1,dem)

w& ; i

cor(bio8,bio10) 1.00
0.95
0.90
0.85

0.80

0.75

cor(bio14,bio17) 1.00
0.98
0.96
0.94
0.92

0.90

0.88

cor(bio12,bio19) 1.0
0.8
06
0.4
02

0.0

-0.2

Antunes et al. 2020



@ PLOS|ONE

S3 Fig. 3: Overfitting estimation. ENMTools MDS plot for the Southeastern Papuan rain forests
ecosystem (A); variables colored in black are those retained for the non-auto-correlated modeling; Roro
language occurrences (B); modelling with 26 variables (C); non-auto-correlated modeling 15 variables (D)
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S3 Table 1: Difference in AUC (area under the receiver operating characteristic curve) between
modeling runs that used auto-correlated variables and those that did not. Maxent was run 12
times for the non-auto-correlated modelling (15 variables) and the modelling with all predictor variables; run
settings differ according to linear feature (L), quadratic feature (Q), and values of the regularization multiplier
(rm). Results are extracted from the output of the ENMevaluate function in the R::ENMeval package [5].The
random K-fold method was used for data partitioning and employed 5 bins.

avg.diff AUC  avg.diff. AUC

Features rm 15 variables 26 variables

L 0.5 0.0132 0.0161
Q 0.5 0.0136 0.0129
LQ 0.5 0.0153 0.0178
L 1 0.0126 0.0143
Q 1 0.0133 0.0119
LQ 1 0.0140 0.0156
L 1.5 0.0128 0.0116
Q 1.5 0.0134 0.0097
LQ 1.5 0.0140 0.0136
L 2 0.0133 0.0095
Q 2 0.0138 0.0084
LQ 2 0.0139 0.0122

eling scenarios. The greater the difference, the greater the overfitting [6]. The
average of these differences is 0.0128 and 0.0135 for the two models, respec-
tively (S3 Table [1)).

Retention of all the 26 variables

In the light of the geographic differences between results obtained with auto-
correlated variables and those obtained using only non-auto-correlated vari-
ables, and considering the fact that overfitting is minimized by the consensus
approach, we decided to retain all the available bioclimatic variables, even if
some were, on average, highly correlated. Moreover, due to the use of mul-
tiple predictive architectures within a consensus approach, we were able to
take into account local variability when it is relevant to eco-linguistic niches
(i.e., based on their AUC and accuracy values, as well as their partial-ROC
ratio). Retaining all available environmental variables allows one to compare
the niches with each other (for example to represent them in the same PCA
in order to evaluate their relative positions in the environmental space).
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