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 8 

The results of the statistical analysis are confirmed by the conclusions briefly listed below:  9 

1. The applicability of rank-based and presence-based comparisons between samples sequenced by 10 

different technologies;  11 

2. Increase of diversity and heterogeneity in samples collected in 2015;  12 

3. The separation of samples collected in 2010, 2011 and 2015 by overall composition of microbiomes;  13 

4. The compatibility of relative abundancies between two sequenced technologies for specific 14 

phylotypes after applying quantile normalization;  15 

5. The separation between healthy and diseased samples in 2015 by overall composition of 16 

microbiomes and by abundance of some bacterial groups; 17 

6. The presence of Chloroplast in the presented analysis does not prevent the assessment of the 18 

heterogeneity of bacterial species and their relative abundance.  19 

Rarefaction curves, for samples obtained by different technologies shown in S1_fig. The samples 20 

obtained by 454 technology are somewhat underrepresented, at average at 13% by Michaelis-Menten fit. 21 

The samples by Illumina technology are almost saturated, as it is natural due to higher sequencing depth. 22 

Shannon's diversity is relatively high for the 2015 samples (Fig 3 in the main text), and the observed 23 

separation between healthy and sick samples suggests that this measure is effective for describing the 24 

distribution of the number of the ecosystem being studied, despite the observed incomplete coverage. In 25 

addition, as the estimated Shannon diversity is relatively low for samples of 2010 and 2011 year, with 26 

sufficient coverage, rarefying this sample to level comparable to the 2015 samples will not significantly 27 

affect Shannon’s diversity values and other integral properties of population size distributions. Therefore, 28 

the heterogeneity of sponges microbiomes did indeed increased in 2015 year relatively to previous 29 

observations.  30 

 31 



  32 

S1_fig. Rarefaction curves, at the level of family. Results for (A) 7 samples from Olkhon Vorota area 33 

collected in 2015 and sequenced using 454 technology. (B) Samples from 2011 year, collected near Olkhon 34 

Island, amplified by two primer pairs and sequenced using Illumina technology.  35 

 36 

The values of abundances are known to be incomparable for data obtained by two technologies. 37 

The other ways to compare that data are to use presence/absence of some phylotype or to use rank of 38 

phylotype for comparison. These ways indeed performed well as shown below.  39 

Comparison between several measures of beta-diversity presented in S1 Table, in order to suggest 40 

in which way the values of abundances for two technologies could be most compatible. Significance of 41 

separations between groups of samples for healthy and diseased sponges shown in units of p-value. Matrix 42 

of distances between the samples was processed using PERMANOVA approach with 4000 iterations to 43 

get the p-value. Distances between samples were estimated from values of relative abundances, reduced 44 

to a level of family in taxonomy. Several metrics used to calculate the distances as shown in S1 Table. 45 

 46 

S1 Table. The results of PERMANOVA function implemented in scikit-bio package. 47 

 48 



Measure  Open-ref (*)  Closed-ref  
Closed-ref without  

Chloroplast  

Pearson  0.00925  0.0065  0.0005  

Kendall  0.00025  0.00025  0.00025  

Spearman  0.00775  0.00725  0.00075  

Euclidean  0.003  0.002  0.00025  

Bray-Curtis  0.00025  0.002  0.0005  

Jaccard  0.00025  0.00025  0.00025  

Morisita-Horn  0.0055  0.00275  0.00025  

UniFrac-unweighted  0.00025  0.00025  0.00025  

UniFrac-weighted  0.00175  0.00175  0.00025  

(*) the results estimated in p-value for QIIME open-reference OTU picking for the same dataset  49 

 50 

In can be seen that UniFrac-unweighted measure and Jackard measure (S1 Table) which are 51 

based on the comparison of presence/absence of the phylotypes, are effective in separation of samples to 52 

healthy and diseased groups, when both groups contain samples obtained by two technologies. A 53 

