
EthAcc R code

#########################################################
# note: require rrBLUP, glmnet, parcor, EN.FDR.r and mlmm.gwas
# Function that computes the Estimated THeoritical ACCuracy (EthAcc)
# on the basis of the formula of Rabier et al. PlosOne, 2016
# Causal SNPs can be located by several gwas methods or given by the user
#Entry
#-----
#x_train is the SNP dose matrix for the training population. It is a n by m matrix,
# where n=number of individuals, m=number of SNPs,
# with rownames(x_train)=individual names, and colnames(x_train)=SNP names.
#x_test is the same codage matrix as x_train but for individuals in the test population
#y_train is the phenotype of individual in the training population.
# It is a vector of length n=number of individuals,
# with names(y_train)=individual names
#snp.pop_train is the name of the SNPs=QTLs in the causal model if known,
# must be included in colnames(x_train)
#meth is the method to find causal SNPs, can be "MLMM", "EN05.FDR", "adpLASSO"
# or a triple for penalized method with
# alpha value, "min" or "1se", TRUE or FALSE for SNP standardization
#examples:
#res.EthAcc<-compute.EthAcc(x.train,x.test,y.train,snp.pop_train=colnames(x.train)[1:10])
#res.EthAcc<-compute.EthAcc(x.train,x.test,y.train,meth="MLMM")
#res.EthAcc<-compute.EthAcc(x.train,x.test,y.train,meth=c(0.5,"1se",TRUE) )
#
#WARNING: too small MAFs in x.train give innacurate results
#################
###############auxiliary functions
library(rrBLUP) #dependency on rrBLUP package
library(mlmm.gwas) #dependency on mlmm.gwas package
source("EN.FDR.r")
library(glmnet) #dependency on glmnet
library(parcor) #dependency on parcor
############################################
# function to compute VanRanden type kinship
kinship<-function(x){

x.center<-scale(x,center=TRUE,scale=FALSE)
KK<-x.center%*%t(x.center)
cst.VR<-sum(apply(x.center,2,var))
KK<-KK/cst.VR
KK
return(list(KK=KK, cst.VR=cst.VR)) #kinship and VanRandem constant

}
#function to find causal QTL
gwas.togetcausalSNP<-function(x_train,y_train,meth){

snp.pop_train<-NULL
x_train.c<-scale(x_train,center=TRUE,scale=FALSE)
nstep<-length(y_train) -10 #10 to keep degrees of freedom for the residual
if(length(meth)==1){

if(meth=="MLMM"){
kk.pop_train<-kinship(x_train)$KK #kinship for GWAS
gwas.pop_train<-mlmm_allmodels(y_train,list(x_train),list(kk.pop_train),2,nstep)
snp.pop_train<-NomSNP(gwas.pop_train) #estimated causal SNP

}
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if(meth=="EN05.FDR"){ #Yi et al Genetics 2015
res.enfdr<-EN.FDR(NULL,x_train,y_train,0.5,1000,0.05)
snp.pop_train<-names(res.enfdr$betas.SNP)

}
if(meth=="adpLASSO"){ #adaptive LASSO

x_train.cr<-scale(x_train,center=TRUE,scale=TRUE)
y_train.cr<-scale(y_train,center=TRUE,scale=TRUE)
res.adpLASSO<-adalasso(x_train.cr, y_train.cr,k=5)
snp.pop_train<-colnames(x_train)[res.adpLASSO$coefficients.adalasso!=0]

}
}
if(length(meth)==3){

if(meth[3]==TRUE) { #penalized regression
res.lasso<-glmnet(x_train.c,y_train,family="gaussian",standardize=TRUE,

alpha=as.numeric(meth[1]))
res.cv.lasso<-cv.glmnet(x_train.c,y_train,family="gaussian",standardize=TRUE,

alpha=as.numeric(meth[1]))
}
if(meth[3]==FALSE) {

res.lasso<-glmnet(x_train.c,y_train,family="gaussian",standardize=FALSE,
alpha=as.numeric(meth[1]))

res.cv.lasso<-cv.glmnet(x_train.c,y_train,family="gaussian",standardize=FALSE,
alpha=as.numeric(meth[1]))

