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1 Introduction

This document provides an exact description of the algorithm used to fit the RC(M) model augmented
with the negative binomial distribution for microbiome data. Further it embeds the method in the existing
literature, and points out correspondences and differences with existing methods. A simulation study is set up
to compare the performance of the RC(M) method to competitor methods, and computational benchmarking
comparison of the different methods is given. Next the method is illustrated on some real datasets. Finally
the R-code used to make the graphs in the paper is given, as well as some version info of the software and
hardware used.

The paper comes with an R-package called RCM which can be found at https://github.com/
CenterForStatistics-UGent/RCM, together with a basic manual. More advanced instructions for
use can be found at http://users.ugent.be/~shawinke/RCMmanual/.

2 Method description

2.1 Fitting procedure

2.1.1 Inputs

The algorithm requires the following inputs:

• an n×p data matrix X, with samples i in the rows and taxa (species, OTUs) j in the columns. Thus
xij is the observed count of taxon j in sample i.

• the required dimension of the solution (M). The dimensions are fitted sequentially.

The algorithm allows to supply the following optional inputs:
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• a n×k design matrix G of confounding variables. Factor variables are coded with 0/1 dummies. The
first column should have all elements equal to one (intercept). The entry gil then represents the value
of confounder variable l in sample i.

• a n×d design matrix C of constraining variables. Factor variables are coded with 0/1 dummies. No
intercept is included. The entry ciy then represents the value of constraining variable y in sample i.

2.1.2 Trimming

Rows and columns of X with only zero counts are trimmed prior to model fitting. To avoid numerical
instability, also taxa below a certain prevalence threshold, or with total count lower than a certain fraction of
the number of samples n, are excluded prior to model fitting. The default prevalence threshold is 5%, the
default fraction of n is 10%.

If a confounder matrix is provided with dummy variables, also discard the taxa that fall below the prevalence
and total count fractions (mentioned above) within each level of the categorical confounding variables, again
to avoid overflow.

2.1.3 Independence model

The independence model of sample homogeneity has mean model

log(E(Xij)) = ui + vj

and is augmented with the negative binomial distribution with taxon-specific dispersion parameters θj . The
independence model is fitted as follows (see Section 2.2.1 below for explanation):

1. Find starting values ui,init = log
(∑p

j=1 xij) and vj,init = log(
∑n

i=1
xij∑n

i=1

∑p

j=1
xij

)
for ui and vj respectively

2. Estimate a mean-dispersion trend using the estimateGLMTrendedDisp() function of the edgeR package
(version 3.24.3) (Robinson et al. 2010), given ui and vj . This estimate is relatively insensitive to slight
changes in the mean structure and will only be re-estimated once for every dimension of the ordination
to save computation time.

3. Estimate the dispersion parameters θj based on the mean-dispersion trend using empirical Bayes with
the estimateGLMTagwiseDispersion() function in the edgeR package, given ui and vj . This step is only
executed every 10 iterations (starting at the first iteration) to save computation time.

4. Estimate new values for ui (ui,new) using maximum likelihood (ML), keeping the θj ’s and vj ’s constant.
5. Estimate new values for vj (vj,new) using ML, keeping the θj ’s and ui’s constant
6. Check for convergence. If no convergence is reached, repeat steps 3-5. Convergence is assumed when

√√√√( 1
n

n∑
i=1

(1− ui,new
ui,old

)2
)
< 0.001

and

√√√√(1
p

p∑
j=1

(1− vj,new
vj,old

)2
)
< 0.001

Once the independence model has converged, the estimates ui and vj are kept constant throughout the
remainder of the fitting process. The dispersion estimates will still be re-estimated as nuisance parameters in
further steps. All maximum likelihood estimation occurs under the negative binomial model.
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2.1.4 Conditioning on confounders

If a confounder matrix is provided, the effect of the confounders is filtered out by fitting the following mean
model (using maximum likelihood):

log(E(Xij)) = ui + vj +
k∑
l=1

ζjlgil

with ζjl the interaction parameter between taxon j and confounding variable l. Note that gi1 = 1 for all i,
i.e. the model is fitted with an intercept.

Again this step is performed iteratively by alternating between estimating the ζjl parameters and re-estimating
the overdispersion parameters as in step 3 of the independence model. Convergence is then assumed when√

1
pq

∑k
l=1
∑p
j=1(1− ζjl,new

ζjl,old
)2 drops below a tolerance level of 0.001.

2.1.5 Capturing the signal

The steps undertaken so far to model E(Xij) are merely fitting a “null” model and will not play a role in the
final ordination. The next terms that will be added will capture the biological signal in the data X and will
be used for data visualization. This step differs between an unconstrained RC(M) model, that merely uses
the data X, and constrained analysis, that also incorporates the covariate matrix C.

2.1.5.1 Unconstrained RC(M)

The unconstrained RC(M) model has mean structure

log(E(Xij)) = ui + vj +
[ k∑
l=1

ζjlgil

]
+

M∑
m=1

ψmrimsjm

with the term between [] for conditioning on known confounders being optional.

The unconstrained RC(M) model is fitted as follows:

1. Obtain a singular value decomposition as R−1(X−E)J−1 = UΣVT , with E the matrix of fitted values
from the previous step. The matrices R and J are diagonal matrices with row and column sums of X
on the diagonal, respectively. The first M elements of the ith row of U , denoted by rSVDi1 , . . . , rSVDiM ,
give the initial estimates of the rim parameters. Similarly, Σ and V give initial estimates for the ψm
and sm parameters. For these initial values we still need to ensure that the (weighted) variances equal
1. We do this by transferring some weight to the importance parameters ψSV D by setting:

ψinitm = ψSV Dm

√√√√ n∑
i=1

(
rSV Dim

)2
p∑
j=1

(
zjsSV Djm

)2

rinitim = rSV Dim(∑n
i=1
(
rSV Dim

)2
)1/2

and
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sinitjm =
zjs

SV D
jm(∑p

j=1
(
sSV Djm zj

)2
)1/2

with zj = exp(vj) a taxon weight, see Section 2.2.2 below for an extended discussion on the weights.

2. For all dimensions m starting from 1 to M, the following steps are executed:

a) Estimate the dispersions θj using empirical Bayes as before (every tenth iteration)
b) Estimate the importance parameter ψm by full ML, forcing it to be positive and keeping the sample

and taxon scores and overdispersions fixed.
c) Estimate the sample scores rim by restricted ML, keeping the taxon scores, overdispersions and

importance parameters fixed. Lagrangian multipliers in the log-likelihood are used to ensure that

n∑
i=1

rim = 0

and

n∑
i=1

rimrim′ = δmm′

with δ the Kronecker delta.

c) Estimate the taxon scores sjm by restricted ML, keeping the sample scores, overdispersions and
importance parameters fixed. Lagrange multipliers in the log-likelihood are used to ensure that

p∑
j=1

zjsjm = 0

and

p∑
j=1

zjsjmsjm′ = δmm′

d) Check for convergence. If no convergence reached, repeat steps a-c, otherwise move to the next dimension
and start again from (a), conditioning on the estimates of previous dimensions. Convergence for dimension m
is assumed when

∣∣∣1− ψnewm

ψoldm

∣∣∣ < 0.001

and

√√√√ 1
n

n∑
i=1

(1− rnewim

roldim
)2 < 0.001

and

√√√√1
p

p∑
j=1

(1−
snewjm

soldjm
)2 < 0.001.
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The Lagrangian parameters are stored to be used as starting values in the next iteration so as to speed up
the computation.

2.1.5.2 Constrained RC(M)

The constrained RC(M) model has mean structure

log(E(Xij)) = ui + vj +
[ k∑
l=1

ζjlgil

]
+

M∑
m=1

ψmfjm(αtmci)

with the term between [] for conditioning on known confounders being optional. For this model four
components need to be fitted iteratively:

• θj , the overdispersion parameter as before
• ψm, the importance parameter as in the unconstrained model
• αm, the environmental gradients, under the restriction

αtmαm′ = δmm′

• fjm, the species specific response function. This can be parametric (polynomial in practice) or non-
parametric.

The fitting of the constrained RC(M) model proceeds as follows:

1. Standardize the covariate matrix C. To render the values of the continuous variables in the environmental
gradient comparable, it is clear that they need to be centered and scaled prior to model fitting, as in
PCA. This means that their corresponding elements of α represent the contribution to the environmental
score of one standard deviation away from the mean of this variable. A perfect quantitative comparison
to the magnitude of the parameters of the categorical variables will never be possible. In our case, with
0/1 dummy coding, equal parameters for a dummy and a continuous variable imply that this level of
the categorical variable contributes as much to the environmental score as one standard deviation away
from the overall mean of the continuous variable.

2. Starting values for α are obtained from a constrained correspondence analysis by the cca() function
in the vegan package (Oksanen et al. 2017). Next, they are normalized to fulfill the αtmαm = 1
requirement by setting

αm = αccam√
(αccam )tαccam

Starting values for ψ are the eigenvalues of the constrained correspondence analysis. For the response
functions no starting values are calculated.

3. For all M, the following steps are performed for dimension m = 1 up to m = M:
a) Estimate the overdispersions by empirical Bayes as before (every tenth iteration).
b) If the response function is parametric, estimate the importance parameter ψm by full ML
c) Estimate the response functions fjm by full ML. For parametric response functions this entails

estimating a vector of parameters
(
β0jm, ..., βvjm

)
with v the degree of the polynomial. After

fitting, normalize these parameters to (w = 1,...,v)

βnewwjm = βwjm√∑p
j=1 β

2
wjm

.

This assures βtwmβwm = 1. Note that we do not weigh the taxon-wise components by zj here, to avoid
extreme solutions. See Section 2.2.2 below for an extended discussion on weighting.
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For non-parametric response functions, estimation of the response functions relies on cubic splines as
defined by the s() function of the V GAM package (Yee 2015). For these models, the importance parameter
ψm is not estimated during the model fitting process, but calculated afterwards. It plays no role in the
plotting but is just a measure of importance of each dimension. It is defined to be

ψm =

√√√√ 1
np

p∑
j=1

n∑
i=1

fjm(him)2

Analogously, estimate general response functions fm ignoring species labels.

d) Estimate the environmental gradient αm by maximizing the logged likelihood ratio

LR(αm) = log
∏n
i=1
∏p
j=1 gNB(xij ;αtmci, fjm, θj , ψm)∏n

i=1
∏p
j=1 gNB(xij ;αtmci, fm, θj , ψm)

with gNB the density function of the negative binomial distribution, and under the restrictions that:

• αtmα
′
m = 0 for m 6= m’

• Components of αm belonging to dummies of the same categorical variable sum to zero

The latter restriction is convenient for later plotting and also avoids dependence of the solution on the choice
of reference level, in the light of the normalization step in e). This way of estimating α encourages maximal
niche separation between the species.