Kendall measure of correlation, which is based on ranks of rows, could be transformed to the distances 54 

between samples just by a simple transformation: distance = 1 - correlation. It is also effective as 55 

measure of distance in separation of samples. The results shown in S1 Table support choice of closed-56 

reference OTU picking strategy accepted in the study, as it provides more stable and consistent 57 

separation of samples, than the open-reference OTU picking. 58 

Even the raw values of abundance allow comparing visually the compositions of microbiomes in 59 

sponges for data obtained by different sequencing methods S2_fig.60 
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S2_ fig. Composition of healthy sponges microbiomes. (A) Healthy samples of 2015 sequenced by 84 

454 and control Sp2010healthy sequenced by Illumina. (B) Diseased samples of 2015 sequenced by 85 

454 and control Sp2010healthy sequenced by Illumina. (C) Comparison of abundances in microbiomes 86 

of samples Sp2011-pink Sp2011green and Sp2010heathy sequenced by Illumina.  87 

 88 

Dendrograms degree of proximity of microbiome compositions depending at the measurement 89 

method used presented in S3_fig. The composition of dominant species shown to be similar for the two 90 

sequencing methods, but Kendall measure more clearly separates groups of healthy and diseased 91 

sponges (S3A_fig), as opposed to unweighed UniFrac measure (S3B_fig). Shown, that the 2011 92 

sponges are definitely different from Sp2010healthy sponges. The microbiome composition of the 93 

healthy Sp2015green OV-r3 sponge, isolated in 2015, is close to the 2010 sponge microbiome, despite 94 

the use of various sequencing methods. The same division into groups is observed in S2_fig.  95 

 96 

 97 

  98 

S3_fig. Dendrograms representing the degree of proximity between microbiome compositions. 99 

(A) Rank-based Kendall measure. (B) unweighed UniFrac measure. Abundance values in the samples 100 

were used at a level of family; dendrograms were constructed using UPGMA clustering. 101 

 102 

But to get more rigorous comparison of relative abundance of species in two periods, the 103 

quantile normalization could be applied to table of abundances composed from both periods. In the 104 



technique of quantile normalization, only a rank of each species is used to get the transformed values of 105 

abundances. The good performance of Kendall correlation as a distance measure suggests that the 106 

quantile transformation should improve the consistency between values of abundances. 107 

The data for the same samples Sp2011pink, sequenced by two different technologies using three pairs 108 

of primers are presented in S4_fig. The previously published data on high levels of Cyanobacteria and 109 

Verrucomicrobia in Sp2011pink are confirmed even for non-transformed values for both types of 110 

sequencing. However, the incompatibility of numbers between the 454 and Illumina technologies is 111 

clearly visible in the top row. Nevertheless, the distribution of phylotypes in samples looks much more 112 

comparable after applying quantile normalization. 113 

 114 

 115 

S4_fig. Bubble chart representing the influence of quantile normalization. Data obtained using 116 

three technologies for the same sample of pink sponge collected in 2011 before and after quantile 117 

normalization. 118 

 119 

To study a contribution of chloroplast species to a distribution of relative abundances, several 120 

tests performed, as shown below. These trees demonstrate that the distribution of samples is similar, 121 



whatever abundances for Chloroplasts taken into account or not (S5_Fig). Samples of 2010 and 2011 122 

are in any case divided into both trees, which supports the hypothesis about the time of onset of the 123 

disease.  124 

 125 

  126 

S5_fig. Dendrograms, constructed using a ranked Kendall measure. Influence of presence or 127 

absence of Chloroplasts on proximity of the microbiomes composition: (A) Complete data. (B) 128 

Chloroplasts are excluded. The dendrograms constructed using UPGMA clustering; abundance in the 129 

samples used at the family level.  130 

 131 

The separation between healthy (green) and diseased samples is also significant in both cases, 132 

Shannon index is higher in diseased samples, p-value = 0.001 on a level of family (S2 Table). The 133 

bacterial phylotypes specific to diseased samples and to healthy samples (S6_fig) in both cases are also 134 

identified with a consistence to results shown in Fig 4 (main text). Chloroplast species contribute to 135 

relative abundance values, so the list of the most common phylotypes differs on two heatmaps (S6_fig). 136 

However, this does not affect the observation of changes in microbial composition of the sponge 137 

samples discussed in the study.  138 

 139 



 140 

 141 

S6_fig. Heatmaps representing an effect of Chloroplast species on a separation of genera specific 142 

to diseased sponges. The columns on the right shows a significance difference between the healthy and 143 

diseased samples estimated using Mann-Whitney test; width of the bars corresponds to –ln (p-value). 144 