}
if(meth[2]=="min"){

temp<-abs(res.lasso$lambda-res.cv.lasso$lambda.min)
id.lambda<-which(temp==min(temp))
snp.pop_train<-names(which(res.lasso$beta[,id.lambda]!=0))

}
if(meth[2]=="1se"){

temp<-abs(res.lasso$lambda-res.cv.lasso$lambda.1se)
id.lambda<-which(temp==min(temp))
snp.pop_train<-names(which(res.lasso$beta[,id.lambda]!=0))

}
}
snp.pop_train

}
# function to get associated SNP in mlmm results
NomSNP<-function(res.mlmm){

names.snp<-NULL
last.snp<-NULL
n.step<-length(res.mlmm)
if(n.step>2) {

id<-grep("selec_",names(res.mlmm[[n.step]]) )
names.snp<-names(res.mlmm[[n.step]])[id]

names.snp<-unlist(sapply(names.snp,function(x){
unlist(strsplit(x,"selec_"))[2]
}))

#add the last associated SNP
id<-which( res.mlmm[[n.step]][-(1:(n.step-2))]==min( res.mlmm[[n.step]][-(1:(n.step-2))],

na.rm=TRUE ) )
last.snp<-names( res.mlmm[[n.step]])[-(1:(n.step-2))][id]

}
if(n.step==2) {

id<-which(res.mlmm[[n.step]]==min( res.mlmm[[n.step]] ,na.rm=TRUE) )
last.snp<-names( res.mlmm[[n.step]])[id]
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}
names.snp<-c(names.snp,last.snp)

}
# function to compute theoretical accuracy
Theo.acc<-function(Mtest,Mtrain,effect,Hinv,Ve){
#theoritical formula of Rabier et al. PlosOne, 2016, adapted to non centered genotypic matrices

if( is.null(effect) ) return(NA)
##sort on names
if( length(effect) > 1 ) { effect<-effect[sort(names(effect))] }
Mtrain <- Mtrain[,sort(colnames(Mtrain))]
Mtest <- Mtest[,sort(colnames(Mtest))]
if( length(effect) > 1 ) {

#predictor for training individuals
predtrain <- Mtrain[,which(colnames(Mtrain)%in%names(effect))] %*% as.matrix(effect)
#predictor for test individuals
predtest <- Mtest[,which(colnames(Mtest)%in%names(effect))] %*% as.matrix(effect)

} else {
#predictor for training individuals
predtrain <- as.matrix( Mtrain[,which(colnames(Mtrain)%in%names(effect))] * effect )
#predictor for test individuals
predtest <- as.matrix( Mtest[,which(colnames(Mtest)%in%names(effect))] * effect )

}
Mtest<-scale(Mtest,center=TRUE,scale=FALSE) #case of non centered Mtest
mu.Hinv<- as.matrix(apply(Hinv,1,sum)) #case of non centered Mtrain
Hinv.cor<- Hinv - ( mu.Hinv %*% t(mu.Hinv)) / sum(Hinv) #case of non centered Mtrain
espfortrain <- t(Mtrain) %*% Hinv.cor %*% predtrain
nume <- t(predtest) %*% Mtest %*% espfortrain / nrow(Mtest)
RROracle <- Mtest %*% t(Mtrain) %*% Hinv.cor
termDesign <- Ve * sum(RROracle^2)/ nrow(Mtest)
termvar <- t(espfortrain) %*% t(Mtest) %*% Mtest %*% espfortrain /nrow(Mtest)
Vg <- var( predtest) #genetic variance in the causal model estimated on test individuals
if( Vg >1) print("WARNING: estimated genetic variance too great, result innacurate")
res <- nume / sqrt( ( termDesign + termvar) * (Vg + Ve) )
res