However, the separated niche concept is not accepted by all ecologists. If niches are really maximally separated,
how can species co-occur then? An alternative option is therefore to estimate αm by maximizing only the
numerator in the previous equation, but under the same restriction. Surprisingly, the solutions of both
approaches are very similar, although not exactly identical. Maximizing the numerator is also much faster.

e) Set

αnewm = αm√
αtmαm

to normalize the gradient.

f) Check for convergence. If no convergence is reached, repeat steps a-e, otherwise move to the next dimen-
sion and start again from (a), conditioning on the estimates for the previous dimensions. Convergence
is assumed when

∣∣∣1− ψnewm

ψoldm

∣∣∣ < 0.001

and

√√√√1
d

d∑
l=1

(1−
αnewlm

αoldlm
)2 < 0.001

For parametric response functions there is an additional requirement that

√√√√ 1
pv

p∑
j=1

v∑
w=1

(
1−

βnewwjm

βoldwjm

)2
< 0.001
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Figure S1: Scatterplots on the log-scale of row sums (library sizes) versus maximum likelihood estimates of
sequencing depth for the Kostic dataset.

2.2 Explanatory notes

In this section we give some explanation regarding the particularities of this fitting procedure with respect to
the original method by Goodman (1979).

2.2.1 Estimating the independence model

An independence model for a contingency table is basically a marginal model. Therefore the most obvious,
model free way to estimate the independence model may be simply through sample and taxon sums, namely
ui = log(xi.) with xi. =

∑p
j=1 xij and vj = log(x.jx.. ) with x.j =

∑n
i=1 xij and x.. =

∑p
j=1

∑n
i=1 xij .

However, the library sizes xi. do not correspond to the maximum likelihood estimate of exp(ui) under the
negative binomial model. As a result the first dimensional row scores r1i would try to correct for this
discrepancy and become related (linearly correlated) to the library sizes. This effect of sequencing depth on
the sample ordination is something we want to avoid absolutely. Therefore we estimate the ui’s and vj ’s
iteratively using maximum likelihood, which also implies dispersion estimation as outlined above.

In practice, the marginal sums differ more from the maximum likelihood estimate (MLE) for the library sizes
than for the taxon abundances, as can be seen from Supplementary Figures S1 and S2.

We can think of the following mathematical explanation: when calculating library sizes or abundances by
row and column sums, each observations receives the same weight. However, when we estimate the margins
through ML, we solve the following score equations:

∂L(X|ui,vj ,θ)
∂ui

=
p∑
j=1

xij − µij
1 + µij

θj

= 0
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Figure S2: Scatterplots on the log-scale of column sums (marginal taxon abundances) versus maximum
likelihood estimates of abundance respectively for the Kostic dataset.

∂L(X|ui,vj ,θ)
∂vj

=
n∑
i=1

xij − µij
1 + µij

θj

= 0,

with L representing the log-likelihood of the negative binomial distribution. Note that since we are estimating
offsets the value of the regressor is always 1. In this case the difference of xij with the expected value µij
is weighted by a factor 1

1+
µij
θj

= θj
θj+µij . When estimating vj , θj is a constant but when estimating ui it

is different for every observation xij . Hence the weights put on every observation differ much more when
estimating the sample offsets than when estimating the taxon offsets. That is the reason why the MLE differs
more from the marginal sum for the library size than for the abundances.

Note also that when there is a very large overdispersion for a taxon j (θj small), its observations carry little
information and their weights are small in the calculation of the library sizes. However, when there is very
little overdispersion (θj →∞), the weights of the components of the score function equal 1, as with Poisson
regression. It is thus not surprising that the MLEs of the Poisson regression are equal to the estimators based
on the marginal sums. This means that the larger and the more diverse the overdispersion estimates are,
the more the MLEs under the negative binomial model will depart from the marginal sums. Finally, we see
that departures from the mean µij are weighted down for large values of µij , acknowledging the fact that the
variance increases faster than linear with the mean in the negative binomial model.

2.2.2 The choice of normalization weights

Constraints are needed to render the RC(M) model identifiable. We restrict the importance parameter
ψm to be positive, and center the (weighted) row and column scores around 0, which is a useful property
for the biplot and are also the restrictions imposed for correspondence analysis. In addition the row and
column scores are restricted to have (weighted) variance 1. ψm is the only parameter that can grow in size
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without restriction. As a result it will automatically serve as a measure of importance of the departure from
independence in that direction. This is also the case for correspondence analysis. Thirdly, the scores of the
different dimensions are orthogonal, so the solutions in different dimensions are linearly independent. Details
of the restrictions are given through the following equations.

Centering:

n∑
i=1

wirim = 0

p∑
j=1

zjsjm = 0

Normalization(m = m′) and orthogonality (m 6= m′):

n∑
i=1

wirimrm′i = δmm′

p∑
j=1

zjsjmsm′j = δmm′

In these expressions wi and zj are row and column weights. Goodman proposes to use wi = xi. and zj = x.j .
This results in weighted constraints that retain the relationship with correspondence analysis (Goodman
1979). Others recommend using uniform weights not to let the marginal distribution affect the model fit
(Becker and Clogg 1989).

To make the correct choice one should remember that the weights can be regarded as probabilities, representing
the likelihood of sampling a certain sample or taxon from the population. On the population level we could
say that

Ew(Rm) =
n∑
i=1

wirim = 0

i.e. the average row score on the population level is zero. This is a useful restriction to make sure that the
biplot is centered around zero. Analogously we want that

Ew(RmRm′) =
n∑
i=1

wirimrim′ = δmm′

and accordingly for the column scores:

Ez(Sm) =
p∑
j=1

zjsjm = 0

Ez(SmSm′) =
p∑
j=1

zjsjmsjm′ = δmm′

For the microbiome case, every subject comes from the same population under the null-hypothesis and all
subjects are thus equally likely to be sampled and have the same importance. The library sizes are considered
as technical artefacts, which are unrelated to the biological importance of the subject. Consequently we use
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uniform row weights wi = 1/n (or wi = 1, the magnitude is of no importance since the associated ψm will
grow or shrink accordingly). However, some taxa are more prevalent in the population than others. We want
the average column scores on the population level to be centered around zero, have variance one and be
orthogonal. That is why we set zj = exp(vj); because the more abundant species are in fact more abundant in
the population as a whole (as opposed to samples with a large library size), it makes sense to use a marginal
weighting scheme for the column scores. The weights zj are derived from the independence model.

For the parameters of the parametric response functions we use uniform weights for normalization, because
the use of exp(vj) as weights for the normalization leads to very extreme solutions. Likely this is because the
parameters are not centered.

2.2.3 Shape of the response function

Note that our definition of the response function differs from the common definition (ter Braak 1986; Zhu
et al. 2005; Yee 2006), which models the mean abundance as a function of environmental conditions. Here
the response function models the mean departure from sample homogeneity.

A linear response function may be most appropriate for problems with short gradients i.e. whereby the
difference in observed environmental variables is too short to distinguish more than an increase or decrease in
abundance. Also in this case it is easy to interpret the effect of each of the environmental variables on the
departure from homogeneity. As so often in statistics, the linearity assumption may not be realistic, but
renders models that are easy to interpret.

For problems with long gradients for which species’ departures of homogeneity may not be monotonic within
the scope of the observed environmental scores, quadratic response functions may be more appropriate. This
corresponds e.g. with the scenario in which a species’ abundance does not depart heavily from homogeneity
for extreme values of the environmental score, but does depart heavily for an intermediate value of the
environmental score. In essence this is the same as the approach from Zhu et al. (2005), only now the
baseline is the homogeneity model rather than 0. Every taxon thereby has its own baseline (the taxon’s mean
abundance), and the response function models departures from this baseline. Note that we usually do not
choose the ranges of the environmental variables or scores, so that we cannot guarantee a range long enough
for the quadratic response function to be appropriate.

Even though the quadratic response function can be fitted, it may still be pointless if the maximum lies
outside the range of the observed values for the environmental score. The peak location would then merely be
an extrapolation, and a linear response function may be preferable. Even though the linear fit is worse than
for the parabolic curve, it represents more truthfully the way the species reacts to the given values of the
environmental gradient. Therefore we also provide a “dynamic”-option for the response function, whereby
initially a quadratic model is fitted but discarded in favour of a linear one if the optimum lies outside of
the range of observed environmental scores. For plotting it is not very attractive to have different shapes of
the response function for the same taxon in different dimensions though. Another drawback of quadratic
response functions is that its maximum likelihood solution may take on a convex shape, which is hard to give
a biological meaning (Zhang and Thas 2016). Additionally the quadratic response function may be convex in
some dimensions and concave in others, further blurring the interpretation.

If the user is unsure and has enough data, he may use non-parametric response functions. This may improve
the sample and covariate ordination, and makes far less assumptions on the shape of the response function
(apart from a certain smoothness). This approach is very interesting if one wants to study individual taxa’s
response functions.

All in all we see a trade-off between flexibility of the response function and interpretability of the role of the
taxa.

2.2.4 Relationship between unconstrained RC(M) and existing methods

2.2.4.1 Correspondence analysis
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2.2.4.1.1 Independence model

Under independence between rows and columns we model the counts in a contingency table as

E(Xij) = aibj

whereby usually ai = xi. =
∑p
j=1 xij (the library sizes) and bj = x.j

x..
=

∑n

i=1
xij∑p

j=1

∑n

i=1
xij

(the average relative

abundances). Let E = a bT denote the n× p matrix of with the expected counts under independence.

There exist many variations of correspondence analysis, but all are concerned with the difference between the
observed count X and the expected counts based on the margins (the independence model) E. This means
that the signal can come from observations that are either smaller or larger than expected.