Red line separates the significance level of 0.99 (p-value < 0.01).  145 

 146 

The analysis of third-party data of sponge microbiomes from coasts of New Guinea performed to 147 

support the methodology used to compare mixing sequencing technologies. The dataset was composed 148 

from raw sequencing reads deposited in projects PRJNA216132 (16S amplicon metagenome analysis of 149 

three sponge species at CO2 seeps in Papua New Guinea) and PRJNA454201 (Sponge microbiome 150 



responses to ocean acidification) [Kander et al., 2018]. The data in project PRJNA216132, submitted by 151 

Australian Institute of Marine Sciences and RTL Genomics, was sequenced using 454 GS FLX+ 152 

pyrosequencer. 20 samples collected 27.08.2013 on control sites were used, png51c3-png60c3 for 153 

Stylissa massa sponge and png21c1-png30c1 for Coelocarteria singapurensis sponge. The data on 154 

project PRJNA454201, submitted by Victoria University of Wellington and Australian Centre for 155 

Ecogenomics, was sequenced in Illumina MiSeq with paired layout. Four samples collected 22.11.2014 156 

on control sites were used, SC6.2, SC5.2 for Stylissa flabelliformis sponge and FC6.2, FC5.2 for 157 

Coelocarteria singapurensis sponge.  158 

The 454 pyrosequencing reads were quallity filtered and trimmed using mothur package, with 159 

parameters 'maxambig=0, maxhomop=8, flip=T, bdiffs=1, pdiffs=2, qwindowaverage=25, 160 

qwindowsize=50, minlength=150'. The Illumina pair-end reads were quality trimmed using Trimmomatic 161 

(SLIDINGWINDOW:50:20 MINLEN:50) and  merged  using Flash software (-m 10 -x 0.2 -p 33 -r 300 162 

-f 450 -s 150). The closed-reference OTU picking of the combined dataset was identical to the procedure 163 

applied to combined dataset of Baikal sponge samples, as it described in Methods section in the main 164 

text.  165 

The Stylissa genus of sponges (Axinellidae) and Coelocarteria singapurensis sponges 166 

(Isodictyidae) are closer in microbiome composition than the L. baikalensis sponges in two states of 167 

disease. So, the variations between distance measures that separate two genera of sponges following same 168 

PERMANOVA approach with 4000 iterations observed on higher level of taxonomic hierarchy, as shown 169 

in S2 Table.  170 

 171 

S2 Table. The results of PERMANOVA function for sea sponges. 172 

 

  
  

 
  

 
 

Family  0.00025   0.00025   0.0005  0.008  0.00025   0.00025   0.0005   0.00025   0.0005  

Order  0.0085   0.00025   0.00625  0.01475  0.00025   0.00025   0.0105   0.00025   0.00025  

Class  0.0845   0.00025   0.07675  0.02025  0.00075   0.00025   0.0795   0.00025   0.0045  

  173 

The dendrograms constructed for presentation of dataset at order level using the same average 174 

linking and two measures of distance demonstrate that samples of both sponges’ genera grouped 175 

together and the biases are the corrections of second order (S7_fig). 176 



 177 

 178 

  179 

S7_fig. Dendrograms representing a degree of proximity between microbiome composition of 180 

two marine sponges. (A) Constructed using rank-based Kendall measure. (B) Presence-based 181 

unweighed UniFrac measure. Abundance values in samples used at level of family and dendrograms 182 

constructed using UPGMA clustering.  183 

 184 

This could serve as additional support to the statement in the results section of the main text that 185 

samples of healthy L. baicalensis sponge from 2010 year separated from both samples of 2011 year and 186 

are close to some of healthy samples, collected in 2015 and sequenced using another technology.  187 

In a similar way, the quantile normalization improves the separation of bacterial phylotypes 188 

specific to each of the sponge genera (S8_fig).  189 

 190 



  191 

S8_fig. Heatmap of the 25 most abundant bacterial groups at the level of family. (A) Raw 192 

abundances. (B) After quantile normalization. The column on the right shows a significance difference 193 

between the two genera of host sponges, estimated using Mann-Whitney test; width of the bars 194 

corresponds to –ln (p-value). Red line separates the significance level of 0.999 (p-value < 0.001).  195 