}
#################principal function
compute.EthAcc<-function(x_train,x_test,y_train,snp.pop_train=NULL,meth=NULL){
#controls
if(is.null(snp.pop_train) & is.null(meth) ) stop
stopifnot( ncol(x_train)==ncol(x_test) )
stopifnot( length(y_train)==nrow(x_train) )
x_train<-x_train[,sort(colnames(x_train))]
x_test<-x_test[,sort(colnames(x_test))]
stopifnot( sum( colnames(x_train)!=colnames(x_test) )==0 )
if(!is.null(snp.pop_train)) stopifnot( length( which( colnames(x_train)%in%snp.pop_train) ) ==

length(snp.pop_train) )
x_train<-x_train[sort(rownames(x_train)),]
y_train<-y_train[sort(names(y_train))]
stopifnot( sum( rownames(x_train)!=names(y_train) )==0 )

#estimate causal location by gwas
if(is.null(snp.pop_train)) snp.pop_train<-gwas.togetcausalSNP(x_train,y_train,meth)

#estimation
y_train<-y_train/sd(y_train) #standardization of phenotype
#get Hinv in rrBLUP model
rrblup.pop_train<-mixed.solve(y_train,X= rep(1,length(y_train)),Z=x_train,K=NULL,SE=FALSE,

return.Hinv=TRUE)
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x.snp.pop_train<-as.matrix(x_train[, snp.pop_train ])
if(length(snp.pop_train)<(length(y_train)-1) & length(snp.pop_train)!=0){

lm.in.causal<-lm(y_train~1+x.snp.pop_train) #causal model
eff.snp.pop_train<-lm.in.causal$coefficients[-1] #causal SNP=QTL effect estimation
names(eff.snp.pop_train)<-snp.pop_train
eff.snp.pop_train<-eff.snp.pop_train[!is.na(eff.snp.pop_train)]

#residual variance estimation in the causal model
ve.pop_train<-summary(lm.in.causal)$sigma^2
res<-Theo.acc(x_test,x_train,eff.snp.pop_train,rrblup.pop_train$Hinv,ve.pop_train)

} else {res<-NA}
names(res)<-paste("EthAcc", do.call(paste, c(as.list(meth), sep="_")),sep=’_’ )
res
}
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Sugar beet material in details

Panels A panel of 2101 elite lines of diploid sugar beet (Beta vulgaris L.), which resulted from many
different crosses in Florimond Desprez’s breeding program, was analyzed in this study. This panel represented
the pollinator pool that was evaluated in testcrosses in the company multienvironment trials (MET) in 2009,
2010 and 2011. Testcross progenies were produced by crossing each elite line to the same single-cross hybrid
as a tester.

Phenotypic data The 2101 testcross progenies were evaluated in unbalanced MET. In 2009, 765 progenies
were phenotyped in 24 different locations however each progeny was evaluated in six to nine locations only.
In 2010, 742 individuals were phenotyped in 12 different locations (from 5 to 8 per progeny), among them
4 were also phenotyped in 2009. Finally, 618 progenies were phenotyped in 2011 in 32 different locations.
Each progeny was evaluated in five to ten locations and 20 individuals were also phenotyped in 2010. Two
control varieties were common between all years and locations. The 7 evaluated traits were: potassium
content (K, meq/100g) measured by a flame photometer, sodium content (Na, meq/100g) measured by a
flame photometer, α-amino nitrogen content (N, meq/100g) measured by colorimetry, sugar content (S, %)
measured by polarimetry, the root yield (RY, t/ha), white sugar content (WS, %) calculated as S - (0.14 x
(K + Na) + 0.25 x N + 0.5) and finally the white sugar yield (WSY, t/ha) calculated as (RY x WS) / 100.

Phenotypic data analysis Trait data were analyzed using a two-stage analysis in R [1]. The first stage
was dedicated to the analysis of the different traits in single environment according to the experimental
alpha designs that were set up, producing reliable adjusted phenotypes per environment. These adjusted
phenotypes were calculated with a linear mixed model by fitting a complete block effect as fixed, whereas
row, columns and genetic effects were modeled as independent random effects. The following linear mixed
model was then used to estimate variance components of the testcrosses and to get average phenotype:
yij “ µ`envi`Gj`εij , where yij is the adjusted phenotype of the jth sugar beet line in the ith environment,
µ the global mean , envi the effect of the ith environment, Gj the genetic effect of the jth sugar beet line,
and εij the residual term including the genotype by environment interaction effect. Environment and genetic
effects were modeled respectively as fixed and random independent effects. From this model, the average
phenotype of each testcross was computed as µ̂` Ĝi. These average phenotypes were used as the observed
phenotypes for the genomic prediction study.