2.2.4.1.2 Reconstitution formula of Correspondence Analysis

A more extended model than the independence model is

E(Xij) = aibj

(
1 +

M∑
m=1

ωmqimtjm

)
with ai = xi. =

∑p
j=1 xij and bj = x.j

x..
with x.j =

∑n
i=1 xij . M = min(n,p) and the terms are ordered such

that ω1 > ω2 > ... > ωM .

When fitted, the second series of terms will attempt to repair discrepancies between X and E and as such
capture departures from independence. This is called the reconstitution formula since it decomposes the
observed average count into its expectation under independence and a residual. The residual is then further
decomposed into M orthogonal pieces.

Correspondence analysis is usually done through singular value decomposition (SVD) of the matrix of
departures from independence X-E. However, this is not directly applied to the matrix of raw departures,
but rather to the residual matrix weighted by row and column scores in one way or the other, to account
for the heteroscedasicity of count data. Subtle differences in choice of weights lead to different versions of
correspondence analysis. Very often it is not mentioned which version is used, which complicates comparison
of results of different packages.

The most common form of correspondence analysis performs a singular value decomposition of the following
matrix

A1 = R−1/2(X−E)J−1/2 = UΣV
T

with Σ a diagonal matrix with the singular values of X (all between 0 and 1) on the diagonal and R and J
diagonal matrices with row and column sums of X.

Elements of this matrix are
a1ij = xij − xi.x.j/n√

xi.x.j
= 1√

n

xij − xi.x.j/n√
xi.x.j/n

which can be recognized as
√
n times the Pearson standardized residuals. The Pearson standardized residuals

standardize the departures from E by dividing by the square root of the expected value. This is in line
with the common assumption that for count data E(Xij) = Var(Xij). This transformation would yield
approximately standard normally distributed variables if this assumption holds and E(Xij) is sufficiently
large. Hence the sum of squared elements

n∑
i=1

p∑
j=1

a2
1ij
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yields 1/n times the Pearson χ2 statistic to test for association in the contingency table.

In matrix notation the reconstitution formula becomes

X = Eindependence +R1/2UΣV TJ1/2

with 1TR1/2U = 0 and 1TJ1/2VT = 0 (weighted means of rows and columns equal zero) and UTR1/2U = 1
and VTK1/2V = 1 (weighted variances equal one) (Heijden and Leeuw 1985).

2.2.4.1.3 Link to the RC(M)-model

If a =
∑M
m=1 ωmvimwjm is small (i.e. the deviation from independence is small) then log(1 + a) ≈ a and

log(E(xij)) = log(xi.)+log(x.j)−log(x..)+log
(
1+

M∑
m=1

ωmqimtjm
)
≈ log(xi.)+log(x.j)−log(x..)+

M∑
m=1

ωmqimtjm

which shows a relationship between the RC(M)-model and correspondence analysis (Escoufier 1982; Heijden
et al. 1994).

If the same restrictions apply to the scores qim and tjm as to U and V, we can state that ψm ≈ ωm, qim ≈ rim
and tjm ≈ sjm. The assumption that the departure from independence is small seems unlikely for microbiome
data, but it does provide useful starting values for the ML fitting of the RC(M) model.

2.2.4.2 Gomms

The gomms package (Sohn and Li 2017) implements a similar mean model to the RC(M) model, but the
differences lie mainly in the error distribution. Our RC(M) model assumes a negative binomial model with
unique dispersion parameters for every taxon. The gomms methods employs a zero-inflated quasi Poisson
distribution with a common overdispersion parameter. It is well known however, that overdispersions differ
a lot between taxa in sequencing data (Robinson and Smyth 2007; Anders and Huber 2010). Also, the
zero-inflated component raises the need for an EM-algorithm which is computationally demanding. The
gomms package does not exploit the taxon scores for making biplots, and no diagnostic plots nor a constrained
counterpart are available.

2.2.4.3 Row-column interaction models

Our unconstrained RC(M) method is a special case of the row-column interaction models (RCIM) of (Yee
and Hadi 2014), which generates the model RC(M) from Goodman (1979). We have written our own, faster
implementation and improved dispersion estimation for the negative binomial error model.

2.2.4.4 Latent variable models

The latent variable model by Hui et al. (2015) can also be regarded as a modified version of a row-column
interaction model, but there the row and column scores are not treated symmetrically, and also no constrained
version is available. The sample scores are considered to be random effects, which greatly complicates their
estimation.

The clustering model by Pledger and Arnold (2014) follows a similar reasoning, but does not assign unique
scores to all taxa and samples.
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2.2.5 Relationship between constrained RC(M) and existing methods

2.2.5.1 Constrained correspondence analysis

The solution of constrained correspondence analysis (CCA) corresponds to that of quadratic response curves
with tolerances equal for all taxa and augmented with a Poisson distribution (Zhu et al. 2005). Whereas the
constrained RC(M) model models the departure from independence in a multiplicative way, correspondence
analysis captures departure from independence in an additive way by modelling the residuals. In CCA the
environmental gradients are not made orthogonal as in the RC(M)-model, but the sample scores are (ter
Braak 1986).

2.2.5.2 Environmental gradient estimation

Most existing methods to estimate response functions and environmental gradients use linear, quadratic and
non-parametric response function as in our RC(M) methods (Zhu et al. 2005; Yee and Hadi 2014). They fail
however to account explicitly for differences in sequencing depth and taxon abundance, as our method does
by estimating the independence model. Our RC(M) method has borrowed the log-likelihood ratio approach
of estimating the environmental gradient based on niche separation from (Zhu et al. 2005).

2.3 Plotting the RC(M) ordination

2.3.1 Unconstrained RC(M)

To plot the unconstrained sample ordination, e.g. in the first two dimensions, plot ψ1r1i vs ψ2r2i, preferably
as dots. All weight of the importance parameters ψm is allotted to the samples, which means that the
distances between sample points can be interpreted as optimal representations of between-sample distances
in lower dimension: more weight is added to differences in sample scores in important dimensions.

To show the role of the taxa in the ordination, add taxon scores s1j vs s2j as arrows to make a biplot. This
assures that the orthogonal projection of the vector (ψ1r1i, ψ2r2i) on (s1j , s2j) equals (s1j , s2j)t(ψ1r1i, ψ2r2i) =∑2
m=1 ψmrimsjm. This inner product is thus proportional to the departure from independence in the first

two dimensions combined, for taxon j in sample i: ψ1r1is1j + ψ2r2is2j . The larger the entries of the species
and sample scores (the scaling between these two sets is arbitrary, we usually choose them in the same order
of magnitude) and the smaller the angle between the vectors, the larger the departure of this taxon in this
sample.

Distances between taxon arrows are meaningless in this representation. To avoid misleading plots it is of
primary importance to use the same scale on all axes, no matter how rectangular and inconveniently shaped
this renders the plot.

2.3.2 Constrained RC(M)

2.3.2.1 Linear response functions

For a constrained ordination with linear response functions, plot the sample scores (ψ1α
t
1ci, ψ2α

t
2ci), preferably

as dots. Again this ordination optimally represents distances between samples in low dimension, but now
only with respect to the variability that can be explained by the environmental variables.

Taxon arrows can be added to make a biplot. The taxon arrows have their origin in (−β0j1
β1j1

,−β0j2
β1j2

). This
point represents the combination of values of the environmental scores in the first two dimensions were a
sample would have no expected departure from homogeneity for this taxon j. The arrow then extends in the
direction of (β1j1, β1j2) with length proportional to

√
β2

1j1 + β2
1j2. The orthogonal projection of this taxon

vector onto the sample scores (which depart from the origin), is then equal to (β1j1, β1j2)t(ψ1α
t
1ci, ψ2α

t
2ci) =
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∑2
m=1 ψmβijmα

t
mci, i.e. the departure from uniformity of taxon j that is due to the environmental score

from sample i.

In order to make a triplot, labels for the environmental variables are then added according to the loadings of
αm. The projection of αy (the component of α belonging to variable y) onto the taxon arrows then reflects
the sensitivity of the expected abundance of taxon j to changes in variable y. For the categorical variables all
levels are shown on the plot, there are no hidden reference levels. The continuous variables represent changes
of the magnitude of one standard deviation. Comparison of the magnitude of the loadings of continuous and
categorical variables is inherently difficult.

There is no interpretation available for the relative position of sample and variable vectors. This is because
the environmental gradient αm projects the environmental variables of a sample i, ci, onto a single scalar
him, the environmental score. Many combinations of variables ci can lead to the same environmental score.
Again, distances between taxon arrows are meaningless in this representation.

2.3.2.2 Quadratic response function

For a quadratic response function the samples are ordered as for the linear one.

The taxa are plotted as dots at the locations (− β2j1
2β3j1

,− β2j2
2β3j2

) of maximal departure from independence. The
convexity β3jm < 0 or concavity β3jm > 0 in each dimension can be shown e.g. by a colour code. Note that
cases like β3j1 < 0 < β3j2 can occur, which greatly complicates the interpretation. Further, ellipses can be
drawn around the taxon points to indicate the steepness of the response functions. We choose to draw ellipses
connecting the values of the environmental score at which the response functions are at 95% of their peaks.

The environmental variables can be added as in the linear case to show how they contribute to the environmental
gradient.

2.3.2.3 Non-parametric response functions

For non-parametric response functions, the species cannot be easily plotted in 2D, and the samples plot would
be meaningless due to the irregular shape of the response functions. The only 2D plot that can be made is
the variables plot. However, as before distance between variables are not meaningful, and the gradients in
both dimensions should be interpreted separately.

The most important plot for non-parametric response functions is the one-dimensional triplot. This plot
shows the shape of the response function as a function of the environmental score in one dimension. The
environmental gradient of this dimension can be added as a reference to show which variables constitute the
gradient. Also sample scores can be added to this one dimensional triplot. The sacrifice of one dimension is
needed as the y-axis is used to depict the irregular shape of the response function.

2.4 Assessing the model quality

Even though it is only an explorative visualization and conclusions may still be valid in the face of slight
violation of its assumptions, we need tools to evaluate the goodness of fit of the RC(M) model and the validity
of its assumptions.

