Appendix 2 Derivation of the EMS (Expected Mean Square) relations

For this derivation we use a matrix with n = 3 rows (subjects) and k = 2 columns (measurements) as an illustration:

x_{11}	x_{12}	S_1
x_{21}	<i>x</i> ₂₂	S_2
<i>x</i> ₃₁	<i>x</i> ₃₂	S_3
M_1	M_2	x

As in Table 2 (main text), S_1 , S_2 , and S_3 are the mean values of the rows, M_1 and M_2 are the mean values of the columns and \bar{x} is the total mean value.

We will first assume Model 2, i.e. that each matrix element x_{ij} may be regarded as the sum of four terms,

$$x_{ij} = \mu + r_i + c_j + v_{ij}$$
 (A2-1)

where μ is a constant, r_i is sampled from a normal distribution with standard deviation σ_r , c_j is sampled from a normal distribution with standard deviation σ_c and v_{ij} is sampled from a normal distribution with standard deviation σ_v . Note that Model 1 is obtained simply by putting all $c_j = 0$.

Assuming that the model (A2-1) is used to generate the matrix x_{ij} shown above, we will now estimate the resulting mean squares, i.e. *MSBS*, *MSBM*, *MSWS*, *MSWM* and *MSE*.

We observe that each matrix element x_{ij} is, apart from the constant μ , the sum of three terms, each of which is sampled from a normal distribution. The total variance of x_{ij} is therefore the sum of the three independent variances σ_r^2 , σ_c^2 and σ_v^2 . It follows that each term in (A2-1) will give its own, independent contribution to each of the above five mean squares, for example to *MSBS*. In order to estimate these contributions, the simplest procedure is to study one term in (A2-1) at a time, assuming the others to be zero.

We may expect the constant μ to give zero contribution to variance and thus zero contribution to each mean square quantity (*MS*). This is easily verified. Putting each term in eq.(A2-1) except μ equal to zero, the matrix and its averages in will be reduced to the following:

μ	μ	μ
μ	μ	μ
μ	μ	μ
μ	μ	μ

We use the formulas in Appendix 1, and get, for example,

$$MSBS = \frac{SSBS}{n-1} = \frac{\sum_{i,j} (S_i - \bar{x})^2}{n-1} = \frac{\sum_{i,j} (\mu - \mu)^2}{n-1} = 0$$
(A2-2)

In a similar way we may easily confirm that MSBM = MSWS = MSWM = MSE = 0.

We therefore move on to the next term, r_i . Putting all other terms in (A2-1) equal to zero we get the following matrix:

r_1	r_1	r_1
r_2	r_2	r_2
r_3	r_3	r_3
\bar{r}	\bar{r}	\bar{r}

Here, \vec{r} is the mean value of the three r_i . Again using Appendix 1, we get

$$MSBS = \frac{SSBS}{n-1} = \frac{\sum_{i,j} (S_i - \bar{x})^2}{n-1} = \frac{k \cdot \sum_i (S_i - \bar{x})^2}{n-1} = \frac{k \cdot \sum_i (r_i - \bar{r})^2}{n-1} \approx k \cdot \sigma_r^2$$
(A2-3)
$$MSWM = \frac{SSWM}{k \cdot (n-1)} = \frac{\sum_{i,j} (x_{ij} - M_j)^2}{k \cdot (n-1)} = \frac{\sum_{i,j} (r_i - \bar{r})^2}{k \cdot (n-1)} = \frac{\sum_i (r_i - \bar{r})^2}{(n-1)} \approx \sigma_r^2$$

where the " \approx " sign means "is an estimate of". The last member in both equations follows when we realize that

$$\sum_{i} (r_i - \bar{r})^2 / (n-1)$$

is the square of the standard deviation of the three r_i values about their mean value \overline{r} ; therefore, it is an estimate of the variance σ_r^2 . In fact, if this sampling of three r_i values from a normal distribution with variance σ_r^2 is repeated a large number of times, then eq.(A2-3) means for example that the average value of *MSWM* will tend to be equal to σ_r^2 .