Genotypic data The 2101 breeding panel lines were fingerprinted with 836 SNP markers. The markers
used in this study were designed in both genic and intergenic sequences (cDNAs) in a set of elite lines
and had previously been mapped using three different F2 mapping populations, as described by [2]. The
length of the total genetic map is 705 cM, with chromosome sizes estimating between 70 cM and 91 cM for
chromosome 5 and chromosome 3, respectively. The samples used for DNA fingerprinting profiles were leaves
of one plant per breeding line. Leaf disks were sampled, frozen at -80˝C and freeze-dried. DNA extraction
was performed using the NucleoSpin R© Plant kit (Machery-Nagel, Düren, Germany) and genotyping was
performed for individual SNPs using KASP genotyping chemistry (LGC Genomics, Teddington Middlesex,
United-Kingdom).

Among the SNP markers, markers were filtered on their minimum allele frequency (MAF) (greater than
2%) and on percentage of missing data (less than 15%). This SNP selection yielded a total of 692 SNP
markers that were employed for the genomic selection analysis. Imputation of missing marker genotypes was
done by the mean genotypic value.

Panel structure The structure of subpopulations in this panel was also studied. We applied hierarchi-
cal clustering to principal components using the FactoMineR package https://cran.r-project.org/web/
packages/FactoMineR/index.html [3] in R software to assign each individual to a subpopulation after prin-
cipal component analysis (PCA). The HCPC function of the FactoMineR package implements this calculation
after having constructed the hierarchy and suggests an optimal level for division (Fig A).
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Standard error correction to take into account the dependency of test sets generated by
the sampling process

It is important to test if an estimator of the accuracy is significantly different to the TS accuracy, but the
lack of independence between the sampled test sets makes it hard to obtain a correct estimate of the variance
of the mean difference. This variance is necessary to build a test of significance. Neither the division by the
square root of the number of sampled test sets nor the bootstrapped variance are correct with dependent
results. Both methods provide a too small variance of the mean difference and thus conclude significance
whereas there is no significance. Nonetheless, [4] proposed a correction of the standard deviation of the mean
difference that allows to build a test that performs correctly both in term of type one error and power. This
correction takes into account the average of overlap information between two random test sets. Let ptest be
the proportion of sampled test individuals in the whole population, the variance of the mean difference is
multiply by

a

1{nTS ` ptest{p1´ ptestq, instead of
a

1{nTS when samples are independent, where nTS is the
number of sampled test sets.
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Fig A: First principal component plane of the sugar beet panel using 836 SNP markers and
showing the structure of the panel in two groups.
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Table A: P-value of the significance test of difference between the TS accuracy and that es-
timated by EthAcc, CD and PEV using sugar beet structures in two clusters (Panel_A and
Panel_B) on several traits (100 random test sets).

