
S2 Appendix: Expressing base quality score recalibration
(BQSR) in elPrep 4

Charlotte Herzeel1Y*, Pascal Costanza1Y, Dries Decap1,2, Jan Fostier1,2, Wilfried
Verachtert1

1 ExaScience Life Lab, imec, Leuven, Belgium
2 Department of Information Technology, Ghent University - imec, Ghent, Belgium

YThese authors contributed equally to this work.
* Charlotte.Herzeel@imec.be

Expressing BQSR in elPrep 4

The purpose of base quality score recalibration is to correct for biases in the quality
scores assigned by the sequencer. The idea is to compute new base quality scores for
each read by applying an error model derived from the full data set. Specifically, an
empirical error model is computed that takes into account how error values vary in terms
of base call features such as the cycle at which a base was sequenced, the context or
bases sequenced before the base, and so on. It also assumes that all non-reference bases
in a read that do not match a known variant site in a dbSNP file, are sequencing errors.
This specialised error model is then used in a Bayesian statistical model that for each
base call computes a new base quality score by checking the expected quality score from
the sequencer against the recorded observations and errors for that type of base call.

GATK algorithm

Base quality score recalibration (BQSR) is implemented using two separate tools in
GATK 4, namely BaseRecalibrator and ApplyBQSR. The BaseRecalibrator tool is used
to compute a recalibration file that contains empirical information about the base
quality scores in a BAM file and for what types of bases they occur. The recalibration
file can be loaded by the ApplyBQSR tool that uses the information to instantiate a
hierarchical Bayesian statistical model to compute a new base quality score for each
base in every read in the BAM file.

Concretely, the algorithm for BaseRecalibrator looks as follows:

1. Iterate over all reads in the BAM file and compute three tables based on the base
quality scores reported by the sequencer:

(a) Table 1: (readgroup × base quality →
observations, errors, empirical quality).
This table maps each read group combined with each base quality score
reported by the sequencer onto the observations, the number of times a
particular combination of a read group and a base quality score occurs in the
BAM file, and errors, the number of times that a base with this quality score
is considered a mismatch by the aligner compared to the reference genome.
The empircal quality is calculated with a Bayesian estimator from the
observations and errors, using the base quality as a prior.

November 22, 2018 1/5

(b) Table 2: (readgroup × base quality × cycle →
observations, errors, empirical quality).
This table is similar to Table 1 except that it is more specialised. The cycle
in the key indicates the cycle at which the base was sequenced. The idea is
that DNA sequenced in later cycles produces less reliable bases and qualities.

(c) Table 3: (readgroup × base quality × context →
observations, errors, empirical quality).
This table is also similar to Table 1 except that it is also more specialised.
The context in the key is the type of base sequenced before the base for
which the observations and errors are recorded.

2. From the above tables, derive the following tables:

(a) Table 4: a quantized quality score table that is a remapping of quality scores
onto quantized scores, a regrouping of scores via hierarchical clustering.

(b) Table 5: (read group → observations, errors, empirical quality)
This table computes per read group: the total number of observations, total
number of errors, the average quality score, and the empirical quality score
calculated using a Bayesian estimator from these totals.

3. Write out these tables as a recalibration file (.recal).

The algorithm for the ApplyBQSR tool roughly looks as the simplified pseudo code
in Listing 1. It is a loop that iterates over all reads in a BAM file, and for all bases of
all reads calculates a new base quality score. This base quality score is calculated using
a hierarchical Bayesian estimator that uses the observations and errors from Table 1, 2
and 3, and uses the average base quality score from Table 5 as a prior.

func ApplyBQSR(reads , r e c a l) {
tab1 , tab2 , tab3 , tab4 , tab5 := par s eReca lF i l e (r e c a l)
for read in reads {

for i := 0 ; i < l en (read) ; i++ {
qual := read . getBaseQual (i)
rg := read . getReadGroup ()
cy c l e := read . getCycle (i)
context := read . getContext (i)
s1 := tab1 [rg , qual]
s2 := tab2 [rg , qual , c y c l e]
s3 := tab3 [rg , qual , context]
p r i o r := tab5 [rg]
e s t := h i e ra r ch i ca lBaye s i anEs t imate (pr io r , s1 , s2 , s3)
read . Qual [i] = tab4 [e s t]

}
}

}
Listing 1. Pseudo code for ApplyBQSR in GATK 4 (simplified).

The GATK 4 code for these algorithms parses the reads two times, once for the
BaseRecalibrator tool, and once for the ApplyBQSR tool. It also leaves data as much as
possible on disk so that they need to be repeatedly reloaded. For example, the reference
FASTA file, which is needed for counting the errors for the tables in the
BaseRecalibrator tool, is manipulated on disk. Also, none of the code is parallelized.

November 22, 2018 2/5

A parallel BQSR algorithm in elPrep 4

The basic structures of the elPrep 4 algorithms for BQSR are similar to the GATK 4
algorithms, except that they are parallelized and reformulated to fit into the elPrep
framework. The recalibration step is implemented as a parallel algorithm that operates
on the whole set of reads. It cannot be formulated as a filter because the BQSR
algorithm from GATK 4 –which we want to reproduce in terms of outcome– expects a
number of processing steps such as duplicate marking to already be applied.

Simplified pseudo code for the calculation of recalibration tables is shown in
Listing 2. The arguments to the BaseRecalibrator are the reads, a FASTA file for the
reference genome, and a VCF file that contains known variant sites, which are to be
excluded from BQSR counts (like dbsnp). First, the reference FASTA file is loaded. We
have implemented this using memory-mapped files [1], which allows the FASTA file to
be treated as if it were already in main memory. To make this work, we designed our
own elfasta format, which makes it more convenient to access the data as a
memory-mapped file.

