S6 Table. MAE of our proposed approach against the other model set-ups from the ensemble mean mean \pm sd estimate of the 50 runs. $L S T M=$ LSTM model using the full depth of the Landsat time series and climate data; $L S T M_{\text {perm }}=L S T M$ model but the temporal patterns of both the predictive and the target variables were randomly permuted while instantaneous relationships between predictive and target variables were kept; $L S T M_{m s c}=L S T M$ model but the Landsat time series for each band were replaced by their mean seasonal cycle, while using the actual values of air temperature ($\mathrm{T}_{a i r}$), precipitation (P), global radiation (Rg), and vapor pressure deficit $(\mathrm{VPD}) ; L S T M_{\text {annual }}=L S T M$ model but the Landsat time series for each band were replaced by their annual mean, while using the actual values of $\mathrm{T}_{\text {air }}, \mathrm{P}, \mathrm{Rg}$, and VPD, RF = Random Forest model using the actual values of the Landsat time series and climate data.

	Seasonal	Seasonal anomaly	Across-site	Interannual anomaly
LSTM	$\mathbf{0 . 8 1} \pm 0.01$	$\mathbf{0 . 4 2} \pm 0.003$	$\mathbf{0 . 4 8} \pm 0.02$	$\mathbf{0 . 2 2} \pm 0.003$
LSTM $_{\text {msc }}$	$\mathbf{0 . 8 3} \pm 0.01$	$\mathbf{0 . 4 2} \pm 0.002$	$\mathbf{0 . 5 0} \pm 0.02$	$\mathbf{0 . 2 2} \pm 0.002$
LSTM $_{\text {annual }}$	$\mathbf{0 . 8 9} \pm 0.02$	$\mathbf{0 . 4 2} \pm 0.006$	$\mathbf{0 . 5 1} \pm 0.02$	$\mathbf{0 . 2 2} \pm 0.006$
LSTM $_{\text {perm }}$	$\mathbf{0 . 8 6} \pm 0.01$	$\mathbf{0 . 4 3} \pm 0.003$	$\mathbf{0 . 5 0} \pm 0.02$	$\mathbf{0 . 2 2} \pm 0.003$
RF	$\mathbf{0 . 9 1} \pm 0.00004$	$\mathbf{0 . 5 1} \pm 0.00008$	$\mathbf{0 . 5 1} \pm 0.0001$	$\mathbf{0 . 2 4} \pm 0.00009$