2.4.1 Parsimony

An unconstrained RC(M) model of dimension m on a n×p data matrix requires estimation of p (abundances)
+ n (library sizes) + p (dispersions) + mp (column scores) + mn (row scores) + m (importance parameters)
= (m+2)p + (m+1)n + m parameters out of np entries. 4m + m(m-1) restrictions have been imposed, so
the final model is still very parsimonious for realistic sizes of n and p (hundreds).
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A constrained RC(M) model with linear response functions of dimension m on a n×p data matrix and with a
n×d covariate matrix requires estimation of p (abundances) + n (library sizes) + p (dispersions) + 2mp
(response function parameters) + md (environmental gradient loadings) + m (importance parameters) =
(2m+2)p + m(d+1) + n parameters out of np entries. 3m + m(m-1) restrictions have been imposed.

2.4.2 Importance of the dimension

A very natural question is to know how much more important the lower dimensions are in explaining the
present variability then the higher dimensions. Also we would want a measure of how much of the variability
has been explained in lower dimensions. In principal components analysis (PCA) there is the concept of
“percentage variance explained”, in correspondence analysis (CA) the total inertia is known and thus also the
percentage of variance captured by the lower dimensions. Still the value of these expressions is questionable,
since they only yield a fraction of total variability. However, part of the total variability is noise, and one does
not know which percentage of the signal the higher dimensions explain. In Principal Coordinates Analysis
(PCoA) measures of importance of the dimension are also given as the percentage of variance explained. This
can be misleading however, as this refers to the variance of the distance matrix explained. In the calculation
of the distance matrix, already some of the variability is discarded. As a result these percentages should be
interpreted with caution, and not as a function of total variability.

Since for the RC(M) model for computational reasons only a couple of dimensions are fitted, it is harder to
come up with a measure of total variability.

2.4.2.1 Importance parameters

The best measure of differences in importance between the dimensions are the importance parameters ψm.
Since all other parameters in both the unconstrained and constrained variables are normalized, these are
the only ones that can grow in magnitude to give more weight to the departures of independence in their
dimension. This is very similar to the eigenvalues in PCA or the singular values in correspondence analysis,
whose size is proportional to the importance of the corresponding dimension. In both the unconstrained and
the constrained case it may occur that the magnitude of the ψm’s is not always monotonically decreasing
with the dimensions. However, for skewed distributions as the negative binomial this need not be surprising:
the strongest improvement in likelihood is not always achieved by the greatest change in the mean, especially
in the presence of nuisance parameters. As long as the ordination axis are properly scaled this does not
invalidate the interpretation of the ordination plots.

The plotting procedure described above will allot all weight of the importance parameter to the samples,
thus automatically weighting for the importance of the dimensions in the sample ordination. As such the ψ’s
will not directly contribute to the interpretation of the plot.

2.4.2.2 Log-likelihoods

Another way to quantify the importance of the dimensions is to compare their differences in log-likelihoods of
a model of dimension m (llm) with respect to the saturated model. These differences are also known as half
the “deviances”. The log-likelihood saturated model (llsat) is calculated using the Poisson density, setting
mean and variance equal to the observed counts. These differences in log-likelihood are then normalized with
respect to the difference in log likelihood between the independence model (llindependence) and the saturated
model. The terms obtained for dimension m is then:

llm − ll∗

llsat − llindependence
,

with ll∗ the log-likelihood of the lower dimension, which can be the independence model, the model after
filtering on confounders or simply the lower dimension (m-1) of the RC(M) model.
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This approach has the advantage of also providing a measure of importance for the confounders. Also it uses
the saturated model as a reference and thus provides a fraction of “total variability”.

Disadvantages are the difficulty in interpreting log-likelihoods, and the fact that in some corner case the log-
likelihood drops with higher dimensions. This is because the estimation of the dispersions and environmental
gradients is not full maximum likelihood.

2.4.2.3 Inertia

As with correspondence analysis, the fraction of total inertia explained by the different dimensions can be
plotted on the axes. The inertia is defined as the sum of squared Pearson residuals, or

n∑
i=1

p∑
j=1

(xij − eijm)2

eijm

with xij the observed count and eijm the expected count under the model with m dimensions. The inertia
has the advantage that also the variance explained by the filtering on confounders step can be plotted, and
that there is a measure of residual variance.

On the other hand, as we argue in the manuscript, the inertia is not a good measure of variability for
overdispersed data, as it implicitly assumes the mean to equal the variance. Hence this criterion of dimension
importance should be interpreted with caution.

2.4.3 Detecting lack of fit

In our 2D or 3D representation, some samples and taxa may be very well represented, but others not.
This may be because of a lack of fit of the negative binomial distribution, or because its departure from
independence cannot be represented in lower dimension. Anyhow, we provide tools to detect lack of fit.

2.4.3.1 Deviance residuals

The deviance residuals dij of the negative binomial distribution are defined as (Zwilling 2013):

dij =

sgn(xij − µij)
√

2
(
xij ln( xijµij )− (xij + 1

φj
)ln( 1+xijφj

1+µijφj )
)
if xij > 0

sgn(xij − µij)
√

2
φj
ln(1 + φjµij) if xij = 0

Their sum of squares equals the total deviance per sample or taxon. We can visually represent the mean
deviance per sample or taxon by colour codes. In the constrained case with parametric response functions,
plotting the deviance residuals as a function of the environmental gradient can reveal patterns and thus lack
of fit to the linearity assumption.

We can do this for the taxa that respond strongest to the environmental gradient, and make residual plots
with deviance or Pearson residuals. An alternative is to try to detect systematic trends through series of
positive or negative residuals using Ward and Wolfowitz’ runs test, and plot the taxa with the largest test
statistic.

2.4.4 Identifying influential observations

Since we have explicitly expressed all score functions, we can easily identify influential observations using
influence functions (Hampel et al. 2011). They represent the influence a certain observation has on a parameter,
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keeping the other sorts of parameters fixed. Because of the iterative algorithm this latter assumption is
incorrect, but the influence functions might still harbour interesting information.

For maximum likelihood estimation the influence function χ(γ|f,x) of a parameter γ for a distribution f and
data x is defined as:

χ(γ|f,x) = −Sf (γ|x)E
(
I(γ|f)

)−1

with Sf (γ|x) the score function and E
(
I(γ|x)

)
the expected Fisher information matrix.

For the unconstrained case in a scenario without outliers the influence functions may not yield very surprising
results on the level of the plot, observations mainly have influence on their own row and column scores.
Coupling through the constraints is rather weak. It may however help to identify outlying abundances in
case of outlying row- or column scores.

For the constrained case it may be enlightening to see which samples (and taxa) affect the estimation of the
environmental gradient most.
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3 Simulation study

In this document we present three ways of testing an ordination method:

1) Parametric simulation with the known underlying groups
2) Non-parametric simulation with SimSeq
3) Applying the method to real datasets with biological signal allegedly known

Parametric simulation is convenient since the underlying truth is known, but its parametric assumptions
may be violated. SimSeq provides non-parametric data resampling, and is thus a reasonably neutral tool.
Examples of real datasets can be found above. Code for all simulations can be found in the Supplementary
File RCMcode.R.

Computations were run on a Dell laptop, on two servers with 12 respectively 30 cores and on the high
performance computing facilities of VSC (the Flemish Supercomputer Center). All analyses were run with
the R programming language versions 3.5.1, 3.4.3 and 3.3.1 (R Core Team 2015).

3.1 Parametric simulations

All simulations were performed with n=60 samples and p=1000 taxa.

Parametric simulations under sample homogeneity (i.e. without signal) were set up by simulating counts from
the negative binomial distribution with equal mean taxa composition in all samples. In a one scenario (NB0
(lib)), prior to data generation, the samples were divided into 4 equally sized groups. The sampled library
sizes were multiplied by 0.2, 1, 5 and 10 in each of these groups, respectively. In a second scenario (NB0
(disp)), the sampled taxon-wise dispersions were multiplied by 0.2, 1, 2 and 5 in the 4 groups prior to data
generation.

For parametric simulations with differences in mean taxa composition (with biological signal), counts were
generated for 4 equally sized groups of samples with different taxa compositions. In a first setting (NB),
initially one taxa composition was sampled for all the groups. This composition was then altered for every
group separately by multiplying a random sample of 10% of the taxa abundances by a fold change of 5 to
make them differentially abundant (DA). The second setting (NB (cor)) was identical to the first, except
that counts were generated with between-taxon correlations, as estimated by SpiecEasi (Kurtz et al. 2015)
on the mid vagina, stool and tongue dorsum datasets of the HMP and on the AGP data. A correlation
network was sampled for every Monte Carlo instance. The third scenario (NB (phy)) was also similar to the
first, only now a random phylogenetic tree was created for every dataset. Next, the tree was divided into 20
clusters of related taxa, and differential abundance was introduced in one of the clusters with a fold change
of 5. This assures that the DA taxa are phylogenetically related, similar to the second approach in Chen
et al. 2012. A fourth scenario (ZINB) uses the same strategy for the introduction of differential abundance
as the first, but uses zero-inflated negative binomial distributions. The DA is introduced only in the count
part of the distribution. A fifth scenario (DM) uses the Dirichlet multinomial distribution, for which DA is
introduced as for the first scenario. In a sixth setting (NB (unrel)), for every group taxa compositions were
sampled independently from the pool of estimated mean relative abundances. In a seventh scenario (NB
(lib)), differential abundance was introduced as in the first scenario, but in this case we will also make the
library sizes different in four groups. However, these library-size groups will not coincide with the composition
groups. On the contrary, each composition group will have equal number of samples from the same library
size group. The initial library sizes are all sampled from the same pool of library sizes. The first group has
unmodified library sizes, the second group library sizes multiplied by 1.5, the third by 2 and the fourth by 3.
In a eighth scenario (NB (disp)), the taxon-wise dispersions are modified in four groups, but these dispersion
groups will not coincide with the composition groups. On the contrary, each composition group will have
equal number of samples from the same dispersion group. For this aim, the first group has unmodified taxon
dispersions, the second group dispersions multiplied by 5, the third by 2 and the fourth by 0.25. In a tenth
scenario, data were generated with the NB distribution, but without any biological signal. The tenth and
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eleventh scenarios (NB (lib2) and NB (disp2)) also modify library sizes and dispersion, but in this case the
DA and library size/dispersion groups coincide.

