Supporting information

Let $0 < \alpha < 1$ be a significance level. We illustrate here that false-positives are uncontrolled in the test used in [1] and under control of α in the correct test described in Section 2.3. To do so, consider the following framework:

- i/ Create a synthetic set \mathcal{X} by drawing its *n* iid elements from $\mathcal{N}(0, 1)$, the Gaussian distribution with zero mean and variance 1. *n* is set to 10^3 .
- ii/ Generate $N = 5 \times 10^4$ independent realisations of such set \mathcal{X} . All N sets thus have a true zero mean by construction.
- iii/ Test each set: obtain a *p*-value per set and, given the significance level α , a rejection decision per set.

We then consider both the probability of type I error estimated by $\hat{p}_{\rm I} = R/N$, where R counts the number of rejected sets \mathcal{X} (for the given α), as well as the α -quantile p_{α}^* of the N p-values obtained: the value under which there are αN p-values. If the test used in iii/ is correct, both $\hat{p}_{\rm I}$ and p_{α}^* should be very close to α .

Figure 13 compares results obtained with the test published in [1] and the one described in Section 2.3. For both tests, at q = 0 and as expected, both indicators $\hat{p}_{\rm I}$ and p^*_{α} are at α , as it should be. However, as q increases, the test from [1] deviates from α quite significantly. For instance, for q = 0.2, the 0.01-quantile of the computed p-values is 3.5×10^{-4} , almost two orders of magnitude lower than what it should be!

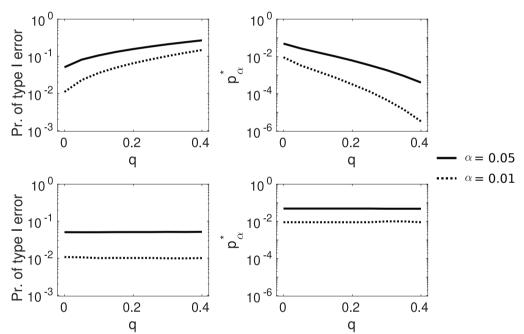


Fig 13. Results obtained on artificial data of zero mean (see the Supporting information for details). Top line: results of the test published in [1]. Bottom line: results of the correct test detailed in Section 2.3. Left: the estimated type I error \hat{p}_{I} as a function of q (the trimming intensity), for two different values of α . Right: the α -quantiles of the *p*-values versus q, for two different values of α . Number of bootstrap samples used for both tests: 2000.

On the contrary, in the test used in this paper, and for all values of q, both $\hat{p}_{\rm I}$ and p^*_{α} are equal to what is expected from a well-controlled test, namely α .