The bulk of the algorithm is a parallel range-reduce that iterates over every read,
computes properties such as the cycle and context of each base in that read (in the form
of arrays), and finally executes a loop that for every base of the read fills in the
recalibration tables using these values. The idea is that there are recalibration tables
local to each parallel task to minimize synchronization. The reduce merges the tables
from different parallel tasks into the final, complete tables.

After the algorithm has computed the observations and errors for the recalibration
tables, we derive the empirical quality score from these values. This is executed by a
separate parallel algorithm (finalizeTable in Listing 2). It executes a parallel do loop
that iterates over the entries of a table and calls a function that computes the empirical
quality score from the observations and errors already recorded in the table. In contrast,
the GATK 4 code updates the empirical quality score each time a table entry is created
or updated. Calculating an empirical quality score requires computing a Bayesian
estimation, which involves multiple floating point calculations and is therefore an
expensive operation. Our strategy to only calculate the empirical quality score after all
reads are processed produces the same result as the GATK 4 approach, while being
computationally far more efficient.

Applying base quality score recalibration is defined as a filter in elPrep 4. Simplified
pseudo code is shown in Listing 3. Since ApplyBQSR is an elPrep filter, it first defines
and returns a function that operates on the header of a BAM file (first return). In this
header function, we set up the tables (tab4 and tab5) that are derived from the
recalibration tables that ApplyBQSR receives as input (tab1, tab2, tab3). This means
that these tables are shared between the parallel tasks that are spawned for processing
the reads. The header function also sets up a cache for storing recalibrated quality
scores for specific types of bases.

The function that defines how to process a read (second return) shows how to
update the base quality scores of a read. It first looks up the read group of the read, the
sequencing cycle and context for each base. There is a loop that iterates over the bases
of a read. For each base, it looks up the quality, cycle, and context to be able to look up
the entries associated with this base in the recalibration tables (s1, s2, s3). First
however, it attempts to see if this type of base was already recalibrated by looking it up
in the cache. If an entry is found, the quality score for this base is immediately updated
and this particular iteration is done (continue). Otherwise, if there is no cached result,
it is calculated using a hierarchical Bayesian estimator (est). This base quality is thusly
updated and the recalibrated quality score is saved in the cache. We observed a
significant performance improvement by using such a caching mechanism for recalibrated
quality scores in elPrep when compared to GATK 4, which has no such caching.

November 22, 2018 3/5

func BaseReca l ib rator (reads , f a s ta , dbsnp) {
r e f := parseFasta (f a s t a)
s i t e s := parseVcf (dbsnp)
tab1 , tab2 , tab3 := Table {}
p a r a l l e l . Reduce (

reads ,
// map
func lambda (read){

i f ! r e ca l i b ra t eRead (read) :
return

sk ip := read . computeSkip (s i t e s)
snps := read . computeSnps (r e f)
rg := read . getReadGroup ()
cy c l e := read . computeCycle ()
context := read . computeContext ()
for i := 0 ; i < l en (read) ; i++ {

i f sk ip [i] :
continue

qual := read . getQual (i)
e r r o r s := snp [i]
key1 := Key{ rg , qual }
tab1 . update (key1 , e r r o r s)
key2 := Key{ rg , qual , c y c l e [i]}
tab2 . update (key2 , e r r o r s)
key3 := Key{ rg , qual , context [i]}
tab3 . update (key3 , e r r o r s)

}
} ,
// reduce
func lambda (tab1 , tab2 , tab3 , tab4 , tab5 , tab6) {

tab1 = merge (tab1 , tab4)
tab2 = merge (tab2 , tab5)
tab3 = merge (tab3 , tab6)
return tab1 , tab2 , tab3

}
)

}

func f i n a l i z eTab l e (tab){
p a r a l l e l .Do {

for key , entry in tab {
entry . empir i ca lQual

= entry . ca lcEmpir i ca lQual (key . qual)
}

}
}

Listing 2. Pseudo code for base recalibration in elPrep 4 (simplified).

November 22, 2018 4/5

func ApplyBQSR(tab1 , tab2 , tab3 , l v l){
return func lambda (header) {

tab4 := i n i t i a l i z eQuan t i z e dQua l i t yS c o r e s (tab1 , l v l)
tab5 := initial izeCombinedBQSRTable (tab1)
cache := Table {}
return func lambda (read){

rg := read . getReadGroup ()
cy c l e := read . computeCycle ()
context := read . computeContext ()
for i := 0 ; i < l en (read) ; i++ {

qual := read . getQual (i)
key1 := Key{ rg , qual }
key2 := Key{ rg , qual , c y c l e [i]}
key3 := Key{ rg , qual , context [i]}
reca lQua l := cache [{ key1 , key2 , key3 }]
i f reca lQua l != n i l :

read . Qual [i] = reca lQua l
continue

s1 := tab1 [rg , qual]
s2 := tab2 [rg , qual , c y c l e]
s3 := tab3 [rg , qual , context]
p r i o r := tab5 [rg]
e s t :=

h i e ra r ch i ca lBaye s i anEs t imate (pr io r , s1 , s2 , s3)
reca lQua l = tab4 [e s t]
read . Qual [i] = reca lQua l
cache [{ key1 , key2 , key3 }] = reca lQua l
return true
}

}
}

}
Listing 3. Pseudo code for applying base quality recalibration in elPrep 4 (simplified).

References 1

1. IEEE 1003.1-2017 - IEEE Approved Draft Standard for Information Technology - 2

Portable Operating System Interface (POSIX(R)). IEEE; 2018. 3

November 22, 2018 5/5