3.1.1 Summary table of the simulation scenarios

Simulation.scenario Template Distribution Signal Remarks
NB0 AGP + HMP NB No
NB0 (lib) AGP + HMP NB No Groups differ in library sizes
NB0 (disp) AGP + HMP NB No Groups differ in dispersions
NB AGP + HMP NB Yes
NB (cor) AGP + HMP NB Yes Correlated taxa
NB (phy) AGP + HMP NB Yes Phylogenetically related taxa were made DA
DM AGP + HMP DM Yes
ZINB AGP + HMP Zero-inflated NB Yes
NB (unrel) AGP + HMP NB Yes Taxon compositions were sampled independently
NB (lib) AGP + HMP NB Yes Groups differ in library sizes, but orthogonally to DA
NB (disp) AGP + HMP NB Yes Groups differ in dispersions, but orthogonally to DA
NB (lib2) AGP + HMP NB Yes Groups differ in library sizes, same groups as DA
NB (disp2) AGP + HMP NB Yes Groups differ in dispersions, same groups as DA
Props (cycle) Props Real data Yes Non-parametric simulation
Props (phase) Props Real data Yes Non-parametric simulation
Kostic (country) Kostic Real data Yes Non-parametric simulation
Kostic (diagnosis) Kostic Real data Yes Non-parametric simulation
Zeller (diagnosis) Zeller Real data Yes Non-parametric simulation
Turnbaugh (diet) Turnbaugh Real data Yes Non-parametric simulation

Table S1: Summary table of simulation scenarios. DA: differentially abundant, NB: negative binomial, DM:
Dirichlet multinomial

3.1.2 Overview of the parametric simulation workflow

a) Assume a parametric distribution and estimate corresponding parameters

taxon 1 . . . taxon p
ρ1 . . . ρp
θ1 . . . θp

The ρj parameters reflect the mean relative abundance of each taxon j, whereby
∑p
j=1 ρj = 1. θp contains

all other parameters estimated for taxon j.

• Scenarios 1-3 and 6-8: Negative binomial distribution
• Scenario 4 (ZINB): Zero-inflated negative binomial distribution
• Scenario 5 (DM): Dirichlet-multinomial distribution

b) Obtain different taxon compositions for every of the 4 groups

• Scenario 6 (NB (unrel)): Sample a taxon composition from the pool of parameter estimates for every
group separately

Groups taxon 1 . . . taxon p
group 1 ρ11 . . . ρ1p
group 2 ρ21 . . . ρ2p
group 3 ρ31 . . . ρ11
group 4 ρ41 . . . ρ41

• Scenarios 1-5 and 7-8: Sample one taxon composition, and introduce differential abundance by multi-
plying a random sample of 5% of the taxa by a fold change of 5
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Groups
taxon
1 . . .

taxon
a

taxon
b . . .

taxon
c taxon d . . .

taxon
e

taxon
f . . .

taxon
p

group
1

ρ11 . . . ρ1a ρ1b . . . ρ1c ρ1d . . . ρ1e ρ1f . . . ρ1p

group
2

ρ21 . . . ρ2a ρ2b . . . ρ2c ρ2d . . . ρ2e ρ2f . . . ρ2p

group
3

ρ31 . . . ρ3a ρ3b . . . ρ3c ρ3d . . . ρ3e ρ3f . . . ρ3p

group
4

ρ41 . . . ρ41 ρ4b . . . ρ4c ρ4d . . . ρ4e ρ4f . . . ρ4p

• Scenario 4 (NB (phy)): Differential abundance is introduced in phylogenetically related taxa

c) Generate random data according to the chosen distribution

Scenario 2 (NB (cor)): Use an estimated taxon correlation structure

Groups taxon 1 . . . taxon p
group 1 x11 . . . x1p
...

...
. . .

...
group 1 xn11 . . . xn1p

group 2 x(n1+1)1 . . . x(n1+1)p
...

...
. . .

...
group 2 x(n1+n2)1 . . . x(n1+n2)p
group 3 x(n1+n2+1)1 . . . x(n1+n2+1)p
...

...
. . .

...
group 3 x(n1+n2+n3)1 . . . x(n1+n2+n3)p
group 4 x(n1+n2+n3+1)1 . . . x(n1+n2+n3+1)p
...

...
. . .

...
group 4 x(n1+n2+n3+n4)1 . . . x(n1+n2+n3+n4)p

d) Apply ordination method and evaluate performance
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3.2 Nonparametric simulation

An objective simulation approach would be to use non-parametric resampling from a true dataset, as in
SimSeq (Benidt and Nettleton 2015). For this we need microbiome datasets with covariates known to be
related to bacterial abundance, preferably with more than two groups. The Zeller data is one such dataset,
with the cancer variable expected to be related to relative abundance and having three levels (Normal,
small adenoma and cancer) (Zeller et al. 2014). For the Turnbaugh dataset we use “Diet”, with levels “BK”
and “Western” (Turnbaugh et al. 2009). For the Kostic data also cancer diagnosis and country were used
(scenarios called KosticDiagnosis and KosticCountry) (Kostic et al. 2014). For the Props data both reactor
cycle and phase were used (scenarios called PropsCycle and PropsPhase) (Props et al. 2016). In all settings
100 Monte-Carlo instances were generated.

We generate data as follows

1. Select a covariate and test for differential abundance using Wilcoxon-Mann-Whitney or Kruskal-Wallis
test

2. Calculate local false discovery rates (lfdr)
3. Sample non DA taxa with equal weights from all taxa
4. Sample DA taxa from all taxa with weights equal to 1-lfdr
5. Sample counts from non DA taxa from samples with the most frequent covariate level
6. Sample counts from DA taxa also from the samples with other covariate levels, and correct for differences

in library sizes. This maintains the same distribution of covariate levels and overall data matrix size as
the original dataset.

The gllvm method suffered heavily from numeric instability on synthetic datasets generated nonparametrically
from the Props2016 and Props2018 datasets. As a result, this method was omitted from the comparison for
these datasets.

3.3 Automatic method evaluation

In a simulation we need multiple repetitions to reliably estimate the performance of an ordination method, so
we need an automatic evaluation of the quality of the ordination.

3.3.1 Robustness to technical artefacts

The motivating problem to develop the whole method was to find an approach that would not show correlation
between the row scores and the library sizes, which is a technical artefact.

Pearson correlations of row scores with library sizes could thus be a criterion to evaluate the quality of the
biplot. Equivalently correlations of the taxon scores with average relative abundance and with true logged
dispersions can be investigated.

3.3.2 Sample separation

3.3.2.1 Pseudo F-statistic

A pseudo F-statistic for distance matrices has been proposed by (Anderson 2001), and has been applied to
simulation studies for ordination methods (Schmidt et al. 2016).

It is calculated as

Fpseudo = SSoverall − SSwithin
SSoverall

n− a
a− 1
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with a the number of clusters, SSoverall the sum of squared distances of all pairwise combinations of points,
and SSwithin the sum of squared distances of all samples from the same cluster.

3.3.2.2 Silhouette

The silhouette (Rousseeuw 1987) is well established tool to measure sample separation. For each point i,
calculate the distance to each other point in the ordination, and average these distances within the cluster.
Call a(i) the average distance to its own cluster and b(i) the smallest of the average distances to the other
clusters. The the silhouette of observation i s(i) is defined as:

s(i) = b(i)− a(i)
max

(
a(i), b(i)

)
The silhouette can take values between +1 for optimal separation and -1 for wrong classification. If a sample
i lies close to the centroid of its own cluster but very far from all the others, then it has a high silhouette.

3.3.3 Contribution of taxa to the separation of the clusters

For the methods that do yield taxon scores, we can also verify if the correct taxa contribute to the separation
of the clusters. For this purpose we define the following “taxon ratio”. This metric is based on the average
inner product of the DA taxon scores and the samples scores of samples in which the taxa are known to be
differentially abundant. This yields a measure of how much these DA taxa contribute to the separation of
the samples. The mean inner product of the non-DA taxon scores with the same sample scores should be
small for an ordination method that can discriminate between DA and non-DA taxa. The ratio of the former
to the latter mean inner product is the taxon ratio. It is used as a measure of method performance in terms
of taxon identification. The taxon ratio captures how well taxa are identified for a single sample cluster.

Call sl,sig the pl,sig×m matrix with taxon scores of the pl,sig taxa that are differentially abundant in the nl
samples of group l. The signal of these taxon scores in the direction of the sample scores rl of group l, with
rlψ an nl×m matrix and ψ a diagonal matrix of dimension m with importance parameters on the diagonal, is
1trlψstl,sig1. Hereby 1 are unit vectors of the appropriate size that serve to sum all the elements of rlψstl,sig.

Let sl,noSig be the pl,sig×m matrix with scores of the pl,sig non differentially abundant taxa, then the taxon
ratio equals

Taxon ratiol = pl,noSig
pl,sig

1trlψstl,sig1
1trlψstl,noSig1

.

The taxon ratio was then averaged over all sample clusters.
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3.4 Results of simulation study

This section gives an exhaustive overview of all simulation results. In all plots below, ordination methods
are coloured according to the underlying paradigm. “Independence” refers to methods that dissect the
departure from row-column independence in an additive way, like correspondence analysis. “Distance” refers
to methods based on distances between samples, like PCoA. All other methods have particular paradigms
and are coloured separately. The RC(M) method had rare cases of non-convergence, for gomms it happened
frequently that the fitting process ended with an error or with non-convergence.

