
S5 APPENDIX. ADDITIONAL DETAILS ON EXTENSION 2 FOR MULTIPLICATIVE
EFFECTS AND LOG/LOGIT LINK MODELS

(for the paper Sensitivity analyses for effect modifiers not observed in the target population when generalizing
treatment effects from a randomized controlled trial: Assumptions, models, effect scales, data scenarios, and
implementation details)

The main text of the paper presents the case of a binary outcome and an assumed logit causal model. The
reasoning for other cases with log/logit link models and multiplicative effects is similar. While it is somewhat
repetitive, for clarity, we list the models and effects for a couple of other cases.

Binary outcome, log-probability model, risk ratio scale effects

The causal model:

log{Pr[Yi(a) = 1]} = β0 + βaa+ βxXi + βzZi + βzaZia+ βvVi + βvaVia.

The regression model:

log{Pr[Y = 1|A,X,Z, V ]} = β0 + βaa+ βxX + βzZ + βzaZiA+ βvV + βvaV A.

Individual effect on the risk ratio (RR) and log RR scales:

TERR
i :=

Pr[Yi(1) = 1]

Pr[Yi(0) = 1]
= exp(βa + βzaZi + βvaVi),

TElog_RR
i := log(TERR

i ) = βa + βzaZi + βvaVi.

TATE as arithmetic mean of individual effects on the log RR scale and geometric mean of individual effects
on the RR scale:

TATElog_RR = βa + βzaE[Z|P = 1] + βvaE[V |P = 1],

TATERR = exp(βa + βzaE[Z|P = 1] + βvaE[V |P = 1]).

Count outcome, log link model, mean/rate ratio scale effects

The causal model:

log{E[Yi(a)]} = β0 + βaa+ βxXi + βzZi + βzaZia+ βvVi + βvaVia.

The regression model:

log{E[Y |A,X,Z, V ]} = β0 + βaa+ βxX + βzZ + βzaZiA+ βvV + βvaV A.

Individual effect on the mean ratio (MR) (or rate ratio) and log MR (or log rate ratio) scales:

TEMR
i :=

E[Yi(1)]
E[Yi(0)]

= exp(βa + βzaZi + βvaVi),

TElog_MR
i := log(TEMR

i ) = βa + βzaZi + βvaVi.

TATE as arithmetic mean of individual effects on the log MR (or log rate ratio) scale and geometric mean
of individual effects on the MR (or rate ratio) scale:

TATElog_MR = βa + βzaE[Z|P = 1] + βvaE[V |P = 1],

TATEMR = exp(βa + βzaE[Z|P = 1] + βvaE[V |P = 1]).
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Relating the average causal OR and the conditional OR estimated by logistic regression with
main effects only

This discussion about average causal effects is more general than the specific case of the trial sample or
target population in this paper. Therefore we drop the reference to the population/sample, and talk about
the ATE in a generic way.

Before considering multiplicative effects, let’s refer back to the case of additive effects based on a linear
model. Clearly, the individual effects vary, as they depend on the individual’s Zi and Vi. We can fit a correct
linear regression model (with A,X,Z, ZA, V, V A as predictors, predict the individual treatment effects using
βa+βzaZi+βvaVi and averaging those to estimate the ATE, which equals βa+βzaEZ+βvaEV . On the other
hand, if we fit a linear regression model with A,X,Z, V as predictors (the model with main effects only),
then the regression coefficient γa of A in this model is equivalent to βa + βzaEZ + βvaEV , which happens
to be the ATE. This equivalence is a feature of linear models. Another way to think about this is that the
coefficient of A in the model with main effects only estimates the effect of treatment on the outcome with a
constraint that the treatment effect is the same for every individual. While for each individual, the estimate
is off by some degree, on average, it is right, as it is equal to the average of the true individual effects.

That is, the linear regression model with main effects only is an unbiased estimate of the ATE – a fact that
we already know and have used again and again in the paper for the estimation of SATE.

Now let’s translate this reasoning to the OR case.

The average causal OR is the average (= geometric mean) of individual ORs which vary as they depend on
Zi, Vi. The logistic regression model with main effects only estimates treatment effects under a constraint
(assumption) that treatment effects do not vary across individuals. Since some individuals have higher OR
and some have lower, the estimate under this constraint is almost guaranteed to be off for the individuals,
but reflects some sort of average over them. Like in the linear model case above, we can think of the OR
estimated by this model as an estimate of the average of the individual effects, i.e., the average causal OR.
However, it is only an approximate estimate because the model with main effects only has fewer predictors
than the correct model with interaction effects, and with logistic regression dropping predictors leads to less
variation in the outcome being explained, which tends to deflate the log OR; this is a problem with ORs
called non-collapsibility. Therefore, the conditional OR estimated by logistic regression with main effects is
in the spirit of estimating the average causal OR, but due to this reduction in variance explained, it tends
to underestimate the average causal OR.
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