By similar procedures we may easily show that MSBM = MSWS = 0. From Appendix 1 we find the exact relation

$$MSE = \frac{k}{k-1}MSWM - \frac{1}{k-1}MSBS$$
(A2-4)

Using (A2-3) in (A2-4), we find $MSE \approx 0$. In summary, therefore, the r_i term gives the contributions

$$MSBS \approx k \cdot \sigma_r^2$$

$$MSBM = 0$$

$$MSWS = 0$$

$$MSWM \approx \sigma_r^2$$

$$MSE \approx 0$$
(A2-5)

We next put all terms in (A2-1) except the c_j equal to zero. The resulting matrix is

c_1	c_2	ē
c_1	c_2	ē
c_1	c_2	ē
c_1	c_2	lc I

Here, \bar{c} is the mean value of the three c_j . We need not do all the above calculations again, but merely observe that rows and columns have changed roles. Thus, we will obtain the desired formulas simply by replacing k by n, σ_r by σ_c , MSBS by MSBM, MSBM by MSBS, MSWS by MSWM and MSWM by MSWS. For the MSE, we use again eq.(A2-5). We show MSWS explicitly:

$$MSWS = \frac{SSWS}{n \cdot (k-1)} = \frac{\sum_{i,j} (x_{ij} - S_i)^2}{n \cdot (k-1)} = \frac{\sum_{i,j} (c_j - \bar{c})^2}{n \cdot (k-1)} = \frac{\sum_i (c_j - \bar{c})^2}{(k-1)} \approx \sigma_c^2 \quad (A2-6)$$

where, again, the last member follows since we recognize the square of the standard deviation of the c_j about their mean value in the next last member. The result, i.e. the contributions from the c_j term, is therefore

$$MSBS = 0$$

$$MSBM \approx n \cdot \sigma_c^2$$

$$MSWS \approx \sigma_c^2$$

$$MSWM = 0$$

$$MSE = 0$$

(A2-7)

Here we may insert the derivation in the case that the c_j terms are fixed, i.e. Model 3. The matrix looks precisely the same. However, in eq.(A2-6) we do not make the estimate ($\approx \sigma_c^2$) in the last member, but simply use the fact that

$$MSWS = \frac{\sum_{j} (c_{j} - \bar{c})^{2}}{(k - 1)} \equiv \theta_{c}^{2}$$
(A2-8)

where the customary symbol θ_c^2 is defined. For Model 3 the contributions from the c_j term are therefore

$$MSBS = 0$$

$$MSBM = n \cdot \theta_c^2$$

$$MSWS = \theta_c^2$$

$$MSWM = 0$$

$$MSE = 0$$

(A2-9)

We now consider the last term in (A2-1), i.e. we put all terms equal to zero except v_{ij} . The resulting matrix is given by

v_{11}	v_{12}	R_1
v_{21}	v_{22}	R_2
<i>v</i> ₃₁	v_{32}	R_3
C_1	C_2	\bar{v}

Here R_i and C_j denote the row and column mean values. We may here observe that each matrix element v_{ij} is obtained by sampling from a normal distribution with variance σ_v^2 . Moreover, each R_i value is the mean value of k = 2 matrix elements; its variance should therefore be σ_v^2/k . In the same way, each C_j value is the mean value of n = 3 matrix elements; its variance should therefore be σ_v^2/n .

From this we get

$$MSBS = \frac{SSBS}{n-1} = \frac{k \cdot \sum_{i} (S_{i} - \bar{x})^{2}}{n-1} = \frac{k \cdot \sum_{i} (R_{i} - \bar{v})^{2}}{n-1} \approx \sigma_{v}^{2}$$
(A2-10)

The last member follows if we observe that the next last member, apart from the factor k, is the square of the standard deviation of the R_i values about their mean value \bar{v} , i.e. it is an estimate of their variance:

$$\frac{\sum_{i} (R_{i} - \overline{v})^{2}}{n - 1} \approx \sigma_{v}^{2} / k$$
(A2-11)

Proceeding in a similar manner to estimate *MSBM*, *MSWM* and *MSWS*, and using (A2-5) to estimate *MSE*, we find the following simple result for the contributions from the v_{ii} term:

$$MSBS \approx \sigma_{v}^{2}$$

$$MSBM \approx \sigma_{v}^{2}$$

$$MSWS \approx \sigma_{v}^{2}$$

$$MSWM \approx \sigma_{v}^{2}$$

$$MSE \approx \sigma_{v}^{2}$$
(A2-12)

For Model 2 we now find the total expression for the mean squares as estimates of the variances by adding the contributions (A2-5), (A2-7) and (A2-12). This gives

$$MSBS \approx k \cdot \sigma_{r}^{2} + \sigma_{v}^{2}$$

$$MSBM \approx n \cdot \sigma_{c}^{2} + \sigma_{v}^{2}$$

$$MSWS \approx \sigma_{c}^{2} + \sigma_{v}^{2}$$

$$MSWM \approx \sigma_{r}^{2} + \sigma_{v}^{2}$$

$$MSE \approx \sigma_{v}^{2}$$
(A2-13)

The estimates for Model 1 are obtained from (A2-13) simply by putting $\sigma_c^2 = 0$, and the estimates for Model 3 by replacing σ_c^2 with θ_c^2 , as shown by (A2-9).