3.4.1 No-signal simulations

3.4.1.1 Correlations

Library sizes are considered to be technical artefacts, and thus should not affect the ordination, which is
meant to display only biological signal. To verify this we calculate the Pearson correlations of the observed
library sizes with every set of sample scores and compare this with the correlation with a random standard
normal variable. Further we calculate Pearson correlations of taxon scores to observed taxon abundances and
to true logged dispersions. Ideally, these correlations should not be greater than the correlation with the
random standard normal variable.
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Figure S3: Boxplots with the correlation of sample scores with observed library sizes (y-axis) for different
ordination methods (x-axis). Side panels indicate the different parametric simulation scenarios, see Section
3.1 for an explanation of the codes used. Top panels show the dimension of the sample score. Dashed black
line indicates zero correlation.
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Figure S4: Boxplots with the correlation of sample scores with observed library sizes (y-axis) for different
ordination methods (x-axis) in non-parametric simulation. Side panels indicate the different template datasets
for non-parametric simulation, see Section 3.2 for further details. Top panels show the dimension of the
sample score. Dashed black line indicates zero correlation.
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Figure S5: Boxplots with the correlation of taxon scores with observed taxon abundances (y-axis) for different
ordination methods (x-axis). Side panels indicate the different parametric simulation scenarios, see Section
3.1 for an explanation of the codes used. Top panels show the dimension of the taxon score. Dashed black
line indicates zero correlation.
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Figure S6: Boxplots with the correlation of taxon scores with observed taxon abundances (y-axis) for different
ordination methods (x-axis) in non-parametric simulation. Side panels indicate the different template datasets
for non-parametric simulation, see Section 3.2 for further details. Top panels show the dimension of the
sample score. Dashed black line indicates zero correlation.
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Figure S7: Boxplots with the correlation of taxon scores with true taxon dispersions (y-axis) for different
ordination methods (x-axis). Side panels indicate the different parametric simulation scenarios, see Section
3.1 for an explanation of the codes used. Top panels show the dimension of the taxon score. Dashed black
line indicates zero correlation.
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Figure S8: Boxplots of sample clustering measures (y-axis) as a function of ordination methods (x-axis). Side
panels indicate the clustering measure used, see Section 3.1 for an explanation of the codes used.

3.4.1.2 Clustering

Differences in sampling techniques or real, biological differences in variability may occur between groups of
samples, even when they have the same compositions. Ordinations should be robust to these, so we check if
samples with similar variability cluster together.

Also, as a result of the correlation of row scores and library sizes this may lead to clustering of samples with
the same composition according to library sizes.
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Figure S9: Sample ordination of the Anterior nares dataset from the HMP through CoDa. Samples are
coloured by library size.

In absence of biological signal. Most methods do not cluster samples according to library sizes, except for
PCoA with Bray-Curtis distances on absolute and logged abundances, the ordination based on the Hellinger
distance and CoDa. In presence of biological signal this clustering is much reduced.

All PCoA-based methods investigated (except for NMDS), as well as the CoDa and RC(M) methods, cluster
samples according to differences in dispersion, regardless of the presence of biological signal.

We illustrate this effect here for the CoDa method on the Anterior nares dataset from the HMP.
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Figure S10: Observed library sizes as a function of diet in the Turnbaugh dataset (left), and as a function of
diagnosis in the Zeller dataset (right)
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Figure S11: Observed library sizes as a function of diagnosis (left) and country (right) in the Kostic dataset
(top)

3.4.1.3 Relation between library sizes and sample covariates

Often library sizes are strongly related to important biological covariates (see boxplots below), and fall into
discrete groups. As we have shown that some ordination techniques are sensitive to differences in library
sizes, this may lead to very misleading ordination plots.
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Figure S12: Observed library sizes as a function of reactor cycle (left) and phase (right) in the Props dataset
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Figure S13: Boxplots of performance measures (y-axis) as a function of the ordination method (x-axis). Top
panels indicate the different parametric simulation scenarios, see Section 3.1 for an explanation of the codes
used. Left panels indicate the criterion used.

3.4.2 Biological signal simulations

34



Turnbaugh Zeller KosticDiagnosis KosticCountry PropsCycle PropsPhase

S
ilh

ou
et

te
ps

eu
do

−
F

Ta
xo

n 
ra

tio
C

A
pe

ar
so

n
C

A
co

nt
R

at
C

A
ch

is
q

D
C

A
H

el
lin

ge
r

P
C

A
B

ra
y−

C
ur

tis
−

A
bs

B
ra

y−
C

ur
tis

−
R

ar
e

B
ra

y−
C

ur
tis

B
ra

y−
C

ur
tis

−
Lo

g
B

ra
y−

C
ur

tis
 N

M
D

S
JS

D
C

oD
a

R
C

M
gl

lv
m

t−
S

N
E

go
m

m
s

C
A

pe
ar

so
n

C
A

co
nt

R
at

C
A

ch
is

q
D

C
A

H
el

lin
ge

r
P

C
A

B
ra

y−
C

ur
tis

−
A

bs
B

ra
y−

C
ur

tis
−

R
ar

e
B

ra
y−

C
ur

tis
B

ra
y−

C
ur

tis
−

Lo
g

B
ra

y−
C

ur
tis

 N
M

D
S

JS
D

C
oD

a
R

C
M

gl
lv

m
t−

S
N

E
go

m
m

s

C
A

pe
ar

so
n

C
A

co
nt

R
at

C
A

ch
is

q
D

C
A

H
el

lin
ge

r
P

C
A

B
ra

y−
C

ur
tis

−
A

bs
B

ra
y−

C
ur

tis
−

R
ar

e
B

ra
y−

C
ur

tis
B

ra
y−

C
ur

tis
−

Lo
g

B
ra

y−
C

ur
tis

 N
M

D
S

JS
D

C
oD

a
R

C
M

gl
lv

m
t−

S
N

E
go

m
m

s

C
A

pe
ar

so
n

C
A

co
nt

R
at

C
A

ch
is

q
D

C
A

H
el

lin
ge

r
P

C
A

B
ra

y−
C

ur
tis

−
A

bs
B

ra
y−

C
ur

tis
−

R
ar

e
B

ra
y−

C
ur

tis
B

ra
y−

C
ur

tis
−

Lo
g

B
ra

y−
C

ur
tis

 N
M

D
S

JS
D

C
oD

a
R

C
M

gl
lv

m
t−

S
N

E
go

m
m

s

C
A

pe
ar

so
n

C
A

co
nt

R
at

C
A

ch
is

q
D

C
A

H
el

lin
ge

r
P

C
A

B
ra

y−
C

ur
tis

−
A

bs
B

ra
y−

C
ur

tis
−

R
ar

e
B

ra
y−

C
ur

tis
B

ra
y−

C
ur

tis
−

Lo
g

B
ra

y−
C

ur
tis

 N
M

D
S

JS
D

C
oD

a
R

C
M

t−
S

N
E

go
m

m
s

C
A

pe
ar

so
n

C
A

co
nt

R
at

C
A

ch
is

q
D

C
A

H
el

lin
ge

r
P

C
A

B
ra

y−
C

ur
tis

−
A

bs
B

ra
y−

C
ur

tis
−

R
ar

e
B

ra
y−

C
ur

tis
B

ra
y−

C
ur

tis
−

Lo
g

B
ra

y−
C

ur
tis

 N
M

D
S

JS
D

C
oD

a
R

C
M

t−
S

N
E

go
m

m
s

−0.3

0.0

0.3

0.6

0.000

0.025

0.050

0.075

0

4

8

12

Approach
Independence

PCA

Distance

CoDa

RCM

t−SNE

gomms

gllvm

Figure S14: Boxplots of performance measures (y-axis) as a function of the ordination method (x-axis). Top
panels indicate the different template datasets for non-parametric simulation (see Section 3.2 for further
details), side panels indicate which separation measure is shown.
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Figure S15: Sample plots of the ordinations by the RC(M), CoDa, t-SNE and NMDS with Bray-Curtis
distances on a randomly sampeld SimSeq dataset generated based on the Turnbaugh dataset with diet as
grouping variable. Dots are coloured by diet.

3.4.3 Some validation plots

To validate the summary measures used to score sample clustering, we make some example sample plots.
Each time we plot the two best, and the two worst performing methods, and see if the result is meaningfully
different. We show the ordination graph for each of these methods at their median performance according to
the pseudo-F statistic.
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Figure S16: Sample plots of the ordinations by the RC(M), PCoA with Bray-Curtis distances on logged
abundances, gomms and correspondence analysis based on the contingency ratio, on a randomly sampeld
SimSeq dataset generated based on the Zeller dataset with cancer diagnosis as grouping variable. Dots are
coloured by cancer diagnosis.
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Figure S17: Sample plots of the ordinations by the RC(M), PCoA with Jensen-Shannon divergence, t-SNE
and PCoA with Bray-Curtis distances on absolute abundances on a randomly sampeld SimSeq dataset
generated based on the Kostic dataset with cancer diagnosis as grouping variable. Dots are coloured by
cancer diagnosis.
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Figure S18: Sample plots of the ordinations by the RC(M), PCoA with Bray-Curtis distances on absolute
abundances, CoDa, detrended correspondence analysis and PCoA with Bray-Curtis distances on relative
abundances and Hellinger distance on a randomly sampeld SimSeq dataset generated based on the Props
dataset with reactor cycle as grouping variable. Dots are coloured by reactor cycle.

39



−0.6 −0.4 −0.2 0.0 0.2 0.4

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

RCM

Dim 1

D
im

 2

−1.0 −0.5 0.0 0.5

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

BClog

Dim 1

D
im

 2

−10 0 10 20 30

−
20

−
10

0
10

CoDa

Dim 1

D
im

 2

−1000 0 1000 2000 3000

−
50

0
0

50
0

10
00

tsne

Dim 1

D
im

 2

−2 −1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5

BC

Dim 1

D
im

 2

−0.20 −0.10 0.00 0.10

−
0.

10
−

0.
05

0.
00

0.
05

CApearson

Dim 1

D
im

 2

Figure S19: Sample plots of the ordinations by the RC(M), PCoA with Bray-Curtis distances on logged
abundances, CoDa, t-SNE and PCoA with Bray-Curtis distances on absolute abundances and correspondence
analysis based on Pearson residuals on a randomly sampeld SimSeq dataset generated based on the Props
dataset with reactor phase as grouping variable. Dots are coloured by reactor phase.
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Figure S20: Biplots of the ordinations by the RC(M), CoDa, t-SNE and NMDS with Bray-Curtis distances
on a randomly sampeld SimSeq dataset generated based on the Turnbaugh dataset with diet as grouping
variable. Dots are coloured by diet, only the 5% taxa with strongest signal are shown. Differentially abundant
taxa are coloured black, the others grey.