 196 

The values of alpha-diversity for the combined dataset of the marine sponges provided at level of 197 

order in taxonomy for reference (S3Table).  198 

 199 

S3Table. The values of alpha-diversity for the combined dataset of the marine sponges. 200 

 201 

  

 
 

  

  
 

  

SRR957525  png21c1  5483  2  16.13  12  0.2  0.05  10  4  2  

SRR957526  png22c1  1273  221  27.27  27  3.01  0.82  25  4  2  

SRR957532  png23c1  2636  9  16.33  16  0.41  0.09  16  1  4  

SRR957578  png24c1  2724  312  39.34  37.5  2.29  0.6  35  6  5  

SRR957584  png25c1  1548  22  17.04  16.5  0.83  0.2  16  2  1  

SRR957597  png26c1  1718  458  25.9  25  2.88  0.81  24  3  2  

SRR957598  png27c1  2984  1  18.11  21  0.25  0.06  11  5  0  

SRR957599  png28c1  1715  320  28.65  28.5  3.32  0.85  27  3  1  

SRR957600  png29c1  2278  205  28.19  27.2  2.62  0.72  27  2  4  

SRR957601  png30c1  1428  157  31.54  31.33  2.86  0.78  28  5  2  

SRR958136  png51c3  5424  355  44.13  46  3.07  0.79  41  6  2  

SRR958138  png52c3  10562  687  52.63  52.5  2.84  0.75  50  5  3  

SRR958141  png53c3  3814  284  47.03  46.5  3.18  0.81  43  7  5  

SRR958142  png54c3  10892  652  63.77  69.33  3.2  0.82  51  11  2  

SRR958149  png55c3  3730  183  55.67  59.25  3.35  0.86  48  10  3  

SRR958153  png56c3  2890  166  45.66  52  2.93  0.79  40  9  2  

SRR958163  png57c3  4181  318  40.37  39.5  3.13  0.8  37  5  3  

SRR958164  png58c3  105342  6891  96.41  94.5  3.24  0.81  90  9  7  



SRR958165  png59c3  8230  531  56.33  55  3.15  0.81  49  9  5  

SRR958166  png60c3  5498  161  38.85  39  2.22  0.6  37  4  2  

SRR7081699  SC5.2  13118  609  109.2  112.25  2.3  0.71  49  23  3  

SRR7081700  SC6.2  28300  1935  61.07  61  2.47  0.74  52  10  4  

SRR7081710  FC5.2  15958  3145  52.2  46.75  4.11  0.93  43  6  3  

SRR7081709  FC6.2  6694  1396  40.95  45  3.81  0.88  35  5  0  

 202 

 203 

Details of implementation, fragments of code in Python 2.7 and bash provided to explain the features of 204 

downstream analysis. 205 

 206 

Rarefaction and Michaelis-Menten fit:  207 

 208 

#input: si - sorted list of abundance values  209 

#output: xvals, yvals - rarefaction chart; mparams - parameters and precision of Michaelis-Menten fit  210 

  211 

import skbio.stats as skstats  212 

from scipy.optimize import fmin_powell  213 

  214 

n_indiv = sum( si ) 215 

n_otu = len( si ) def 216 

subsample( si, i ):  217 

 ssi = skstats.subsample_counts( si, i )  return 218 

np.count_nonzero( ssi ) def errfn(p, n, y):  219 

  return ( ( ( p[0] * n / (p[1] + n ) ) - y ) ** 2 ).sum() 220 

i_step = max( n_indiv / 200, 1 ) num_repeats = max( 221 

2000 / i_step, 1 )   222 

print >>sys.stderr, ( i_step, num_repeats )  223 

S_max_guess = n_otu  224 

B_guess = int( round( n_otu / 2 ) ) params_guess 225 

= ( S_max_guess, B_guess ) xvals = np.arange( 226 

1, n_indiv, i_step )  227 

ymtx = np.empty( ( num_repeats, len( xvals ) ), dtype=int ) for 228 

i in range( num_repeats ):  229 

ymtx[i] = np.asarray( [ subsample( si, n ) for n in xvals ], dtype=int ) yvals 230 

