Supporting information

Let $0<\alpha<1$ be a significance level. We illustrate here that false-positives are uncontrolled in the test used in [1] and under control of α in the correct test described in Section 2.3. To do so, consider the following framework:
i/ Create a synthetic set \mathcal{X} by drawing its n iid elements from $\mathcal{N}(0,1)$, the Gaussian distribution with zero mean and variance 1. n is set to 10^{3}.
ii/ Generate $N=5 \times 10^{4}$ independent realisations of such set \mathcal{X}. All N sets thus have a true zero mean by construction.
iii/ Test each set: obtain a p-value per set and, given the significance level α, a rejection decision per set.

We then consider both the probability of type I error estimated by $\hat{p}_{\mathrm{I}}=R / N$, where R counts the number of rejected sets \mathcal{X} (for the given α), as well as the α-quantile p_{α}^{*} of the $N p$-values obtained: the value under which there are $\alpha N p$-values. If the test used in iii/ is correct, both \hat{p}_{I} and p_{α}^{*} should be very close to α.

Figure 13 compares results obtained with the test published in [1] and the one described in Section 2.3. For both tests, at $q=0$ and as expected, both indicators \hat{p}_{I} and p_{α}^{*} are at α, as it should be. However, as q increases, the test from [1] deviates from α quite significantly. For instance, for $q=0.2$, the 0.01 -quantile of the computed p-values is 3.5×10^{-4}, almost two orders of magnitude lower than what it should be!

Fig 13. Results obtained on artificial data of zero mean (see the Supporting information for details). Top line: results of the test published in [1]. Bottom line: results of the correct test detailed in Section 2.3. Left: the estimated type I error \hat{p}_{I} as a function of q (the trimming intensity), for two different values of α. Right: the α-quantiles of the p-values versus q, for two different values of α. Number of bootstrap samples used for both tests: 2000.

On the contrary, in the test used in this paper, and for all values of q, both \hat{p}_{I} and p_{α}^{*} are equal to what is expected from a well-controlled test, namely α.