We can conclude that the high throughput measure of cluster sampling corresponds reasonably well with a
visual evaluation. We next look at some biplots with median taxon ratio over all Monte-Carlo simulations to
visually inspect if it is a good summary measure for taxon identification.
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Figure S21: Biplots of the ordinations by the RC(M), CoDa, t-SNE and NMDS with Bray-Curtis distances
on a randomly sampeld SimSeq dataset generated based on the Zeller dataset with diet as grouping variable.
Dots are coloured by diet, only the 5% taxa with strongest signal are shown. Differentially abundant taxa are
coloured black, the others grey.
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Figure S22: Biplots of the ordinations by the RC(M), CoDa, t-SNE and NMDS with Bray-Curtis distances
on a randomly sampeld SimSeq dataset generated based on the CMETphase dataset with diet as grouping
variable. Dots are coloured by diet, only the 5% taxa with strongest signal are shown. Differentially abundant
taxa are coloured black, the others grey.
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Figure S23: Benchmark of computation times of different methods on the Zeller, Kostic and Turnbaugh
datasets. The gomms did not converge for the Kostic dataset, the gllvm method not for the Turnbaugh
dataset. The fits of VGAM and logmult all failed because of memory problems. The boral package would not
converge after >18h and timing was stopped for all three datasets.

3.5 Computational benchmark

We illustrate the computational efficiency in terms of user time of the different methods used by benchmarking
them on the Zeller, Turnbaugh and Kostic datasets. The results are shown in Figure S23 and Table S6.

The VGAM and logmult packages also implement the RC(M) model with negative binomial error model, but
with slight differences in restrictions on the parameters. Both packages fail to converge for the microbiome
datasets under study, due to memory problems.

% latex table generated in R 3.5.1 by xtable 1.8-3 package % Fri Dec 7 16:11:36 2018

3.6 Failed fits

Another measure of performance is the amount of failed fits. Failed fits only occur for model-based approaches,
so we limit the discussion to the RCM, gomms and gllvm methods.

% latex table generated in R 3.5.1 by xtable 1.8-3 package % Sat Dec 8 12:53:46 2018

3.7 Summary table

% latex table generated in R 3.5.1 by xtable 1.8-3 package % Sat Dec 8 12:55:05 2018
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Zeller Kostic Turnbaugh
RCM 00:00:42 00:05:01 00:04:10
CA 00:00:00 00:00:00 00:00:00

DCA 00:00:00 00:00:00 00:00:00
CoDa 00:00:01 00:00:02 00:00:03
PCA 00:00:00 00:00:00 00:00:00
BC 00:00:00 00:00:00 00:00:00

BClog 00:00:00 00:00:00 00:00:00
JSD 00:00:05 00:00:06 00:00:08

BCrel 00:00:00 00:00:00 00:00:00
BCrare 00:00:00 00:00:00 00:00:00

BCrelNMDS 00:00:02 00:00:03 00:00:03
Hellinger 00:00:00 00:00:00 00:00:00

tsne 00:00:16 00:00:17 00:00:21
gomms 00:05:18 Fit failed 00:12:23
gllvm 00:46:13 06:54:26 Fit failed

logmult Out of memory Out of memory Out of memory
VGAM Out of memory Out of memory Out of memory
boral >18h >18h Out of memory

Table S6: Summary table of fitting times or different methods on the Zeller, Kostic and Turnbaugh datasets.
Time formats are hh:mm:ss.

4 Real data examples

We apply the RC(M) method to a number of real datasets to illustrate its functionality and prove that it
yields biologically valid results.

The Human Microbiome Project (HMP, V13 region of the 16S rRNA gene) (Peterson et al. 2009) and
the American Gut Project (AGP) (AmericanGut.org 2015) provide microbiome count datasets of healthy
human volunteers. Data from two studies on the colorectal microbiome of cancer patients, referred to as
the Zeller data (Zeller et al. 2014) and the Kostic data (Kostic et al. 2012) are also included. A study on
several generations of gnotobiotic mice, referred to as the Turnbaugh data (Turnbaugh et al. 2009), provides
non-human microbiome data. A study on microbes in cooling water provides data from a non-mammalian
source, referred to as the Props data (Props et al. 2016).

4.1 Human microbiome project

The Human Microbiome Project (HMP) aimed to characterize the healthy human microbiome (Peterson et al.
2009). 18 body sites were sampled, here we only show the results of the samples originating from the Anterior
nares (nasal cavity). Because of the low number of recorded variables, only an unconstrained RC(M)-model
was fitted.

Since we know that sequencing facility affects the outcome of the sequencing assay, and one is not interested
in visualizing this technical variability, we can condition out this variable. We condition only on the primary
sequencing center (Washington University genome center (WUGC), J. Craig Venter Institute (JCVI), Baylor
College of Medicine (BCM) and Broad Institute (BI)).
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RCM gomms gllvm
0 1.00 0.16 1.00

0b 0.96 0.10 1.00
4 1.00 0.08 1.00
1 0.99 0.74 1.00
2 1.00 0.18 1.00
3 1.00 0.21 1.00
5 1.00 0.11 1.00

Phy 1.00 0.16 1.00
DM 1.00 0.44 1.00

ZINB 1.00 0.09 1.00
3b 1.00 0.46 1.00
4b 1.00 0.05 1.00

CMETcycle 1.00 0.00 0.00
CMETphase 1.00 0.02 0.00

KosticDiagnosis 1.00 0.11 1.00
KosticCountry 1.00 0.01 1.00

Zeller 0.94 0.89 1.00
Turnbaugh 1.00 0.60 1.00

Table S7: Fraction of succesfull fits over all generated datasets in parametric and non-parametric simulations
for the RCM, gomms and gllvm methods

PCoA Correspondence analysis CoDa Latent variable models RC(M)
Discriminative power Mediocre Mediocre Good Good Good

Direct taxon identification No (only PCA) Yes Yes Yes Yes
Sensitivity to library sizes Some distance measures None Yes No No

Sensitivity to sample-wise dispersions Some distance measures None Yes Yes Yes
Conditioning on known confounders No Yes No Yes Yes

Constrained counterpart Two-step approach Yes No No Yes
Fitting time Seconds Seconds Seconds Minutes-Hours Minutes

Goodness-of-fit checks No No No Yes Yes

Table S8: Summary table on the strengths and weaknesses of several families of ordination methods considered
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Figure S24: Biplot of the RC(M) ordination of the Anterior nares dataset of the HMP. Colours indicate
sequencing center. Sequencing center clearly affects the obtained microbiome compositions.
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Figure S25: Biplot of the RC(M) ordination of the HMP Anterior nares dataset after conditioning on main
sequencing center (Washington University genome center (WUGC), J. Craig Venter Institute (JCVI), Baylor
College of Medicine (BCM) and Broad Institute (BI)). The effect of sequencing center has been largely filtered
out.
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Figure S26: Biplot of the RC(M) ordination of the American gut dataset. As expected the dataset is very
noisy and we do not find a clear signal.

4.2 The American gut project

The American gut project consists of stool samples sampled by volunteers at home, together with their
answers to a questionnaire (AmericanGut.org 2015). Since they are sampled at home the variability is
expected to be large. Only an unconstrained RC(M) model was fitted.
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Figure S27: RC(M) biplot of Turnbaugh data. This dataset appears to have a very strong signal, we can
distinguish at least two clusters. The separation in the first dimension is clearly an effect of Diet, the second
dimension seems to be dominated by the date of collection

4.3 Turnbaugh et al. (2009)

In this study, 15 gnotobiotic mice were inoculated with human feces, and for one group the diet was switched
to a Western diet after one month (Turnbaugh et al. 2009) (Turnbaugh data). Then a second generation
of mice was inoculated with cecal samples from the previous groups, and here also diet was varied. The
variables recorded were:

• Diet: current diet
• Generation_p: “Recipient1” if second generation, otherwise diet of cecal samples with which they were

inoculated
• Time: age of mouse at sampling
• DGS: Diet and previous diet
• DTG: combines sampling diet, time, and previous generation (if any)

The number of (independent) variables is too small for a constrained analysis, only an unconstrained RC(M)
model was fitted.
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Figure S28: Biplot of the RC(M) ordination of the 16S Zeller data. We see some gradient as a function of
cancer diagnosis, but there is still a lot of remaining variability. These is consistent with the findings of the
authors Zeller et al. 2014.

4.4 Zeller et al. (2014)

4.4.1 Unconstrained RC(M)

The Zeller data are obtained from a study on colorectal cancer in cancer patients and healthy controls (Zeller
et al. 2014). Patient covariates recorded were age, gender, BMI, cancer diagnosis (healthy, small adenoma or
cancer) and country (France or Germany). On the same data, 16S rRNA as well as metagenomic data are
available.

50



Acidaminococcus
intestini

Anaerostipes
caccae

motu_linkage_group_17

motu_linkage_group_176

motu_linkage_group_240

motu_linkage_group_253

motu_linkage_group_360

motu_linkage_group_519
−1

0

1

2

3

−3 −2 −1 0 1 2
ψ1 = 0.9

ψ
2

=
0.

7

Diagnosis

Cancer
Normal
Small_adenoma

Country

France
Germany

Figure S29: Biplot of the RC(M) ordination of the metagenomics Zeller data. No clear gradient related to
the diagnosis is visible.
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Figure S30: Triplot of constrained RC(M) analysis on 16S Zeller data with linear response functions. Cancer
diagnosis and country appear to be the most important variables. The fact that this signal is much less clear
in the unconstrained analysis suggests that the dataset contains a lot of variability that cannot be explained
by the recorded variables.