= ymtx.mean(0)  231 

params_guess = ( n_otu,  int( round( n_otu / 2 ) ) )  232 

mparams = fmin_powell( errfn, params_guess, ftol=1e-5, args=(xvals, yvals), disp = False )  233 

  234 

Quantile normalization:  235 

 236 



#input: matrix - matrix of relative abundances  237 

#output: df - transformed matrix of relative abundances  238 

 239 

import numpy as np  240 

 241 

def quantileNormalize( matrix ):  242 

    df = copy.copy( matrix )  243 

    dic = {}     for col in range( len( df ) 244 

):         dic.update({col : 245 

sorted(df[col])})     rank = [ 0 ] * len( 246 

df[0] )     for i in range( len( rank ) ):  247 

  rank[ i ] = np.average( [ dic[ col ][ i ] for col in range( len( df ) ) ] )     for col in range( 248 

len( df ) ):         t = np.searchsorted( np.sort(df[col]), df[col] )         df[col] = [ rank[i] 249 

for i in t ]  250 

    return df   251 

 252 

Reduction of dataset:  253 

 254 

#input: data (double list of strings), ml (integer) - representation of raw data on OTU level; ilevel - level of reduction in taxonomic hierarchy; 255 

kdict - taxonomic assignments in that level;  findex (list of intergers), gtags (distionary) - pre-defined distribution of samples into groups; 256 

#output: edata - matrix of absolute abundance counts, distributed to groups and in a reduced level of taxonomy   257 

 def load_edata( data, ilevel, ml, kdict, findex, gtags 258 

):  259 

  edata = []   for tagnum in sorted( gtags.values() ):    260 

 cgtag = gtags.keys()[ gtags.values().index( tagnum ) ]  261 

    crow = [ 0 ] * len( kdict )     for i in sorted( findex ):  262 

     if findex[i] == cgtag:         for d 263 

in data[1:]:           if len( d ) < max( 264 

findex.keys() ) + ml:  265 

            continue  266 

     ckey = "".join( d[0:ilevel] )      if ckey in kdict:  267 

            cind = kdict[ ckey ]  268 

            v = int( float( d[ i + ml + 1 ] ) )  269 

            crow[ cind ] += v  270 

    edata.append( crow )  271 

  return edata  272 

 273 

Selection of most abundant phylotypes:  274 

 275 

#input: edata - matrix of absolute abundance counts; num_best - number of taxonomic units to select; kdict - taxonomic assignents for rows 276 

in input matrix  277 

#output: nedata - matrix of absolute abundance counts for num_best most abundant units; nkdict - taxonomic assignents for the selected 278 

abundant units  279 

 280 

import numpy as np  281 



 282 

 def select_toptax( edata, kdict, num_best ):     aedata = np.array( edata, dtype=float )  283 

    aenorm = np.maximum( np.sum( aedata, axis=1 ), np.array( [ 1. / len( edata[0] ) ] * len( edata ) ) )     284 

aedata /= aenorm.reshape( len(edata), 1 )     ssum = np.sum( aedata, axis=0 )  285 

    ssorted = sorted( ssum.tolist(), reverse=True )     286 

smax = ssorted[ num_best ]     nkdict = {}     nedata = 287 

[]     tcnt = 0     for key in kdict:         if ssum[ kdict[key] 288 

] > smax and tcnt < num_best:       for k in 289 

range( len( edata ) ):                if tcnt == 0:  290 

                   nedata.append( [] )                291 

nedata[k].append( edata[k][ kdict[key] ] )  292 

               nkdict[ key ] = tcnt                293 

tcnt += 1  294 

    return ( nedata, nkdict )  295 

 296 

Functional annotation (fragment of script in bash):  297 

 298 

source activate qiime1  299 

filter_samples_from_otu_table.py -i otu_table.biom -o picrust_input.biom -n 1 300 

normalize_by_copy_number.py -i picrust_input.biom -o normalized_otus.biom 301 

predict_metagenomes.py -i normalized_otus.biom -o picrust.biom  302 


