S2 Table. Kinetic rate constants used in the model, as proposed by [2].

Biochemical reaction	Rate Constant	Value	Source
Hydrolysis of C3 $\left(\mathrm{H}_{2} \mathrm{O}\right)$	$k_{\mathrm{C} 3 \mathrm{H}_{2} \mathrm{O}}^{+}$	$8.3 \times 10^{-10} \mathrm{~ms}^{-1}$	[9]
Association of factor B to C3b	$k_{\text {C3bB }}^{+}$	$0.000213 \mu^{-1} \mathrm{~ms}^{-1}$	[10]
Dissociation of complex C3bB	$k_{\text {C3bB }}^{-}$	$0.000155 \mathrm{~ms}^{-1}$	[10]
Attachment of fnC3b to host and pathogen	$k_{\text {fC3b }}^{+}$	$0.42 \mathrm{\mu M}^{-1} \mathrm{~ms}^{-1}$	$\begin{aligned} & \begin{array}{l} \text { Calculated, see S2 Ap- } \\ \text { pendix } \end{array} \\ & \hline \end{aligned}$
Attachment of hnC3b to host	$k_{\text {hC3b }}^{+}$	varying	Calculated, see S5 Ap- pendix
Attachment of pnC3b to pathogen	$k_{\mathrm{pC} 3 \mathrm{~b}}^{+}$	varying	Calculated, see S5 Ap- pendix
Association of nC3b (fnC3b, hnC3b and pnC3b) to water	$k_{\text {nС3 }}^{-}$	$11.55 \mathrm{~ms}^{-1}$	$\begin{aligned} & \text { Calculated, see S3 Ap- } \\ & \text { pendix } \end{aligned}$
Association of factor H to C3b	$k_{\text {C3bH }}^{+}$	$0.0052 \mathrm{\mu m}^{-1} \mathrm{~ms}^{-1}$	[11]
Dissociation of complex C3bH	$k_{\text {C3bH }}^{-}$	$0.0325 \mathrm{~ms}^{-1}$	[11]
Association of factor H to heparin dp32/dp36 (HS)	$k_{\text {HSH }}^{+}$	$0.0065 \mu \mathrm{M}^{-1} \mathrm{~ms}^{-1}$	[12], estimated from dissociation constant
Dissociation of complex HSH	$k_{\text {HSH }}^{-}$	$0.00325 \mathrm{~ms}^{-1}$	[12], estimated from dissociation constant
Association of factor H to Pra1	$k_{\text {Pra1H }}^{+}$	$0.8673 \mathrm{\mu m}^{-1} \mathrm{~ms}^{-1}$	own measurements, estimated from dissociation constant
Dissociation of complex Pra1H	$k_{\text {Pra1H }}^{-}$	$0.00162 \mathrm{~ms}^{-1}$	own measurements, estimated from dissociation constant
Inflow of factor H	k_{H}^{+}	$4.88 \times 10^{-5} \mathrm{\mu M} \mathrm{~ms}^{-1}$	Calculated, see S6 Ap- pendix
Inflow of C3	$k_{\text {C } 3}^{+}$	$8.23 \times 10^{-5} \mathrm{\mu M} \mathrm{~ms}^{-1}$	Calculated, see S6 Appendix
Outflow of FH and C3	$k_{\text {blood }}^{-}$	$1.525 \times 10^{-5} \mathrm{~ms}^{-1}$	Calculated, see S6 Ap- pendix
Activation of complex C3bB by Factor D	$\begin{aligned} & k_{\text {cat }} \mathrm{C} 3 \mathrm{bB} \\ & K_{M} \mathrm{C} 3 \mathrm{bB} \end{aligned}$	$\begin{gathered} 0.0021 \mathrm{~ms}^{-1} \\ 0.1 \mu \mathrm{M} \end{gathered}$	[2]
Cleavage of C3 by C3 convertase, C3bBb	$\begin{aligned} & k_{\text {cat }} \mathrm{C} 3 \mathrm{bBb} \\ & K_{M} \mathrm{C} 3 \mathrm{bBb} \end{aligned}$	$\begin{gathered} 0.0018 \mathrm{~ms}^{-1} \\ 5.9 \mathrm{\mu M} \end{gathered}$	[13]
Cleavage of C3b by inhibitor Factor I	$k_{\text {cat }} \mathrm{C} 3 \mathrm{bH}$ $K_{M} \mathrm{C} 3 \mathrm{bH}$	$\begin{gathered} 0.0013 \mathrm{~ms}^{-1} \\ 0.25 \mu \mathrm{M} \end{gathered}$	[11]

