Biochemical reaction	Rate Constant	Value	Source
Hydrolysis of $C3(H_2O)$	$k_{\rm C3H_2O}^+$	$8.3 imes 10^{-10} { m ms}^{-1}$	[9]
Association of factor B to C3b	$k_{\rm C3bB}^+$	$0.000213\mu{\rm M}^{-1}{\rm ms}^{-1}$	[10]
Dissociation of complex C3bB	$k_{ m C3bB}^-$	$0.000155{\rm ms}^{-1}$	[10]
Attachment of fnC3b to host and pathogen	$k_{ m fC3b}^+$	$0.42\mu{\rm M}^{-1}{\rm ms}^{-1}$	Calculated, see S2 Appendix
Attachment of hnC3b to host	$k_{ m hC3b}^+$	varying	Calculated, see S5 Appendix
Attachment of pnC3b to pathogen	$k_{\rm pC3b}^+$	varying	Calculated, see S5 Appendix
Association of nC3b (fnC3b, hnC3b and pnC3b) to water	$k_{ m nC3b}^-$	$11.55 {\rm m s}^{-1}$	Calculated, see S3 Appendix
Association of factor H to C3b	$k_{ m C3bH}^+$	$0.0052\mu{\rm M}^{-1}{\rm ms}^{-1}$	[11]
Dissociation of complex C3bH	$k_{ m C3bH}^-$	$0.0325{\rm ms}^{-1}$	[11]
Association of factor H to heparin dp32/dp36 (HS)	$k_{\rm HSH}^+$	$0.0065\mu{\rm M}^{-1}{\rm ms}^{-1}$	[12], estimated from disso- ciation constant
Dissociation of complex HSH	$k_{\rm HSH}^{-}$	$0.00325{\rm ms}^{-1}$	[12], estimated from disso- ciation constant
Association of factor H to Pra1	$k_{\rm Pra1H}^+$	$0.8673\mu{ m M}^{-1}{ m ms}^{-1}$	own measurements, esti- mated from dissociation constant
Dissociation of complex Pra1H	$k^{ m Pra1H}$	$0.00162{\rm ms}^{-1}$	own measurements, esti- mated from dissociation constant
Inflow of factor H	k_{H}^+	$4.88 \times 10^{-5}\mu{\rm Mms^{-1}}$	Calculated, see S6 Appendix
Inflow of C3	k_{C3}^+	$8.23\times 10^{-5}\mu{\rm Mms^{-1}}$	Calculated, see S6 Appendix
Outflow of FH and C3	k_{blood}^{-}	$1.525 \times 10^{-5} \mathrm{ms}^{-1}$	Calculated, see S6 Appendix
Activation of complex C3bB by Factor D	$\begin{array}{c} k_{cat} \text{C3bB} \\ K_M \text{C3bB} \end{array}$	$\begin{array}{c} 0.0021{\rm ms}^{-1} \\ 0.1{\rm \mu M} \end{array}$	[2]
Cleavage of C3 by C3 con- vertase, C3bBb	k_{cat} C3bBb K_M C3bBb	$\begin{array}{c} 0.0018{\rm ms}^{-1} \\ 5.9{\rm \mu M} \end{array}$	[13]
Cleavage of C3b by in- hibitor Factor I	k_{cat} C3bH K_M C3bH	$\begin{array}{c} 0.0013{\rm ms}^{-1} \\ 0.25{\rm \mu M} \end{array}$	[11]

S2 Table. Kinetic rate constants used in the model, as proposed by [2].