Traita Test Training P-value
setb setb EthAcc CD PEV

K Panel_A Panel_A+B 4.59 10´01 9.46 10´06 8.73 10´06

K Panel_A Panel_A 6.99 10´01 1.66 10´04 1.17 10´04

Na Panel_A Panel_A+B 5.41 10´01 1.42 10´09 1.35 10´09

Na Panel_A Panel_A 6.07 10´01 7.02 10´04 5.74 10´04

N Panel_A Panel_A+B 9.41 10´02 1.29 10´14 1.16 10´14

N Panel_A Panel_A 6.39 10´01 3.56 10´03 3.06 10´03

SC Panel_A Panel_A+B 4.04 10´01 1.80 10´10 1.67 10´10

SC Panel_A Panel_A 7.61 10´01 1.24 10´05 9.50 10´06

WSC Panel_A Panel_A+B 6.63 10´01 7.22 10´09 6.78 10´09

WSC Panel_A Panel_A 9.56 10´01 1.56 10´04 1.23 10´04

RY Panel_A Panel_A+B 9.60 10´01 1.64 10´08 1.55 10´08

RY Panel_A Panel_A 7.46 10´01 4.21 10´03 3.63 10´03

WSY Panel_A Panel_A+B 5.55 10´01 1.33 10´05 1.28 10´05

WSY Panel_A Panel_A 8.97 10´01 4.44 10´02 4.13 10´02

K Panel_B Panel_A+B 1.19 10´01 8.18 10´12 7. 01 10´12

K Panel_B Panel_B 9.33 10´01 2.47 10´04 1.93 10´04

Na Panel_B Panel_A+B 2.23 10´01 8.78 10´13 7.14 10´13

Na Panel_B Panel_B 7.62 10´01 5.31 10´03 3.93 10´03

N Panel_B Panel_A+B 9.79 10´02 1.66 10´21 1.44 10´21

N Panel_B Panel_B 7.54 10´01 3.34 10´12 2.51 10´12

S Panel_B Panel_A+B 2.64 10´01 4.00 10´14 3.15 10´14

S Panel_B Panel_B 9.12 10´01 2.22 10´04 1.62 10´04

WS Panel_B Panel_A+B 2.62 10´01 4.29 10´14 3.63 10´14

WS Panel_B Panel_B 7.39 10´01 2.12 10´04 1.61 10´04

RY Panel_B Panel_A+B 6.51 10´02 2.87 10´13 2.61 10´13

RY Panel_B Panel_B 7.11 10´01 6.90 10´05 5.29 10´05

WSY Panel_B Panel_A+B 8.45 10´01 1.82 10´16 1.67 10´16

WSY Panel_B Panel_B 7.53 10´01 5.83 10´07 4.58 10´07

K Panel_A+B Panel_A+B 9.93 10´01 2.63 10´11 1.72 10´11

Na Panel_A+B Panel_A+B 9.13 10´01 8.96 10´06 6.65 10´06

N Panel_A+B Panel_A+B 9.35 10´01 8.75 10´14 7.07 10´14

S Panel_A+B Panel_A+B 4.05 10´01 1.13 10´13 7.71 10´14

WS Panel_A+B Panel_A+B 8.79 10´01 2.28 10´13 1.59 10´13

RY Panel_A+B Panel_A+B 9.42 10´01 7.03 10´15 5.02 10´15

WSY Panel_A+B Panel_A+B 8.75 10´01 1.70 10´08 1.40 10´08

a potassium content in meq/100g (K), sodium content in meq/100g (NA), α-amino nitrogen content in
meq/100g (N), sugar content in % (S), white sugar content in % (WS), the root yield in t/ha (RY), the
white sugar yield in t/ha (WSY)
b cluster(s) to which the individual belongs
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Table B: MAF of SNPs detected using MLMM with the training set chosen via EthAcc. MAF
is calculated for the training set, the test set and the candidate set. Results concern the Flint
panel for DM_Yield trait. The test set had the accuracy of 0.07 and 0.76 when using as
training sets those optimized via CDmean and EthAcc, respectively.

SNP training set test set candidate set
PZE.101093639 0.10 0.06 0.10
PZE.102125621 0.39 0.35 0.37
PZE.103139617 0.48 0.39 0.44
PZE.104026198 0.14 0.21 0.12
PZE.104040856 0.35 0.37 0.41
PZE.105054217 0.33 0.37 0.33
PZE.105161112 0.21 0.33 0.25
PZE.107053604 0.42 0.35 0.42

Table C: MAF of SNPs detected using MLMM with the training set chosen via CDmean.
MAF is calculated for the training set, the test set and the candidate set. Results concern the
Flint panel for DM_Yield trait. The test set had the accuracy of 0.07 and 0.76 when using as
training sets those optimized via CDmean and EthAcc, respectively.

SNP training set test set candidate set
PZE.101149675 0.02 0.06 0.07
PZE.101221278 0.10 0.10 0.15
PZE.103073990 0.08 0.12 0.13
PZE.105049283 0.38 0.26 0.42
PZE.110050786 0.32 0.35 0.28
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