4.4.2 Constrained RC(M)

In the constrained analysis of the Zeller data we used all the available covariates to construct the environmental
gradient: age, gender, diagnosis, BMI and country.
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Figure S31: Monoplot of the environmental gradient of the constrained RC(M) analysis on 16S Zeller data
with non-parametric response functions. The environmental gradient with non-parametric response functions
is similar as to the linear case, only age is more important according to this model. Note that distances
between the variables are meaningless, each dimension of the gradient should be interpreted separately.
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Figure S32: Non-parametric response functions of constrained RC(M) analysis on 16S Zeller data. The
x-axis shows the values of the environmental gradient in the first dimension, with the observed values of
this gradient shown as dashes below. The size of the dashes indicate the cancer diagnosis. The black labels
show the contribution of the different variables to the gradient. It is clear that cancer diagnosis is a crucial
variable for this gradient. The y-axis depicts the value of the response function, with the dashed line at
0 representing the homogeneity model. The coloured lines show the value of the taxon response function
along the gradient. Only the 9 most strongly reacting taxa are shown. We can distinguish three different
types of response functions among the 9 most responsive taxa: One group of taxa with decreasing abundance
along the gradient, one group with increasing abundance and the Neisseria species has a unimodal response
function that rises and drops along the gradient.
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Figure S33: Triplot of constrained RC(M) analysis on metagenomic Zeller data with linear response functions.
Cancer diagnosis and country appear to be the most important variables. The results from metagenome
sequencing are very different from those from 16S rRNA sequencing. Country still plays an important role in
the ordination, but the different diagnosis groups are not separated as clearly anymore. One mOTU seems
completely out of touch with the rest.
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Figure S34: Monoplot of constrained RC(M) analysis on metagenomic Zeller data with non-parametric
response functions. Cancer diagnosis dominates the first dimension, BMI the second.
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Figure S35: Constrained ordination plot of the Zeller data with linear response functions. Samples are
coloured by mean deviance. There are no samples with exceptionally high deviances, nor any clusters of these
samples. Still the samples with the highest deviance may deserve closer scrutiny.

4.4.3 Diagnostic plots

Assumptions and outlying observations can be further investigated using diagnostic plots.

4.4.3.1 Deviances

4.4.3.2 Influential observations

We investigate which samples have on average the strongest influence on the estimation of the age parameter
in the environmental gradient in the first dimension

4.4.3.3 Residual plots
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Figure S36: Constrained ordination plot of the Zeller data with linear response functions. Samples are
coloured by influence on the estimation of the age parameter in the first dimension. As expected, samples
from old people (on top) and young people (bottom) have the strongest influence on the estimation of this
parameter, although no single sample has an extremely high influence.
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Figure S37: Deviance residuals of the RC(2) ordination of the Zeller data for Fusobacteruim gonidiaformans
as a function of the environmental score in the first dimension. For this taxon there is a clear trend of more
large values and an overall decrease in the size of the residuals with increasing environmental score. The
linearity assumption may not be valid for this taxon in this dimension, and results of the ordination should
be interpreted with caution.

Residual plots help to assess the assumption on the shape of the response function. Constrained RC(M)
models with linear response functions are easy to plot, but their interpretation depends on the validity of the
linearity assumption. To check this we can plot the residuals as a function of the regressor (the environmental
score in the first dimension). There must not be a visible pattern of residuals as a function of this score. We
pick the taxon with the highest deviance (Fusobacterium gonidiaformans) to plot as an illustration.
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4.5 Kostic et al. (2012)

This is a study on the microbiome of colorectal cancer in humans (Kostic et al. 2012). Nine cancer patients
were matched with 9 healthy patients, samples were taken repeatedly. The researchers find a enrichment of
Fusobacteria in the cancer patients and a depletion of Bacteroidetes and Firmicutes.

For the constrained analysis we use the variables

• NECROSIS_PERCENT
• AGE
• NORMAL_EQUIVALENT_PERCENT
• FIBROBLAST_AND_VESSEL_PERCENT
• TREATMENT
• CEA (Carcinoembryonic antigen)
• SEX
• COUNTRY
• CHEMOTHERAPY
• HISTOLOGIC_GRADE
• TUMOR_PERCENT
• RADIATION_THERAPY
• INFLAMMATION_PERCENT
• PC3 (a prostate cancer cell line)

For radiation therapy and chemotherapy, “None” and “No” were pooled. For Necrosis percent, normal
equivalent percent, tumor percent, inflammation percent and CEA, “None” was set to 0, for age to the
average age. Necrosis percent, age, normal equivalent, fibroblast and vessel percent, and CEA were treated
as continuous variables
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Figure S38: Unconstrained RC(M) biplot of Kostic data. Country, chemotherapy and radiotherapy seem to
be related to microbiome composition from the unconstrained analysis.
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Figure S39: Constrained RC(M) triplot with linear response functions of Kostic data. In constrained RC(M),
country of data collection and cancer status are clearly the main drivers of the ordination. For clarity only
the most important variable is shown. , fig.height = 7
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Figure S40: Constrained RC(M) monoplot with non-parametric response functions of Kostic data. Tumor
percent stands out as an important variable
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Figure S41: Non-parametric response functions of the constrained RC(M) triplot of Kostic data. The plot is
largely dominated by one taxon with a very strong response
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Figure S42: RC(M) biplot of the Props data. The first dimension mainly tracks the change of the cooling
water throughout the different phases. There is a certain arch effect visible, which may indicate samples from
the start up and shutdown are somewhat similar.

4.6 Props et al. (2016)

This is a longitudinal dataset on microbial growth in a water cooling system of a nuclear facility (Props et al.
2016).
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Figure S43: Constrained RC(M) triplot with linear response functions of the Props data. The constrained
analysis confirms phase as being an important driver of sample variability. Also cycle turns out to be an
important variable.
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Figure S44: Constrained RC(M) monoplot with non-parametric response functions of the Props data. The
constrained RC(M) with non-parametric response functions confirms the dominant role of reactor cycle and
phase in shaping the ordination, although it allots more weight to pH as sample-specific variable.
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Figure S45: Response functions of constrained RC(M) with non-parametric response functions of the Props
data. The response functions of the most strongly reacting taxa are monotonic in the first dimension,
suggesting that a linear approximation may be appropriate. The samples clearly fall apart into two groups,
which are well explained by reactor phase. This demonstrates the use of non-parametric response functions
as a diagnostic for the linearity assumption for linear response functions.
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5 R-code

All R-code used for the simulations and for generating the plots in the publication can be found in the S1
File. Code for fitting the RC(M) models can be found in the R-package RCM which can be downloaded from
https://github.com/CenterForStatistics-UGent/RCM.

Existing implementations in R for fitting row-column interaction models, such as the rcim() function in the
V GAM package (Yee 2015) and rc() in the logmult package (Bouchet-Valat 2017) fail to converge, likely
due to numerical reasons.

6 R-language and package versions

All information on versions of the R-software and packages can be found in the following output of sessionInfo().

## R version 3.5.1 (2018-07-02)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.1 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] xtable_1.8-3 zCompositions_1.1.2 truncnorm_1.0-8
## [4] NADA_1.6-1 survival_2.43-3 MASS_7.3-51.1
## [7] chron_2.3-53 boral_1.7 coda_0.19-2
## [10] logmult_0.7.0 gnm_1.1-0 gomms_1.0
## [13] gllvm_1.1.0 mvabund_3.13.1 TMB_1.7.15
## [16] cluster_2.0.7-1 ape_5.2 HMP_1.6
## [19] SpiecEasi_1.0.2 dirmult_0.1.3-4 tsne_0.1-3
## [22] reshape2_1.4.3 RCM_0.99.1 ggplot2_3.1.0
## [25] phyloseq_1.26.0
##
## loaded via a namespace (and not attached):
## [1] nlme_3.1-137 bitops_1.0-6 xts_0.11-2
## [4] RColorBrewer_1.1-2 rprojroot_1.3-2 numDeriv_2016.8-1
## [7] tools_3.5.1 backports_1.1.2 R2WinBUGS_2.1-21
## [10] vegan_2.5-3 rpart_4.1-13 KernSmooth_2.23-15
## [13] lazyeval_0.2.1 BiocGenerics_0.28.0 mgcv_1.8-26
## [16] colorspace_1.3-2 nnet_7.3-12 permute_0.9-4
## [19] ade4_1.7-13 withr_2.1.2 curl_3.2
## [22] compiler_3.5.1 Biobase_2.42.0 alabama_2015.3-1
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## [25] tseries_0.10-46 caTools_1.17.1.1 scales_1.0.0
## [28] mvtnorm_1.0-8 quadprog_1.5-5 stringr_1.3.1
## [31] digest_0.6.18 relimp_1.0-5 rmarkdown_1.10
## [34] XVector_0.22.0 pkgconfig_2.0.2 htmltools_0.3.6
## [37] rlang_0.3.0.1 TTR_0.23-4 rstudioapi_0.8
## [40] quantmod_0.4-13 huge_1.2.7 VGAM_1.0-6
## [43] zoo_1.8-4 jsonlite_1.5 gtools_3.8.1
## [46] magrittr_1.5 qvcalc_0.9-1 biomformat_1.10.0
## [49] Matrix_1.2-15 Rcpp_1.0.0 munsell_0.5.0
## [52] S4Vectors_0.20.1 Rhdf5lib_1.4.1 abind_1.4-5
## [55] stringi_1.2.4 yaml_2.2.0 nleqslv_3.3.2
## [58] zlibbioc_1.28.0 fishMod_0.29 rhdf5_2.26.0
## [61] gplots_3.0.1 plyr_1.8.4 grid_3.5.1
## [64] parallel_3.5.1 gdata_2.18.0 crayon_1.3.4
## [67] lattice_0.20-38 Biostrings_2.50.1 splines_3.5.1
## [70] multtest_2.38.0 tensor_1.5 knitr_1.20
## [73] pillar_1.3.0 igraph_1.2.2 boot_1.3-20
## [76] pulsar_0.3.4 codetools_0.2-15 stats4_3.5.1
## [79] R2jags_0.5-7 evaluate_0.12 rpart.plot_3.0.6
## [82] data.table_1.11.8 foreach_1.4.4 gtable_0.2.0
## [85] tweedie_2.3.2 rjags_4-8 tibble_1.4.2
## [88] iterators_1.0.10 IRanges_2.16.0 statmod_1.4.30
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7 Hardware specifications

Real data analyses were run a Dell laptop with following specifications

• OS: Ubuntu 18.04 Bionic Beaver
• RAM: 16GB
• Processors: Intel i7 quadcore

Simulations were run on the high performance computing facilities of VSC (the Flemish Supercomputer
Center) on the “delcatty cluster”, and on a server with following specifications:

• OS: Linux 8.6 (jessie)
• RAM: 132 GB
• Processors: Intel(R) Xeon(R) X7460 (12 Cores)
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